ubuntu-linux-kernel/kernel/pid.c

446 lines
11 KiB
C

/*
* Generic pidhash and scalable, time-bounded PID allocator
*
* (C) 2002-2003 Nadia Yvette Chambers, IBM
* (C) 2004 Nadia Yvette Chambers, Oracle
* (C) 2002-2004 Ingo Molnar, Red Hat
*
* pid-structures are backing objects for tasks sharing a given ID to chain
* against. There is very little to them aside from hashing them and
* parking tasks using given ID's on a list.
*
* The hash is always changed with the tasklist_lock write-acquired,
* and the hash is only accessed with the tasklist_lock at least
* read-acquired, so there's no additional SMP locking needed here.
*
* We have a list of bitmap pages, which bitmaps represent the PID space.
* Allocating and freeing PIDs is completely lockless. The worst-case
* allocation scenario when all but one out of 1 million PIDs possible are
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
*
* Pid namespaces:
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
* Many thanks to Oleg Nesterov for comments and help
*
*/
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/bootmem.h>
#include <linux/hash.h>
#include <linux/pid_namespace.h>
#include <linux/init_task.h>
#include <linux/syscalls.h>
#include <linux/proc_ns.h>
#include <linux/proc_fs.h>
#include <linux/sched/task.h>
#include <linux/idr.h>
struct pid init_struct_pid = INIT_STRUCT_PID;
int pid_max = PID_MAX_DEFAULT;
#define RESERVED_PIDS 300
int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;
/*
* PID-map pages start out as NULL, they get allocated upon
* first use and are never deallocated. This way a low pid_max
* value does not cause lots of bitmaps to be allocated, but
* the scheme scales to up to 4 million PIDs, runtime.
*/
struct pid_namespace init_pid_ns = {
.kref = KREF_INIT(2),
.idr = IDR_INIT,
.pid_allocated = PIDNS_ADDING,
.level = 0,
.child_reaper = &init_task,
.user_ns = &init_user_ns,
.ns.inum = PROC_PID_INIT_INO,
#ifdef CONFIG_PID_NS
.ns.ops = &pidns_operations,
#endif
};
EXPORT_SYMBOL_GPL(init_pid_ns);
/*
* Note: disable interrupts while the pidmap_lock is held as an
* interrupt might come in and do read_lock(&tasklist_lock).
*
* If we don't disable interrupts there is a nasty deadlock between
* detach_pid()->free_pid() and another cpu that does
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
* read_lock(&tasklist_lock);
*
* After we clean up the tasklist_lock and know there are no
* irq handlers that take it we can leave the interrupts enabled.
* For now it is easier to be safe than to prove it can't happen.
*/
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
void put_pid(struct pid *pid)
{
struct pid_namespace *ns;
if (!pid)
return;
ns = pid->numbers[pid->level].ns;
if ((atomic_read(&pid->count) == 1) ||
atomic_dec_and_test(&pid->count)) {
kmem_cache_free(ns->pid_cachep, pid);
put_pid_ns(ns);
}
}
EXPORT_SYMBOL_GPL(put_pid);
static void delayed_put_pid(struct rcu_head *rhp)
{
struct pid *pid = container_of(rhp, struct pid, rcu);
put_pid(pid);
}
void free_pid(struct pid *pid)
{
/* We can be called with write_lock_irq(&tasklist_lock) held */
int i;
unsigned long flags;
spin_lock_irqsave(&pidmap_lock, flags);
for (i = 0; i <= pid->level; i++) {
struct upid *upid = pid->numbers + i;
struct pid_namespace *ns = upid->ns;
switch (--ns->pid_allocated) {
case 2:
case 1:
/* When all that is left in the pid namespace
* is the reaper wake up the reaper. The reaper
* may be sleeping in zap_pid_ns_processes().
*/
wake_up_process(ns->child_reaper);
break;
case PIDNS_ADDING:
/* Handle a fork failure of the first process */
WARN_ON(ns->child_reaper);
ns->pid_allocated = 0;
/* fall through */
case 0:
schedule_work(&ns->proc_work);
break;
}
idr_remove(&ns->idr, upid->nr);
}
spin_unlock_irqrestore(&pidmap_lock, flags);
call_rcu(&pid->rcu, delayed_put_pid);
}
struct pid *alloc_pid(struct pid_namespace *ns)
{
struct pid *pid;
enum pid_type type;
int i, nr;
struct pid_namespace *tmp;
struct upid *upid;
int retval = -ENOMEM;
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if (!pid)
return ERR_PTR(retval);
tmp = ns;
pid->level = ns->level;
for (i = ns->level; i >= 0; i--) {
int pid_min = 1;
idr_preload(GFP_KERNEL);
spin_lock_irq(&pidmap_lock);
/*
* init really needs pid 1, but after reaching the maximum
* wrap back to RESERVED_PIDS
*/
if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
pid_min = RESERVED_PIDS;
/*
* Store a null pointer so find_pid_ns does not find
* a partially initialized PID (see below).
*/
nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
pid_max, GFP_ATOMIC);
spin_unlock_irq(&pidmap_lock);
idr_preload_end();
if (nr < 0) {
retval = nr;
goto out_free;
}
pid->numbers[i].nr = nr;
pid->numbers[i].ns = tmp;
tmp = tmp->parent;
}
if (unlikely(is_child_reaper(pid))) {
if (pid_ns_prepare_proc(ns))
goto out_free;
}
get_pid_ns(ns);
atomic_set(&pid->count, 1);
for (type = 0; type < PIDTYPE_MAX; ++type)
INIT_HLIST_HEAD(&pid->tasks[type]);
upid = pid->numbers + ns->level;
spin_lock_irq(&pidmap_lock);
if (!(ns->pid_allocated & PIDNS_ADDING))
goto out_unlock;
for ( ; upid >= pid->numbers; --upid) {
/* Make the PID visible to find_pid_ns. */
idr_replace(&upid->ns->idr, pid, upid->nr);
upid->ns->pid_allocated++;
}
spin_unlock_irq(&pidmap_lock);
return pid;
out_unlock:
spin_unlock_irq(&pidmap_lock);
put_pid_ns(ns);
out_free:
spin_lock_irq(&pidmap_lock);
while (++i <= ns->level)
idr_remove(&ns->idr, (pid->numbers + i)->nr);
/* On failure to allocate the first pid, reset the state */
if (ns->pid_allocated == PIDNS_ADDING)
idr_set_cursor(&ns->idr, 0);
spin_unlock_irq(&pidmap_lock);
kmem_cache_free(ns->pid_cachep, pid);
return ERR_PTR(retval);
}
void disable_pid_allocation(struct pid_namespace *ns)
{
spin_lock_irq(&pidmap_lock);
ns->pid_allocated &= ~PIDNS_ADDING;
spin_unlock_irq(&pidmap_lock);
}
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
{
return idr_find(&ns->idr, nr);
}
EXPORT_SYMBOL_GPL(find_pid_ns);
struct pid *find_vpid(int nr)
{
return find_pid_ns(nr, task_active_pid_ns(current));
}
EXPORT_SYMBOL_GPL(find_vpid);
/*
* attach_pid() must be called with the tasklist_lock write-held.
*/
void attach_pid(struct task_struct *task, enum pid_type type)
{
struct pid_link *link = &task->pids[type];
hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
}
static void __change_pid(struct task_struct *task, enum pid_type type,
struct pid *new)
{
struct pid_link *link;
struct pid *pid;
int tmp;
link = &task->pids[type];
pid = link->pid;
hlist_del_rcu(&link->node);
link->pid = new;
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
if (!hlist_empty(&pid->tasks[tmp]))
return;
free_pid(pid);
}
void detach_pid(struct task_struct *task, enum pid_type type)
{
__change_pid(task, type, NULL);
}
void change_pid(struct task_struct *task, enum pid_type type,
struct pid *pid)
{
__change_pid(task, type, pid);
attach_pid(task, type);
}
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
void transfer_pid(struct task_struct *old, struct task_struct *new,
enum pid_type type)
{
new->pids[type].pid = old->pids[type].pid;
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
}
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result = NULL;
if (pid) {
struct hlist_node *first;
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
lockdep_tasklist_lock_is_held());
if (first)
result = hlist_entry(first, struct task_struct, pids[(type)].node);
}
return result;
}
EXPORT_SYMBOL(pid_task);
/*
* Must be called under rcu_read_lock().
*/
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
{
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"find_task_by_pid_ns() needs rcu_read_lock() protection");
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
}
struct task_struct *find_task_by_vpid(pid_t vnr)
{
return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
}
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
rcu_read_lock();
if (type != PIDTYPE_PID)
task = task->group_leader;
pid = get_pid(rcu_dereference(task->pids[type].pid));
rcu_read_unlock();
return pid;
}
EXPORT_SYMBOL_GPL(get_task_pid);
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result;
rcu_read_lock();
result = pid_task(pid, type);
if (result)
get_task_struct(result);
rcu_read_unlock();
return result;
}
EXPORT_SYMBOL_GPL(get_pid_task);
struct pid *find_get_pid(pid_t nr)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(find_vpid(nr));
rcu_read_unlock();
return pid;
}
EXPORT_SYMBOL_GPL(find_get_pid);
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{
struct upid *upid;
pid_t nr = 0;
if (pid && ns->level <= pid->level) {
upid = &pid->numbers[ns->level];
if (upid->ns == ns)
nr = upid->nr;
}
return nr;
}
EXPORT_SYMBOL_GPL(pid_nr_ns);
pid_t pid_vnr(struct pid *pid)
{
return pid_nr_ns(pid, task_active_pid_ns(current));
}
EXPORT_SYMBOL_GPL(pid_vnr);
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
struct pid_namespace *ns)
{
pid_t nr = 0;
rcu_read_lock();
if (!ns)
ns = task_active_pid_ns(current);
if (likely(pid_alive(task))) {
if (type != PIDTYPE_PID) {
if (type == __PIDTYPE_TGID)
type = PIDTYPE_PID;
task = task->group_leader;
}
nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
}
rcu_read_unlock();
return nr;
}
EXPORT_SYMBOL(__task_pid_nr_ns);
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
{
return ns_of_pid(task_pid(tsk));
}
EXPORT_SYMBOL_GPL(task_active_pid_ns);
/*
* Used by proc to find the first pid that is greater than or equal to nr.
*
* If there is a pid at nr this function is exactly the same as find_pid_ns.
*/
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
{
return idr_get_next(&ns->idr, &nr);
}
void __init pid_idr_init(void)
{
/* Verify no one has done anything silly: */
BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
/* bump default and minimum pid_max based on number of cpus */
pid_max = min(pid_max_max, max_t(int, pid_max,
PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
pid_max_min = max_t(int, pid_max_min,
PIDS_PER_CPU_MIN * num_possible_cpus());
pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
idr_init(&init_pid_ns.idr);
init_pid_ns.pid_cachep = KMEM_CACHE(pid,
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
}