ubuntu-linux-kernel/drivers/gpu/drm/amd/display/modules/freesync/freesync.c

1484 lines
42 KiB
C

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "mod_freesync.h"
#include "core_types.h"
#define MOD_FREESYNC_MAX_CONCURRENT_STREAMS 32
/* Refresh rate ramp at a fixed rate of 65 Hz/second */
#define STATIC_SCREEN_RAMP_DELTA_REFRESH_RATE_PER_FRAME ((1000 / 60) * 65)
/* Number of elements in the render times cache array */
#define RENDER_TIMES_MAX_COUNT 20
/* Threshold to exit BTR (to avoid frequent enter-exits at the lower limit) */
#define BTR_EXIT_MARGIN 2000
/* Number of consecutive frames to check before entering/exiting fixed refresh*/
#define FIXED_REFRESH_ENTER_FRAME_COUNT 5
#define FIXED_REFRESH_EXIT_FRAME_COUNT 5
#define FREESYNC_REGISTRY_NAME "freesync_v1"
#define FREESYNC_NO_STATIC_FOR_EXTERNAL_DP_REGKEY "DalFreeSyncNoStaticForExternalDp"
#define FREESYNC_NO_STATIC_FOR_INTERNAL_REGKEY "DalFreeSyncNoStaticForInternal"
struct gradual_static_ramp {
bool ramp_is_active;
bool ramp_direction_is_up;
unsigned int ramp_current_frame_duration_in_ns;
};
struct time_cache {
/* video (48Hz feature) related */
unsigned int update_duration_in_ns;
/* BTR/fixed refresh related */
unsigned int prev_time_stamp_in_us;
unsigned int min_render_time_in_us;
unsigned int max_render_time_in_us;
unsigned int render_times_index;
unsigned int render_times[RENDER_TIMES_MAX_COUNT];
};
struct below_the_range {
bool btr_active;
bool program_btr;
unsigned int mid_point_in_us;
unsigned int inserted_frame_duration_in_us;
unsigned int frames_to_insert;
unsigned int frame_counter;
};
struct fixed_refresh {
bool fixed_active;
bool program_fixed;
unsigned int frame_counter;
};
struct freesync_range {
unsigned int min_refresh;
unsigned int max_frame_duration;
unsigned int vmax;
unsigned int max_refresh;
unsigned int min_frame_duration;
unsigned int vmin;
};
struct freesync_state {
bool fullscreen;
bool static_screen;
bool video;
unsigned int nominal_refresh_rate_in_micro_hz;
bool windowed_fullscreen;
struct time_cache time;
struct gradual_static_ramp static_ramp;
struct below_the_range btr;
struct fixed_refresh fixed_refresh;
struct freesync_range freesync_range;
};
struct freesync_entity {
struct dc_stream_state *stream;
struct mod_freesync_caps *caps;
struct freesync_state state;
struct mod_freesync_user_enable user_enable;
};
struct freesync_registry_options {
bool drr_external_supported;
bool drr_internal_supported;
};
struct core_freesync {
struct mod_freesync public;
struct dc *dc;
struct freesync_entity *map;
int num_entities;
struct freesync_registry_options opts;
};
#define MOD_FREESYNC_TO_CORE(mod_freesync)\
container_of(mod_freesync, struct core_freesync, public)
static bool check_dc_support(const struct dc *dc)
{
if (dc->stream_funcs.adjust_vmin_vmax == NULL)
return false;
return true;
}
struct mod_freesync *mod_freesync_create(struct dc *dc)
{
struct core_freesync *core_freesync =
kzalloc(sizeof(struct core_freesync), GFP_KERNEL);
struct persistent_data_flag flag;
int i, data = 0;
if (core_freesync == NULL)
goto fail_alloc_context;
core_freesync->map = kzalloc(sizeof(struct freesync_entity) * MOD_FREESYNC_MAX_CONCURRENT_STREAMS,
GFP_KERNEL);
if (core_freesync->map == NULL)
goto fail_alloc_map;
for (i = 0; i < MOD_FREESYNC_MAX_CONCURRENT_STREAMS; i++)
core_freesync->map[i].stream = NULL;
core_freesync->num_entities = 0;
if (dc == NULL)
goto fail_construct;
core_freesync->dc = dc;
if (!check_dc_support(dc))
goto fail_construct;
/* Create initial module folder in registry for freesync enable data */
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(dc->ctx, NULL, FREESYNC_REGISTRY_NAME,
NULL, NULL, 0, &flag);
flag.save_per_edid = false;
flag.save_per_link = false;
if (dm_read_persistent_data(dc->ctx, NULL, NULL,
FREESYNC_NO_STATIC_FOR_INTERNAL_REGKEY,
&data, sizeof(data), &flag)) {
core_freesync->opts.drr_internal_supported =
(data & 1) ? false : true;
}
if (dm_read_persistent_data(dc->ctx, NULL, NULL,
FREESYNC_NO_STATIC_FOR_EXTERNAL_DP_REGKEY,
&data, sizeof(data), &flag)) {
core_freesync->opts.drr_external_supported =
(data & 1) ? false : true;
}
return &core_freesync->public;
fail_construct:
kfree(core_freesync->map);
fail_alloc_map:
kfree(core_freesync);
fail_alloc_context:
return NULL;
}
void mod_freesync_destroy(struct mod_freesync *mod_freesync)
{
if (mod_freesync != NULL) {
int i;
struct core_freesync *core_freesync =
MOD_FREESYNC_TO_CORE(mod_freesync);
for (i = 0; i < core_freesync->num_entities; i++)
if (core_freesync->map[i].stream)
dc_stream_release(core_freesync->map[i].stream);
kfree(core_freesync->map);
kfree(core_freesync);
}
}
/* Given a specific dc_stream* this function finds its equivalent
* on the core_freesync->map and returns the corresponding index
*/
static unsigned int map_index_from_stream(struct core_freesync *core_freesync,
struct dc_stream_state *stream)
{
unsigned int index = 0;
for (index = 0; index < core_freesync->num_entities; index++) {
if (core_freesync->map[index].stream == stream) {
return index;
}
}
/* Could not find stream requested */
ASSERT(false);
return index;
}
bool mod_freesync_add_stream(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream, struct mod_freesync_caps *caps)
{
struct dc *dc = NULL;
struct core_freesync *core_freesync = NULL;
int persistent_freesync_enable = 0;
struct persistent_data_flag flag;
unsigned int nom_refresh_rate_uhz;
unsigned long long temp;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
dc = core_freesync->dc;
flag.save_per_edid = true;
flag.save_per_link = false;
if (core_freesync->num_entities < MOD_FREESYNC_MAX_CONCURRENT_STREAMS) {
dc_stream_retain(stream);
temp = stream->timing.pix_clk_khz;
temp *= 1000ULL * 1000ULL * 1000ULL;
temp = div_u64(temp, stream->timing.h_total);
temp = div_u64(temp, stream->timing.v_total);
nom_refresh_rate_uhz = (unsigned int) temp;
core_freesync->map[core_freesync->num_entities].stream = stream;
core_freesync->map[core_freesync->num_entities].caps = caps;
core_freesync->map[core_freesync->num_entities].state.
fullscreen = false;
core_freesync->map[core_freesync->num_entities].state.
static_screen = false;
core_freesync->map[core_freesync->num_entities].state.
video = false;
core_freesync->map[core_freesync->num_entities].state.time.
update_duration_in_ns = 0;
core_freesync->map[core_freesync->num_entities].state.
static_ramp.ramp_is_active = false;
/* get persistent data from registry */
if (dm_read_persistent_data(dc->ctx, stream->sink,
FREESYNC_REGISTRY_NAME,
"userenable", &persistent_freesync_enable,
sizeof(int), &flag)) {
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_gaming =
(persistent_freesync_enable & 1) ? true : false;
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_static =
(persistent_freesync_enable & 2) ? true : false;
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_video =
(persistent_freesync_enable & 4) ? true : false;
} else {
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_gaming = false;
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_static = false;
core_freesync->map[core_freesync->num_entities].user_enable.
enable_for_video = false;
}
if (caps->supported &&
nom_refresh_rate_uhz >= caps->min_refresh_in_micro_hz &&
nom_refresh_rate_uhz <= caps->max_refresh_in_micro_hz)
stream->ignore_msa_timing_param = 1;
core_freesync->num_entities++;
return true;
}
return false;
}
bool mod_freesync_remove_stream(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream)
{
int i = 0;
struct core_freesync *core_freesync = NULL;
unsigned int index = 0;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
dc_stream_release(core_freesync->map[index].stream);
core_freesync->map[index].stream = NULL;
/* To remove this entity, shift everything after down */
for (i = index; i < core_freesync->num_entities - 1; i++)
core_freesync->map[i] = core_freesync->map[i + 1];
core_freesync->num_entities--;
return true;
}
static void update_stream_freesync_context(struct core_freesync *core_freesync,
struct dc_stream_state *stream)
{
unsigned int index;
struct freesync_context *ctx;
ctx = &stream->freesync_ctx;
index = map_index_from_stream(core_freesync, stream);
ctx->supported = core_freesync->map[index].caps->supported;
ctx->enabled = (core_freesync->map[index].user_enable.enable_for_gaming ||
core_freesync->map[index].user_enable.enable_for_video ||
core_freesync->map[index].user_enable.enable_for_static);
ctx->active = (core_freesync->map[index].state.fullscreen ||
core_freesync->map[index].state.video ||
core_freesync->map[index].state.static_ramp.ramp_is_active);
ctx->min_refresh_in_micro_hz =
core_freesync->map[index].caps->min_refresh_in_micro_hz;
ctx->nominal_refresh_in_micro_hz = core_freesync->
map[index].state.nominal_refresh_rate_in_micro_hz;
}
static void update_stream(struct core_freesync *core_freesync,
struct dc_stream_state *stream)
{
unsigned int index = map_index_from_stream(core_freesync, stream);
if (core_freesync->map[index].caps->supported) {
stream->ignore_msa_timing_param = 1;
update_stream_freesync_context(core_freesync, stream);
}
}
static void calc_freesync_range(struct core_freesync *core_freesync,
struct dc_stream_state *stream,
struct freesync_state *state,
unsigned int min_refresh_in_uhz,
unsigned int max_refresh_in_uhz)
{
unsigned int min_frame_duration_in_ns = 0, max_frame_duration_in_ns = 0;
unsigned int index = map_index_from_stream(core_freesync, stream);
uint32_t vtotal = stream->timing.v_total;
if ((min_refresh_in_uhz == 0) || (max_refresh_in_uhz == 0)) {
state->freesync_range.min_refresh =
state->nominal_refresh_rate_in_micro_hz;
state->freesync_range.max_refresh =
state->nominal_refresh_rate_in_micro_hz;
state->freesync_range.max_frame_duration = 0;
state->freesync_range.min_frame_duration = 0;
state->freesync_range.vmax = vtotal;
state->freesync_range.vmin = vtotal;
return;
}
min_frame_duration_in_ns = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
max_refresh_in_uhz)));
max_frame_duration_in_ns = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
min_refresh_in_uhz)));
state->freesync_range.min_refresh = min_refresh_in_uhz;
state->freesync_range.max_refresh = max_refresh_in_uhz;
state->freesync_range.max_frame_duration = max_frame_duration_in_ns;
state->freesync_range.min_frame_duration = min_frame_duration_in_ns;
state->freesync_range.vmax = div64_u64(div64_u64(((unsigned long long)(
max_frame_duration_in_ns) * stream->timing.pix_clk_khz),
stream->timing.h_total), 1000000);
state->freesync_range.vmin = div64_u64(div64_u64(((unsigned long long)(
min_frame_duration_in_ns) * stream->timing.pix_clk_khz),
stream->timing.h_total), 1000000);
/* vmin/vmax cannot be less than vtotal */
if (state->freesync_range.vmin < vtotal) {
/* Error of 1 is permissible */
ASSERT((state->freesync_range.vmin + 1) >= vtotal);
state->freesync_range.vmin = vtotal;
}
if (state->freesync_range.vmax < vtotal) {
/* Error of 1 is permissible */
ASSERT((state->freesync_range.vmax + 1) >= vtotal);
state->freesync_range.vmax = vtotal;
}
/* Determine whether BTR can be supported */
if (max_frame_duration_in_ns >=
2 * min_frame_duration_in_ns)
core_freesync->map[index].caps->btr_supported = true;
else
core_freesync->map[index].caps->btr_supported = false;
/* Cache the time variables */
state->time.max_render_time_in_us =
max_frame_duration_in_ns / 1000;
state->time.min_render_time_in_us =
min_frame_duration_in_ns / 1000;
state->btr.mid_point_in_us =
(max_frame_duration_in_ns +
min_frame_duration_in_ns) / 2000;
}
static void calc_v_total_from_duration(struct dc_stream_state *stream,
unsigned int duration_in_ns, int *v_total_nominal)
{
*v_total_nominal = div64_u64(div64_u64(((unsigned long long)(
duration_in_ns) * stream->timing.pix_clk_khz),
stream->timing.h_total), 1000000);
}
static void calc_v_total_for_static_ramp(struct core_freesync *core_freesync,
struct dc_stream_state *stream,
unsigned int index, int *v_total)
{
unsigned int frame_duration = 0;
struct gradual_static_ramp *static_ramp_variables =
&core_freesync->map[index].state.static_ramp;
/* Calc ratio between new and current frame duration with 3 digit */
unsigned int frame_duration_ratio = div64_u64(1000000,
(1000 + div64_u64(((unsigned long long)(
STATIC_SCREEN_RAMP_DELTA_REFRESH_RATE_PER_FRAME) *
static_ramp_variables->ramp_current_frame_duration_in_ns),
1000000000)));
/* Calculate delta between new and current frame duration in ns */
unsigned int frame_duration_delta = div64_u64(((unsigned long long)(
static_ramp_variables->ramp_current_frame_duration_in_ns) *
(1000 - frame_duration_ratio)), 1000);
/* Adjust frame duration delta based on ratio between current and
* standard frame duration (frame duration at 60 Hz refresh rate).
*/
unsigned int ramp_rate_interpolated = div64_u64(((unsigned long long)(
frame_duration_delta) * static_ramp_variables->
ramp_current_frame_duration_in_ns), 16666666);
/* Going to a higher refresh rate (lower frame duration) */
if (static_ramp_variables->ramp_direction_is_up) {
/* reduce frame duration */
static_ramp_variables->ramp_current_frame_duration_in_ns -=
ramp_rate_interpolated;
/* min frame duration */
frame_duration = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
core_freesync->map[index].state.
nominal_refresh_rate_in_micro_hz)));
/* adjust for frame duration below min */
if (static_ramp_variables->ramp_current_frame_duration_in_ns <=
frame_duration) {
static_ramp_variables->ramp_is_active = false;
static_ramp_variables->
ramp_current_frame_duration_in_ns =
frame_duration;
}
/* Going to a lower refresh rate (larger frame duration) */
} else {
/* increase frame duration */
static_ramp_variables->ramp_current_frame_duration_in_ns +=
ramp_rate_interpolated;
/* max frame duration */
frame_duration = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
core_freesync->map[index].caps->min_refresh_in_micro_hz)));
/* adjust for frame duration above max */
if (static_ramp_variables->ramp_current_frame_duration_in_ns >=
frame_duration) {
static_ramp_variables->ramp_is_active = false;
static_ramp_variables->
ramp_current_frame_duration_in_ns =
frame_duration;
}
}
calc_v_total_from_duration(stream, static_ramp_variables->
ramp_current_frame_duration_in_ns, v_total);
}
static void reset_freesync_state_variables(struct freesync_state* state)
{
state->static_ramp.ramp_is_active = false;
if (state->nominal_refresh_rate_in_micro_hz)
state->static_ramp.ramp_current_frame_duration_in_ns =
((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
state->nominal_refresh_rate_in_micro_hz)));
state->btr.btr_active = false;
state->btr.frame_counter = 0;
state->btr.frames_to_insert = 0;
state->btr.inserted_frame_duration_in_us = 0;
state->btr.program_btr = false;
state->fixed_refresh.fixed_active = false;
state->fixed_refresh.program_fixed = false;
}
/*
* Sets freesync mode on a stream depending on current freesync state.
*/
static bool set_freesync_on_streams(struct core_freesync *core_freesync,
struct dc_stream_state **streams, int num_streams)
{
int v_total_nominal = 0, v_total_min = 0, v_total_max = 0;
unsigned int stream_idx, map_index = 0;
struct freesync_state *state;
if (num_streams == 0 || streams == NULL || num_streams > 1)
return false;
for (stream_idx = 0; stream_idx < num_streams; stream_idx++) {
map_index = map_index_from_stream(core_freesync,
streams[stream_idx]);
state = &core_freesync->map[map_index].state;
if (core_freesync->map[map_index].caps->supported) {
/* Fullscreen has the topmost priority. If the
* fullscreen bit is set, we are in a fullscreen
* application where it should not matter if it is
* static screen. We should not check the static_screen
* or video bit.
*
* Special cases of fullscreen include btr and fixed
* refresh. We program btr on every flip and involves
* programming full range right before the last inserted frame.
* However, we do not want to program the full freesync range
* when fixed refresh is active, because we only program
* that logic once and this will override it.
*/
if (core_freesync->map[map_index].user_enable.
enable_for_gaming == true &&
state->fullscreen == true &&
state->fixed_refresh.fixed_active == false) {
/* Enable freesync */
v_total_min = state->freesync_range.vmin;
v_total_max = state->freesync_range.vmax;
/* Update the freesync context for the stream */
update_stream_freesync_context(core_freesync,
streams[stream_idx]);
core_freesync->dc->stream_funcs.
adjust_vmin_vmax(core_freesync->dc, streams,
num_streams, v_total_min,
v_total_max);
return true;
} else if (core_freesync->map[map_index].user_enable.
enable_for_video && state->video == true) {
/* Enable 48Hz feature */
calc_v_total_from_duration(streams[stream_idx],
state->time.update_duration_in_ns,
&v_total_nominal);
/* Program only if v_total_nominal is in range*/
if (v_total_nominal >=
streams[stream_idx]->timing.v_total) {
/* Update the freesync context for
* the stream
*/
update_stream_freesync_context(
core_freesync,
streams[stream_idx]);
core_freesync->dc->stream_funcs.
adjust_vmin_vmax(
core_freesync->dc, streams,
num_streams, v_total_nominal,
v_total_nominal);
}
return true;
} else {
/* Disable freesync */
v_total_nominal = streams[stream_idx]->
timing.v_total;
/* Update the freesync context for
* the stream
*/
update_stream_freesync_context(
core_freesync,
streams[stream_idx]);
core_freesync->dc->stream_funcs.
adjust_vmin_vmax(
core_freesync->dc, streams,
num_streams, v_total_nominal,
v_total_nominal);
/* Reset the cached variables */
reset_freesync_state_variables(state);
return true;
}
} else {
/* Disable freesync */
v_total_nominal = streams[stream_idx]->
timing.v_total;
/*
* we have to reset drr always even sink does
* not support freesync because a former stream has
* be programmed
*/
core_freesync->dc->stream_funcs.
adjust_vmin_vmax(
core_freesync->dc, streams,
num_streams, v_total_nominal,
v_total_nominal);
/* Reset the cached variables */
reset_freesync_state_variables(state);
}
}
return false;
}
static void set_static_ramp_variables(struct core_freesync *core_freesync,
unsigned int index, bool enable_static_screen)
{
unsigned int frame_duration = 0;
unsigned int nominal_refresh_rate = core_freesync->map[index].state.
nominal_refresh_rate_in_micro_hz;
unsigned int min_refresh_rate= core_freesync->map[index].caps->
min_refresh_in_micro_hz;
struct gradual_static_ramp *static_ramp_variables =
&core_freesync->map[index].state.static_ramp;
/* If we are ENABLING static screen, refresh rate should go DOWN.
* If we are DISABLING static screen, refresh rate should go UP.
*/
if (enable_static_screen)
static_ramp_variables->ramp_direction_is_up = false;
else
static_ramp_variables->ramp_direction_is_up = true;
/* If ramp is not active, set initial frame duration depending on
* whether we are enabling/disabling static screen mode. If the ramp is
* already active, ramp should continue in the opposite direction
* starting with the current frame duration
*/
if (!static_ramp_variables->ramp_is_active) {
if (enable_static_screen == true) {
/* Going to lower refresh rate, so start from max
* refresh rate (min frame duration)
*/
frame_duration = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
nominal_refresh_rate)));
} else {
/* Going to higher refresh rate, so start from min
* refresh rate (max frame duration)
*/
frame_duration = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
min_refresh_rate)));
}
static_ramp_variables->
ramp_current_frame_duration_in_ns = frame_duration;
static_ramp_variables->ramp_is_active = true;
}
}
void mod_freesync_handle_v_update(struct mod_freesync *mod_freesync,
struct dc_stream_state **streams, int num_streams)
{
unsigned int index, v_total, inserted_frame_v_total = 0;
unsigned int min_frame_duration_in_ns, vmax, vmin = 0;
struct freesync_state *state;
struct core_freesync *core_freesync = NULL;
struct dc_static_screen_events triggers = {0};
if (mod_freesync == NULL)
return;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
if (core_freesync->num_entities == 0)
return;
index = map_index_from_stream(core_freesync,
streams[0]);
if (core_freesync->map[index].caps->supported == false)
return;
state = &core_freesync->map[index].state;
/* Below the Range Logic */
/* Only execute if in fullscreen mode */
if (state->fullscreen == true &&
core_freesync->map[index].user_enable.enable_for_gaming &&
core_freesync->map[index].caps->btr_supported &&
state->btr.btr_active) {
/* TODO: pass in flag for Pre-DCE12 ASIC
* in order for frame variable duration to take affect,
* it needs to be done one VSYNC early, which is at
* frameCounter == 1.
* For DCE12 and newer updates to V_TOTAL_MIN/MAX
* will take affect on current frame
*/
if (state->btr.frames_to_insert == state->btr.frame_counter) {
min_frame_duration_in_ns = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
state->nominal_refresh_rate_in_micro_hz)));
vmin = state->freesync_range.vmin;
inserted_frame_v_total = vmin;
if (min_frame_duration_in_ns / 1000)
inserted_frame_v_total =
state->btr.inserted_frame_duration_in_us *
vmin / (min_frame_duration_in_ns / 1000);
/* Set length of inserted frames as v_total_max*/
vmax = inserted_frame_v_total;
vmin = inserted_frame_v_total;
/* Program V_TOTAL */
core_freesync->dc->stream_funcs.adjust_vmin_vmax(
core_freesync->dc, streams,
num_streams, vmin, vmax);
}
if (state->btr.frame_counter > 0)
state->btr.frame_counter--;
/* Restore FreeSync */
if (state->btr.frame_counter == 0)
set_freesync_on_streams(core_freesync, streams, num_streams);
}
/* If in fullscreen freesync mode or in video, do not program
* static screen ramp values
*/
if (state->fullscreen == true || state->video == true) {
state->static_ramp.ramp_is_active = false;
return;
}
/* Gradual Static Screen Ramping Logic */
/* Execute if ramp is active and user enabled freesync static screen*/
if (state->static_ramp.ramp_is_active &&
core_freesync->map[index].user_enable.enable_for_static) {
calc_v_total_for_static_ramp(core_freesync, streams[0],
index, &v_total);
/* Update the freesync context for the stream */
update_stream_freesync_context(core_freesync, streams[0]);
/* Program static screen ramp values */
core_freesync->dc->stream_funcs.adjust_vmin_vmax(
core_freesync->dc, streams,
num_streams, v_total,
v_total);
triggers.overlay_update = true;
triggers.surface_update = true;
core_freesync->dc->stream_funcs.set_static_screen_events(
core_freesync->dc, streams, num_streams,
&triggers);
}
}
void mod_freesync_update_state(struct mod_freesync *mod_freesync,
struct dc_stream_state **streams, int num_streams,
struct mod_freesync_params *freesync_params)
{
bool freesync_program_required = false;
unsigned int stream_index;
struct freesync_state *state;
struct core_freesync *core_freesync = NULL;
struct dc_static_screen_events triggers = {0};
if (mod_freesync == NULL)
return;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
if (core_freesync->num_entities == 0)
return;
for(stream_index = 0; stream_index < num_streams; stream_index++) {
unsigned int map_index = map_index_from_stream(core_freesync,
streams[stream_index]);
bool is_embedded = dc_is_embedded_signal(
streams[stream_index]->sink->sink_signal);
struct freesync_registry_options *opts = &core_freesync->opts;
state = &core_freesync->map[map_index].state;
switch (freesync_params->state){
case FREESYNC_STATE_FULLSCREEN:
state->fullscreen = freesync_params->enable;
freesync_program_required = true;
state->windowed_fullscreen =
freesync_params->windowed_fullscreen;
break;
case FREESYNC_STATE_STATIC_SCREEN:
/* Static screen ramp is disabled by default, but can
* be enabled through regkey.
*/
if ((is_embedded && opts->drr_internal_supported) ||
(!is_embedded && opts->drr_external_supported))
if (state->static_screen !=
freesync_params->enable) {
/* Change the state flag */
state->static_screen =
freesync_params->enable;
/* Update static screen ramp */
set_static_ramp_variables(core_freesync,
map_index,
freesync_params->enable);
}
/* We program the ramp starting next VUpdate */
break;
case FREESYNC_STATE_VIDEO:
/* Change core variables only if there is a change*/
if(freesync_params->update_duration_in_ns !=
state->time.update_duration_in_ns) {
state->video = freesync_params->enable;
state->time.update_duration_in_ns =
freesync_params->update_duration_in_ns;
freesync_program_required = true;
}
break;
case FREESYNC_STATE_NONE:
/* handle here to avoid warning */
break;
}
}
/* Update mask */
triggers.overlay_update = true;
triggers.surface_update = true;
core_freesync->dc->stream_funcs.set_static_screen_events(
core_freesync->dc, streams, num_streams,
&triggers);
if (freesync_program_required)
/* Program freesync according to current state*/
set_freesync_on_streams(core_freesync, streams, num_streams);
}
bool mod_freesync_get_state(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
struct mod_freesync_params *freesync_params)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
if (core_freesync->map[index].state.fullscreen) {
freesync_params->state = FREESYNC_STATE_FULLSCREEN;
freesync_params->enable = true;
} else if (core_freesync->map[index].state.static_screen) {
freesync_params->state = FREESYNC_STATE_STATIC_SCREEN;
freesync_params->enable = true;
} else if (core_freesync->map[index].state.video) {
freesync_params->state = FREESYNC_STATE_VIDEO;
freesync_params->enable = true;
} else {
freesync_params->state = FREESYNC_STATE_NONE;
freesync_params->enable = false;
}
freesync_params->update_duration_in_ns =
core_freesync->map[index].state.time.update_duration_in_ns;
freesync_params->windowed_fullscreen =
core_freesync->map[index].state.windowed_fullscreen;
return true;
}
bool mod_freesync_set_user_enable(struct mod_freesync *mod_freesync,
struct dc_stream_state **streams, int num_streams,
struct mod_freesync_user_enable *user_enable)
{
unsigned int stream_index, map_index;
int persistent_data = 0;
struct persistent_data_flag flag;
struct dc *dc = NULL;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
dc = core_freesync->dc;
flag.save_per_edid = true;
flag.save_per_link = false;
for(stream_index = 0; stream_index < num_streams;
stream_index++){
map_index = map_index_from_stream(core_freesync,
streams[stream_index]);
core_freesync->map[map_index].user_enable = *user_enable;
/* Write persistent data in registry*/
if (core_freesync->map[map_index].user_enable.
enable_for_gaming)
persistent_data = persistent_data | 1;
if (core_freesync->map[map_index].user_enable.
enable_for_static)
persistent_data = persistent_data | 2;
if (core_freesync->map[map_index].user_enable.
enable_for_video)
persistent_data = persistent_data | 4;
dm_write_persistent_data(dc->ctx,
streams[stream_index]->sink,
FREESYNC_REGISTRY_NAME,
"userenable",
&persistent_data,
sizeof(int),
&flag);
}
set_freesync_on_streams(core_freesync, streams, num_streams);
return true;
}
bool mod_freesync_get_user_enable(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
struct mod_freesync_user_enable *user_enable)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
*user_enable = core_freesync->map[index].user_enable;
return true;
}
bool mod_freesync_get_static_ramp_active(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
bool *is_ramp_active)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
*is_ramp_active =
core_freesync->map[index].state.static_ramp.ramp_is_active;
return true;
}
bool mod_freesync_override_min_max(struct mod_freesync *mod_freesync,
struct dc_stream_state *streams,
unsigned int min_refresh,
unsigned int max_refresh,
struct mod_freesync_caps *caps)
{
unsigned int index = 0;
struct core_freesync *core_freesync;
struct freesync_state *state;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, streams);
state = &core_freesync->map[index].state;
if (max_refresh == 0)
max_refresh = state->nominal_refresh_rate_in_micro_hz;
if (min_refresh == 0) {
/* Restore defaults */
calc_freesync_range(core_freesync, streams, state,
core_freesync->map[index].caps->
min_refresh_in_micro_hz,
state->nominal_refresh_rate_in_micro_hz);
} else {
calc_freesync_range(core_freesync, streams,
state,
min_refresh,
max_refresh);
/* Program vtotal min/max */
core_freesync->dc->stream_funcs.adjust_vmin_vmax(
core_freesync->dc, &streams, 1,
state->freesync_range.vmin,
state->freesync_range.vmax);
}
if (min_refresh != 0 &&
dc_is_embedded_signal(streams->sink->sink_signal) &&
(max_refresh - min_refresh >= 10000000)) {
caps->supported = true;
caps->min_refresh_in_micro_hz = min_refresh;
caps->max_refresh_in_micro_hz = max_refresh;
}
/* Update the stream */
update_stream(core_freesync, streams);
return true;
}
bool mod_freesync_get_min_max(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
unsigned int *min_refresh,
unsigned int *max_refresh)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
*min_refresh =
core_freesync->map[index].state.freesync_range.min_refresh;
*max_refresh =
core_freesync->map[index].state.freesync_range.max_refresh;
return true;
}
bool mod_freesync_get_vmin_vmax(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
unsigned int *vmin,
unsigned int *vmax)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
*vmin =
core_freesync->map[index].state.freesync_range.vmin;
*vmax =
core_freesync->map[index].state.freesync_range.vmax;
return true;
}
bool mod_freesync_get_v_position(struct mod_freesync *mod_freesync,
struct dc_stream_state *stream,
unsigned int *nom_v_pos,
unsigned int *v_pos)
{
unsigned int index = 0;
struct core_freesync *core_freesync = NULL;
struct crtc_position position;
if (mod_freesync == NULL)
return false;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
index = map_index_from_stream(core_freesync, stream);
if (core_freesync->dc->stream_funcs.get_crtc_position(
core_freesync->dc, &stream, 1,
&position.vertical_count, &position.nominal_vcount)) {
*nom_v_pos = position.nominal_vcount;
*v_pos = position.vertical_count;
return true;
}
return false;
}
void mod_freesync_notify_mode_change(struct mod_freesync *mod_freesync,
struct dc_stream_state **streams, int num_streams)
{
unsigned int stream_index, map_index;
struct freesync_state *state;
struct core_freesync *core_freesync = NULL;
struct dc_static_screen_events triggers = {0};
unsigned long long temp = 0;
if (mod_freesync == NULL)
return;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
for (stream_index = 0; stream_index < num_streams; stream_index++) {
map_index = map_index_from_stream(core_freesync,
streams[stream_index]);
state = &core_freesync->map[map_index].state;
/* Update the field rate for new timing */
temp = streams[stream_index]->timing.pix_clk_khz;
temp *= 1000ULL * 1000ULL * 1000ULL;
temp = div_u64(temp,
streams[stream_index]->timing.h_total);
temp = div_u64(temp,
streams[stream_index]->timing.v_total);
state->nominal_refresh_rate_in_micro_hz =
(unsigned int) temp;
if (core_freesync->map[map_index].caps->supported) {
/* Update the stream */
update_stream(core_freesync, streams[stream_index]);
/* Calculate vmin/vmax and refresh rate for
* current mode
*/
calc_freesync_range(core_freesync, *streams, state,
core_freesync->map[map_index].caps->
min_refresh_in_micro_hz,
state->nominal_refresh_rate_in_micro_hz);
/* Update mask */
triggers.overlay_update = true;
triggers.surface_update = true;
core_freesync->dc->stream_funcs.set_static_screen_events(
core_freesync->dc, streams, num_streams,
&triggers);
}
}
/* Program freesync according to current state*/
set_freesync_on_streams(core_freesync, streams, num_streams);
}
/* Add the timestamps to the cache and determine whether BTR programming
* is required, depending on the times calculated
*/
static void update_timestamps(struct core_freesync *core_freesync,
const struct dc_stream_state *stream, unsigned int map_index,
unsigned int last_render_time_in_us)
{
struct freesync_state *state = &core_freesync->map[map_index].state;
state->time.render_times[state->time.render_times_index] =
last_render_time_in_us;
state->time.render_times_index++;
if (state->time.render_times_index >= RENDER_TIMES_MAX_COUNT)
state->time.render_times_index = 0;
if (last_render_time_in_us + BTR_EXIT_MARGIN <
state->time.max_render_time_in_us) {
/* Exit Below the Range */
if (state->btr.btr_active) {
state->btr.program_btr = true;
state->btr.btr_active = false;
state->btr.frame_counter = 0;
/* Exit Fixed Refresh mode */
} else if (state->fixed_refresh.fixed_active) {
state->fixed_refresh.frame_counter++;
if (state->fixed_refresh.frame_counter >
FIXED_REFRESH_EXIT_FRAME_COUNT) {
state->fixed_refresh.frame_counter = 0;
state->fixed_refresh.program_fixed = true;
state->fixed_refresh.fixed_active = false;
}
}
} else if (last_render_time_in_us > state->time.max_render_time_in_us) {
/* Enter Below the Range */
if (!state->btr.btr_active &&
core_freesync->map[map_index].caps->btr_supported) {
state->btr.program_btr = true;
state->btr.btr_active = true;
/* Enter Fixed Refresh mode */
} else if (!state->fixed_refresh.fixed_active &&
!core_freesync->map[map_index].caps->btr_supported) {
state->fixed_refresh.frame_counter++;
if (state->fixed_refresh.frame_counter >
FIXED_REFRESH_ENTER_FRAME_COUNT) {
state->fixed_refresh.frame_counter = 0;
state->fixed_refresh.program_fixed = true;
state->fixed_refresh.fixed_active = true;
}
}
}
/* When Below the Range is active, must react on every frame */
if (state->btr.btr_active)
state->btr.program_btr = true;
}
static void apply_below_the_range(struct core_freesync *core_freesync,
struct dc_stream_state *stream, unsigned int map_index,
unsigned int last_render_time_in_us)
{
unsigned int inserted_frame_duration_in_us = 0;
unsigned int mid_point_frames_ceil = 0;
unsigned int mid_point_frames_floor = 0;
unsigned int frame_time_in_us = 0;
unsigned int delta_from_mid_point_in_us_1 = 0xFFFFFFFF;
unsigned int delta_from_mid_point_in_us_2 = 0xFFFFFFFF;
unsigned int frames_to_insert = 0;
unsigned int min_frame_duration_in_ns = 0;
struct freesync_state *state = &core_freesync->map[map_index].state;
if (!state->btr.program_btr)
return;
state->btr.program_btr = false;
min_frame_duration_in_ns = ((unsigned int) (div64_u64(
(1000000000ULL * 1000000),
state->nominal_refresh_rate_in_micro_hz)));
/* Program BTR */
/* BTR set to "not active" so disengage */
if (!state->btr.btr_active)
/* Restore FreeSync */
set_freesync_on_streams(core_freesync, &stream, 1);
/* BTR set to "active" so engage */
else {
/* Calculate number of midPoint frames that could fit within
* the render time interval- take ceil of this value
*/
mid_point_frames_ceil = (last_render_time_in_us +
state->btr.mid_point_in_us- 1) /
state->btr.mid_point_in_us;
if (mid_point_frames_ceil > 0) {
frame_time_in_us = last_render_time_in_us /
mid_point_frames_ceil;
delta_from_mid_point_in_us_1 =
(state->btr.mid_point_in_us >
frame_time_in_us) ?
(state->btr.mid_point_in_us - frame_time_in_us):
(frame_time_in_us - state->btr.mid_point_in_us);
}
/* Calculate number of midPoint frames that could fit within
* the render time interval- take floor of this value
*/
mid_point_frames_floor = last_render_time_in_us /
state->btr.mid_point_in_us;
if (mid_point_frames_floor > 0) {
frame_time_in_us = last_render_time_in_us /
mid_point_frames_floor;
delta_from_mid_point_in_us_2 =
(state->btr.mid_point_in_us >
frame_time_in_us) ?
(state->btr.mid_point_in_us - frame_time_in_us):
(frame_time_in_us - state->btr.mid_point_in_us);
}
/* Choose number of frames to insert based on how close it
* can get to the mid point of the variable range.
*/
if (delta_from_mid_point_in_us_1 < delta_from_mid_point_in_us_2)
frames_to_insert = mid_point_frames_ceil;
else
frames_to_insert = mid_point_frames_floor;
/* Either we've calculated the number of frames to insert,
* or we need to insert min duration frames
*/
if (frames_to_insert > 0)
inserted_frame_duration_in_us = last_render_time_in_us /
frames_to_insert;
if (inserted_frame_duration_in_us <
state->time.min_render_time_in_us)
inserted_frame_duration_in_us =
state->time.min_render_time_in_us;
/* Cache the calculated variables */
state->btr.inserted_frame_duration_in_us =
inserted_frame_duration_in_us;
state->btr.frames_to_insert = frames_to_insert;
state->btr.frame_counter = frames_to_insert;
}
}
static void apply_fixed_refresh(struct core_freesync *core_freesync,
struct dc_stream_state *stream, unsigned int map_index)
{
unsigned int vmin = 0, vmax = 0;
struct freesync_state *state = &core_freesync->map[map_index].state;
if (!state->fixed_refresh.program_fixed)
return;
state->fixed_refresh.program_fixed = false;
/* Program Fixed Refresh */
/* Fixed Refresh set to "not active" so disengage */
if (!state->fixed_refresh.fixed_active) {
set_freesync_on_streams(core_freesync, &stream, 1);
/* Fixed Refresh set to "active" so engage (fix to max) */
} else {
vmin = state->freesync_range.vmin;
vmax = vmin;
core_freesync->dc->stream_funcs.adjust_vmin_vmax(
core_freesync->dc, &stream,
1, vmin,
vmax);
}
}
void mod_freesync_pre_update_plane_addresses(struct mod_freesync *mod_freesync,
struct dc_stream_state **streams, int num_streams,
unsigned int curr_time_stamp_in_us)
{
unsigned int stream_index, map_index, last_render_time_in_us = 0;
struct core_freesync *core_freesync = NULL;
if (mod_freesync == NULL)
return;
core_freesync = MOD_FREESYNC_TO_CORE(mod_freesync);
for (stream_index = 0; stream_index < num_streams; stream_index++) {
map_index = map_index_from_stream(core_freesync,
streams[stream_index]);
if (core_freesync->map[map_index].caps->supported) {
last_render_time_in_us = curr_time_stamp_in_us -
core_freesync->map[map_index].state.time.
prev_time_stamp_in_us;
/* Add the timestamps to the cache and determine
* whether BTR program is required
*/
update_timestamps(core_freesync, streams[stream_index],
map_index, last_render_time_in_us);
if (core_freesync->map[map_index].state.fullscreen &&
core_freesync->map[map_index].user_enable.
enable_for_gaming) {
if (core_freesync->map[map_index].caps->btr_supported) {
apply_below_the_range(core_freesync,
streams[stream_index], map_index,
last_render_time_in_us);
} else {
apply_fixed_refresh(core_freesync,
streams[stream_index], map_index);
}
}
core_freesync->map[map_index].state.time.
prev_time_stamp_in_us = curr_time_stamp_in_us;
}
}
}