ubuntu-linux-kernel/drivers/platform/x86/asus-laptop.c

1996 lines
52 KiB
C

/*
* asus-laptop.c - Asus Laptop Support
*
*
* Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
* Copyright (C) 2006-2007 Corentin Chary
* Copyright (C) 2011 Wind River Systems
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* The development page for this driver is located at
* http://sourceforge.net/projects/acpi4asus/
*
* Credits:
* Pontus Fuchs - Helper functions, cleanup
* Johann Wiesner - Small compile fixes
* John Belmonte - ACPI code for Toshiba laptop was a good starting point.
* Eric Burghard - LED display support for W1N
* Josh Green - Light Sens support
* Thomas Tuttle - His first patch for led support was very helpful
* Sam Lin - GPS support
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/proc_fs.h>
#include <linux/backlight.h>
#include <linux/fb.h>
#include <linux/leds.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/input-polldev.h>
#include <linux/rfkill.h>
#include <linux/slab.h>
#include <linux/dmi.h>
#include <linux/acpi.h>
#include <acpi/video.h>
#define ASUS_LAPTOP_VERSION "0.42"
#define ASUS_LAPTOP_NAME "Asus Laptop Support"
#define ASUS_LAPTOP_CLASS "hotkey"
#define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
#define ASUS_LAPTOP_FILE KBUILD_MODNAME
#define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
MODULE_LICENSE("GPL");
/*
* WAPF defines the behavior of the Fn+Fx wlan key
* The significance of values is yet to be found, but
* most of the time:
* Bit | Bluetooth | WLAN
* 0 | Hardware | Hardware
* 1 | Hardware | Software
* 4 | Software | Software
*/
static uint wapf = 1;
module_param(wapf, uint, 0444);
MODULE_PARM_DESC(wapf, "WAPF value");
static char *wled_type = "unknown";
static char *bled_type = "unknown";
module_param(wled_type, charp, 0444);
MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
"(unknown, led or rfkill). "
"default is unknown");
module_param(bled_type, charp, 0444);
MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
"(unknown, led or rfkill). "
"default is unknown");
static int wlan_status = 1;
static int bluetooth_status = 1;
static int wimax_status = -1;
static int wwan_status = -1;
static int als_status;
module_param(wlan_status, int, 0444);
MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(bluetooth_status, int, 0444);
MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(wimax_status, int, 0444);
MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(wwan_status, int, 0444);
MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(als_status, int, 0444);
MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
"(0 = disabled, 1 = enabled). "
"default is 0");
/*
* Some events we use, same for all Asus
*/
#define ATKD_BRNUP_MIN 0x10
#define ATKD_BRNUP_MAX 0x1f
#define ATKD_BRNDOWN_MIN 0x20
#define ATKD_BRNDOWN_MAX 0x2f
#define ATKD_BRNDOWN 0x20
#define ATKD_BRNUP 0x2f
#define ATKD_LCD_ON 0x33
#define ATKD_LCD_OFF 0x34
/*
* Known bits returned by \_SB.ATKD.HWRS
*/
#define WL_HWRS 0x80
#define BT_HWRS 0x100
/*
* Flags for hotk status
* WL_ON and BT_ON are also used for wireless_status()
*/
#define WL_RSTS 0x01 /* internal Wifi */
#define BT_RSTS 0x02 /* internal Bluetooth */
#define WM_RSTS 0x08 /* internal wimax */
#define WW_RSTS 0x20 /* internal wwan */
/* WLED and BLED type */
#define TYPE_UNKNOWN 0
#define TYPE_LED 1
#define TYPE_RFKILL 2
/* LED */
#define METHOD_MLED "MLED"
#define METHOD_TLED "TLED"
#define METHOD_RLED "RLED" /* W1JC */
#define METHOD_PLED "PLED" /* A7J */
#define METHOD_GLED "GLED" /* G1, G2 (probably) */
/* LEDD */
#define METHOD_LEDD "SLCM"
/*
* Bluetooth and WLAN
* WLED and BLED are not handled like other XLED, because in some dsdt
* they also control the WLAN/Bluetooth device.
*/
#define METHOD_WLAN "WLED"
#define METHOD_BLUETOOTH "BLED"
/* WWAN and WIMAX */
#define METHOD_WWAN "GSMC"
#define METHOD_WIMAX "WMXC"
#define METHOD_WL_STATUS "RSTS"
/* Brightness */
#define METHOD_BRIGHTNESS_SET "SPLV"
#define METHOD_BRIGHTNESS_GET "GPLV"
/* Display */
#define METHOD_SWITCH_DISPLAY "SDSP"
#define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
#define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
/* GPS */
/* R2H use different handle for GPS on/off */
#define METHOD_GPS_ON "SDON"
#define METHOD_GPS_OFF "SDOF"
#define METHOD_GPS_STATUS "GPST"
/* Keyboard light */
#define METHOD_KBD_LIGHT_SET "SLKB"
#define METHOD_KBD_LIGHT_GET "GLKB"
/* For Pegatron Lucid tablet */
#define DEVICE_NAME_PEGA "Lucid"
#define METHOD_PEGA_ENABLE "ENPR"
#define METHOD_PEGA_DISABLE "DAPR"
#define PEGA_WLAN 0x00
#define PEGA_BLUETOOTH 0x01
#define PEGA_WWAN 0x02
#define PEGA_ALS 0x04
#define PEGA_ALS_POWER 0x05
#define METHOD_PEGA_READ "RDLN"
#define PEGA_READ_ALS_H 0x02
#define PEGA_READ_ALS_L 0x03
#define PEGA_ACCEL_NAME "pega_accel"
#define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
#define METHOD_XLRX "XLRX"
#define METHOD_XLRY "XLRY"
#define METHOD_XLRZ "XLRZ"
#define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
#define PEGA_ACC_RETRIES 3
/*
* Define a specific led structure to keep the main structure clean
*/
struct asus_led {
int wk;
struct work_struct work;
struct led_classdev led;
struct asus_laptop *asus;
const char *method;
};
/*
* Same thing for rfkill
*/
struct asus_rfkill {
/* type of control. Maps to PEGA_* values or *_RSTS */
int control_id;
struct rfkill *rfkill;
struct asus_laptop *asus;
};
/*
* This is the main structure, we can use it to store anything interesting
* about the hotk device
*/
struct asus_laptop {
char *name; /* laptop name */
struct acpi_table_header *dsdt_info;
struct platform_device *platform_device;
struct acpi_device *device; /* the device we are in */
struct backlight_device *backlight_device;
struct input_dev *inputdev;
struct key_entry *keymap;
struct input_polled_dev *pega_accel_poll;
struct asus_led wled;
struct asus_led bled;
struct asus_led mled;
struct asus_led tled;
struct asus_led rled;
struct asus_led pled;
struct asus_led gled;
struct asus_led kled;
struct workqueue_struct *led_workqueue;
int wled_type;
int bled_type;
int wireless_status;
bool have_rsts;
bool is_pega_lucid;
bool pega_acc_live;
int pega_acc_x;
int pega_acc_y;
int pega_acc_z;
struct asus_rfkill wlan;
struct asus_rfkill bluetooth;
struct asus_rfkill wwan;
struct asus_rfkill wimax;
struct asus_rfkill gps;
acpi_handle handle; /* the handle of the hotk device */
u32 ledd_status; /* status of the LED display */
u8 light_level; /* light sensor level */
u8 light_switch; /* light sensor switch value */
u16 event_count[128]; /* count for each event TODO make this better */
};
static const struct key_entry asus_keymap[] = {
/* Lenovo SL Specific keycodes */
{KE_KEY, 0x02, { KEY_SCREENLOCK } },
{KE_KEY, 0x05, { KEY_WLAN } },
{KE_KEY, 0x08, { KEY_F13 } },
{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
{KE_KEY, 0x17, { KEY_ZOOM } },
{KE_KEY, 0x1f, { KEY_BATTERY } },
/* End of Lenovo SL Specific keycodes */
{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
{KE_KEY, 0x30, { KEY_VOLUMEUP } },
{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
{KE_KEY, 0x32, { KEY_MUTE } },
{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
{KE_KEY, 0x41, { KEY_NEXTSONG } },
{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
{KE_KEY, 0x50, { KEY_EMAIL } },
{KE_KEY, 0x51, { KEY_WWW } },
{KE_KEY, 0x55, { KEY_CALC } },
{KE_IGNORE, 0x57, }, /* Battery mode */
{KE_IGNORE, 0x58, }, /* AC mode */
{KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
{KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
{KE_IGNORE, 0x6E, }, /* Low Battery notification */
{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
{KE_KEY, 0x82, { KEY_CAMERA } },
{KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
{KE_KEY, 0x95, { KEY_MEDIA } },
{KE_KEY, 0x99, { KEY_PHONE } },
{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
{KE_KEY, 0xB5, { KEY_CALC } },
{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
{KE_END, 0},
};
/*
* This function evaluates an ACPI method, given an int as parameter, the
* method is searched within the scope of the handle, can be NULL. The output
* of the method is written is output, which can also be NULL
*
* returns 0 if write is successful, -1 else.
*/
static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
struct acpi_buffer *output)
{
struct acpi_object_list params; /* list of input parameters (an int) */
union acpi_object in_obj; /* the only param we use */
acpi_status status;
if (!handle)
return -1;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = val;
status = acpi_evaluate_object(handle, (char *)method, &params, output);
if (status == AE_OK)
return 0;
else
return -1;
}
static int write_acpi_int(acpi_handle handle, const char *method, int val)
{
return write_acpi_int_ret(handle, method, val, NULL);
}
static int acpi_check_handle(acpi_handle handle, const char *method,
acpi_handle *ret)
{
acpi_status status;
if (method == NULL)
return -ENODEV;
if (ret)
status = acpi_get_handle(handle, (char *)method,
ret);
else {
acpi_handle dummy;
status = acpi_get_handle(handle, (char *)method,
&dummy);
}
if (status != AE_OK) {
if (ret)
pr_warn("Error finding %s\n", method);
return -ENODEV;
}
return 0;
}
static bool asus_check_pega_lucid(struct asus_laptop *asus)
{
return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
}
static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
{
char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
return write_acpi_int(asus->handle, method, unit);
}
static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
{
int i, delta;
unsigned long long val;
for (i = 0; i < PEGA_ACC_RETRIES; i++) {
acpi_evaluate_integer(asus->handle, method, NULL, &val);
/* The output is noisy. From reading the ASL
* dissassembly, timeout errors are returned with 1's
* in the high word, and the lack of locking around
* thei hi/lo byte reads means that a transition
* between (for example) -1 and 0 could be read as
* 0xff00 or 0x00ff. */
delta = abs(curr - (short)val);
if (delta < 128 && !(val & ~0xffff))
break;
}
return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
}
static void pega_accel_poll(struct input_polled_dev *ipd)
{
struct device *parent = ipd->input->dev.parent;
struct asus_laptop *asus = dev_get_drvdata(parent);
/* In some cases, the very first call to poll causes a
* recursive fault under the polldev worker. This is
* apparently related to very early userspace access to the
* device, and perhaps a firmware bug. Fake the first report. */
if (!asus->pega_acc_live) {
asus->pega_acc_live = true;
input_report_abs(ipd->input, ABS_X, 0);
input_report_abs(ipd->input, ABS_Y, 0);
input_report_abs(ipd->input, ABS_Z, 0);
input_sync(ipd->input);
return;
}
asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
/* Note transform, convert to "right/up/out" in the native
* landscape orientation (i.e. the vector is the direction of
* "real up" in the device's cartiesian coordinates). */
input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
input_sync(ipd->input);
}
static void pega_accel_exit(struct asus_laptop *asus)
{
if (asus->pega_accel_poll) {
input_unregister_polled_device(asus->pega_accel_poll);
input_free_polled_device(asus->pega_accel_poll);
}
asus->pega_accel_poll = NULL;
}
static int pega_accel_init(struct asus_laptop *asus)
{
int err;
struct input_polled_dev *ipd;
if (!asus->is_pega_lucid)
return -ENODEV;
if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
return -ENODEV;
ipd = input_allocate_polled_device();
if (!ipd)
return -ENOMEM;
ipd->poll = pega_accel_poll;
ipd->poll_interval = 125;
ipd->poll_interval_min = 50;
ipd->poll_interval_max = 2000;
ipd->input->name = PEGA_ACCEL_DESC;
ipd->input->phys = PEGA_ACCEL_NAME "/input0";
ipd->input->dev.parent = &asus->platform_device->dev;
ipd->input->id.bustype = BUS_HOST;
set_bit(EV_ABS, ipd->input->evbit);
input_set_abs_params(ipd->input, ABS_X,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
input_set_abs_params(ipd->input, ABS_Y,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
input_set_abs_params(ipd->input, ABS_Z,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
err = input_register_polled_device(ipd);
if (err)
goto exit;
asus->pega_accel_poll = ipd;
return 0;
exit:
input_free_polled_device(ipd);
return err;
}
/* Generic LED function */
static int asus_led_set(struct asus_laptop *asus, const char *method,
int value)
{
if (!strcmp(method, METHOD_MLED))
value = !value;
else if (!strcmp(method, METHOD_GLED))
value = !value + 1;
else
value = !!value;
return write_acpi_int(asus->handle, method, value);
}
/*
* LEDs
*/
/* /sys/class/led handlers */
static void asus_led_cdev_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
led->wk = !!value;
queue_work(asus->led_workqueue, &led->work);
}
static void asus_led_cdev_update(struct work_struct *work)
{
struct asus_led *led = container_of(work, struct asus_led, work);
struct asus_laptop *asus = led->asus;
asus_led_set(asus, led->method, led->wk);
}
static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
{
return led_cdev->brightness;
}
/*
* Keyboard backlight (also a LED)
*/
static int asus_kled_lvl(struct asus_laptop *asus)
{
unsigned long long kblv;
struct acpi_object_list params;
union acpi_object in_obj;
acpi_status rv;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = 2;
rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
&params, &kblv);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading kled level\n");
return -ENODEV;
}
return kblv;
}
static int asus_kled_set(struct asus_laptop *asus, int kblv)
{
if (kblv > 0)
kblv = (1 << 7) | (kblv & 0x7F);
else
kblv = 0;
if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
pr_warn("Keyboard LED display write failed\n");
return -EINVAL;
}
return 0;
}
static void asus_kled_cdev_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
led->wk = value;
queue_work(asus->led_workqueue, &led->work);
}
static void asus_kled_cdev_update(struct work_struct *work)
{
struct asus_led *led = container_of(work, struct asus_led, work);
struct asus_laptop *asus = led->asus;
asus_kled_set(asus, led->wk);
}
static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
return asus_kled_lvl(asus);
}
static void asus_led_exit(struct asus_laptop *asus)
{
if (!IS_ERR_OR_NULL(asus->wled.led.dev))
led_classdev_unregister(&asus->wled.led);
if (!IS_ERR_OR_NULL(asus->bled.led.dev))
led_classdev_unregister(&asus->bled.led);
if (!IS_ERR_OR_NULL(asus->mled.led.dev))
led_classdev_unregister(&asus->mled.led);
if (!IS_ERR_OR_NULL(asus->tled.led.dev))
led_classdev_unregister(&asus->tled.led);
if (!IS_ERR_OR_NULL(asus->pled.led.dev))
led_classdev_unregister(&asus->pled.led);
if (!IS_ERR_OR_NULL(asus->rled.led.dev))
led_classdev_unregister(&asus->rled.led);
if (!IS_ERR_OR_NULL(asus->gled.led.dev))
led_classdev_unregister(&asus->gled.led);
if (!IS_ERR_OR_NULL(asus->kled.led.dev))
led_classdev_unregister(&asus->kled.led);
if (asus->led_workqueue) {
destroy_workqueue(asus->led_workqueue);
asus->led_workqueue = NULL;
}
}
/* Ugly macro, need to fix that later */
static int asus_led_register(struct asus_laptop *asus,
struct asus_led *led,
const char *name, const char *method)
{
struct led_classdev *led_cdev = &led->led;
if (!method || acpi_check_handle(asus->handle, method, NULL))
return 0; /* Led not present */
led->asus = asus;
led->method = method;
INIT_WORK(&led->work, asus_led_cdev_update);
led_cdev->name = name;
led_cdev->brightness_set = asus_led_cdev_set;
led_cdev->brightness_get = asus_led_cdev_get;
led_cdev->max_brightness = 1;
return led_classdev_register(&asus->platform_device->dev, led_cdev);
}
static int asus_led_init(struct asus_laptop *asus)
{
int r = 0;
/*
* The Pegatron Lucid has no physical leds, but all methods are
* available in the DSDT...
*/
if (asus->is_pega_lucid)
return 0;
/*
* Functions that actually update the LED's are called from a
* workqueue. By doing this as separate work rather than when the LED
* subsystem asks, we avoid messing with the Asus ACPI stuff during a
* potentially bad time, such as a timer interrupt.
*/
asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
if (!asus->led_workqueue)
return -ENOMEM;
if (asus->wled_type == TYPE_LED)
r = asus_led_register(asus, &asus->wled, "asus::wlan",
METHOD_WLAN);
if (r)
goto error;
if (asus->bled_type == TYPE_LED)
r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
METHOD_BLUETOOTH);
if (r)
goto error;
r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
if (r)
goto error;
if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
struct asus_led *led = &asus->kled;
struct led_classdev *cdev = &led->led;
led->asus = asus;
INIT_WORK(&led->work, asus_kled_cdev_update);
cdev->name = "asus::kbd_backlight";
cdev->brightness_set = asus_kled_cdev_set;
cdev->brightness_get = asus_kled_cdev_get;
cdev->max_brightness = 3;
r = led_classdev_register(&asus->platform_device->dev, cdev);
}
error:
if (r)
asus_led_exit(asus);
return r;
}
/*
* Backlight device
*/
static int asus_read_brightness(struct backlight_device *bd)
{
struct asus_laptop *asus = bl_get_data(bd);
unsigned long long value;
acpi_status rv;
rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
NULL, &value);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading brightness\n");
return 0;
}
return value;
}
static int asus_set_brightness(struct backlight_device *bd, int value)
{
struct asus_laptop *asus = bl_get_data(bd);
if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
pr_warn("Error changing brightness\n");
return -EIO;
}
return 0;
}
static int update_bl_status(struct backlight_device *bd)
{
int value = bd->props.brightness;
return asus_set_brightness(bd, value);
}
static const struct backlight_ops asusbl_ops = {
.get_brightness = asus_read_brightness,
.update_status = update_bl_status,
};
static int asus_backlight_notify(struct asus_laptop *asus)
{
struct backlight_device *bd = asus->backlight_device;
int old = bd->props.brightness;
backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
return old;
}
static int asus_backlight_init(struct asus_laptop *asus)
{
struct backlight_device *bd;
struct backlight_properties props;
if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
return 0;
memset(&props, 0, sizeof(struct backlight_properties));
props.max_brightness = 15;
props.type = BACKLIGHT_PLATFORM;
bd = backlight_device_register(ASUS_LAPTOP_FILE,
&asus->platform_device->dev, asus,
&asusbl_ops, &props);
if (IS_ERR(bd)) {
pr_err("Could not register asus backlight device\n");
asus->backlight_device = NULL;
return PTR_ERR(bd);
}
asus->backlight_device = bd;
bd->props.brightness = asus_read_brightness(bd);
bd->props.power = FB_BLANK_UNBLANK;
backlight_update_status(bd);
return 0;
}
static void asus_backlight_exit(struct asus_laptop *asus)
{
backlight_device_unregister(asus->backlight_device);
asus->backlight_device = NULL;
}
/*
* Platform device handlers
*/
/*
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int len = 0;
unsigned long long temp;
char buf[16]; /* enough for all info */
acpi_status rv;
/*
* We use the easy way, we don't care of off and count,
* so we don't set eof to 1
*/
len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
len += sprintf(page + len, "Model reference : %s\n", asus->name);
/*
* The SFUN method probably allows the original driver to get the list
* of features supported by a given model. For now, 0x0100 or 0x0800
* bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
* The significance of others is yet to be found.
*/
rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "SFUN value : %#x\n",
(uint) temp);
/*
* The HWRS method return informations about the hardware.
* 0x80 bit is for WLAN, 0x100 for Bluetooth.
* 0x40 for WWAN, 0x10 for WIMAX.
* The significance of others is yet to be found.
* We don't currently use this for device detection, and it
* takes several seconds to run on some systems.
*/
rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "HWRS value : %#x\n",
(uint) temp);
/*
* Another value for userspace: the ASYM method returns 0x02 for
* battery low and 0x04 for battery critical, its readings tend to be
* more accurate than those provided by _BST.
* Note: since not all the laptops provide this method, errors are
* silently ignored.
*/
rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "ASYM value : %#x\n",
(uint) temp);
if (asus->dsdt_info) {
snprintf(buf, 16, "%d", asus->dsdt_info->length);
len += sprintf(page + len, "DSDT length : %s\n", buf);
snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
len += sprintf(page + len, "DSDT checksum : %s\n", buf);
snprintf(buf, 16, "%d", asus->dsdt_info->revision);
len += sprintf(page + len, "DSDT revision : %s\n", buf);
snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
len += sprintf(page + len, "OEM id : %s\n", buf);
snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
len += sprintf(page + len, "OEM table id : %s\n", buf);
snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
}
return len;
}
static DEVICE_ATTR_RO(infos);
static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
const char *buf, size_t count,
const char *method)
{
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
if (write_acpi_int(asus->handle, method, value))
return -ENODEV;
return count;
}
/*
* LEDD display
*/
static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "0x%08x\n", asus->ledd_status);
}
static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
pr_warn("LED display write failed\n");
return -ENODEV;
}
asus->ledd_status = (u32) value;
return count;
}
static DEVICE_ATTR_RW(ledd);
/*
* Wireless
*/
static int asus_wireless_status(struct asus_laptop *asus, int mask)
{
unsigned long long status;
acpi_status rv = AE_OK;
if (!asus->have_rsts)
return (asus->wireless_status & mask) ? 1 : 0;
rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
NULL, &status);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading Wireless status\n");
return -EINVAL;
}
return !!(status & mask);
}
/*
* WLAN
*/
static int asus_wlan_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
pr_warn("Error setting wlan status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
}
static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
}
static DEVICE_ATTR_RW(wlan);
/*e
* Bluetooth
*/
static int asus_bluetooth_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
pr_warn("Error setting bluetooth status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
}
static ssize_t bluetooth_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
}
static DEVICE_ATTR_RW(bluetooth);
/*
* Wimax
*/
static int asus_wimax_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
pr_warn("Error setting wimax status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
}
static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
}
static DEVICE_ATTR_RW(wimax);
/*
* Wwan
*/
static int asus_wwan_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
pr_warn("Error setting wwan status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
}
static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
}
static DEVICE_ATTR_RW(wwan);
/*
* Display
*/
static void asus_set_display(struct asus_laptop *asus, int value)
{
/* no sanity check needed for now */
if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
pr_warn("Error setting display\n");
return;
}
/*
* Experimental support for display switching. As of now: 1 should activate
* the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
* Any combination (bitwise) of these will suffice. I never actually tested 4
* displays hooked up simultaneously, so be warned. See the acpi4asus README
* for more info.
*/
static ssize_t display_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
asus_set_display(asus, value);
return count;
}
static DEVICE_ATTR_WO(display);
/*
* Light Sens
*/
static void asus_als_switch(struct asus_laptop *asus, int value)
{
int ret;
if (asus->is_pega_lucid) {
ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
if (!ret)
ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
} else {
ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
}
if (ret)
pr_warning("Error setting light sensor switch\n");
asus->light_switch = value;
}
static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus->light_switch);
}
static ssize_t ls_switch_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
asus_als_switch(asus, value ? 1 : 0);
return count;
}
static DEVICE_ATTR_RW(ls_switch);
static void asus_als_level(struct asus_laptop *asus, int value)
{
if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
pr_warn("Error setting light sensor level\n");
asus->light_level = value;
}
static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus->light_level);
}
static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
/* 0 <= value <= 15 */
asus_als_level(asus, value);
return count;
}
static DEVICE_ATTR_RW(ls_level);
static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
&buffer);
if (!err) {
union acpi_object *obj = buffer.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
*result = obj->integer.value;
else
err = -EIO;
}
return err;
}
static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int err, hi, lo;
err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
if (!err)
err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
if (!err)
return sprintf(buf, "%d\n", 10 * hi + lo);
return err;
}
static DEVICE_ATTR_RO(ls_value);
/*
* GPS
*/
static int asus_gps_status(struct asus_laptop *asus)
{
unsigned long long status;
acpi_status rv;
rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
NULL, &status);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading GPS status\n");
return -ENODEV;
}
return !!status;
}
static int asus_gps_switch(struct asus_laptop *asus, int status)
{
const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
if (write_acpi_int(asus->handle, meth, 0x02))
return -ENODEV;
return 0;
}
static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_gps_status(asus));
}
static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
int ret;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
ret = asus_gps_switch(asus, !!value);
if (ret)
return ret;
rfkill_set_sw_state(asus->gps.rfkill, !value);
return count;
}
static DEVICE_ATTR_RW(gps);
/*
* rfkill
*/
static int asus_gps_rfkill_set(void *data, bool blocked)
{
struct asus_laptop *asus = data;
return asus_gps_switch(asus, !blocked);
}
static const struct rfkill_ops asus_gps_rfkill_ops = {
.set_block = asus_gps_rfkill_set,
};
static int asus_rfkill_set(void *data, bool blocked)
{
struct asus_rfkill *rfk = data;
struct asus_laptop *asus = rfk->asus;
if (rfk->control_id == WL_RSTS)
return asus_wlan_set(asus, !blocked);
else if (rfk->control_id == BT_RSTS)
return asus_bluetooth_set(asus, !blocked);
else if (rfk->control_id == WM_RSTS)
return asus_wimax_set(asus, !blocked);
else if (rfk->control_id == WW_RSTS)
return asus_wwan_set(asus, !blocked);
return -EINVAL;
}
static const struct rfkill_ops asus_rfkill_ops = {
.set_block = asus_rfkill_set,
};
static void asus_rfkill_terminate(struct asus_rfkill *rfk)
{
if (!rfk->rfkill)
return ;
rfkill_unregister(rfk->rfkill);
rfkill_destroy(rfk->rfkill);
rfk->rfkill = NULL;
}
static void asus_rfkill_exit(struct asus_laptop *asus)
{
asus_rfkill_terminate(&asus->wwan);
asus_rfkill_terminate(&asus->bluetooth);
asus_rfkill_terminate(&asus->wlan);
asus_rfkill_terminate(&asus->gps);
}
static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
const char *name, int control_id, int type,
const struct rfkill_ops *ops)
{
int result;
rfk->control_id = control_id;
rfk->asus = asus;
rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
type, ops, rfk);
if (!rfk->rfkill)
return -EINVAL;
result = rfkill_register(rfk->rfkill);
if (result) {
rfkill_destroy(rfk->rfkill);
rfk->rfkill = NULL;
}
return result;
}
static int asus_rfkill_init(struct asus_laptop *asus)
{
int result = 0;
if (asus->is_pega_lucid)
return -ENODEV;
if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
!acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
!acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
-1, RFKILL_TYPE_GPS,
&asus_gps_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
asus->wled_type == TYPE_RFKILL)
result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
WL_RSTS, RFKILL_TYPE_WLAN,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
asus->bled_type == TYPE_RFKILL)
result = asus_rfkill_setup(asus, &asus->bluetooth,
"asus-bluetooth", BT_RSTS,
RFKILL_TYPE_BLUETOOTH,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
WW_RSTS, RFKILL_TYPE_WWAN,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
WM_RSTS, RFKILL_TYPE_WIMAX,
&asus_rfkill_ops);
if (result)
goto exit;
exit:
if (result)
asus_rfkill_exit(asus);
return result;
}
static int pega_rfkill_set(void *data, bool blocked)
{
struct asus_rfkill *rfk = data;
int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
return ret;
}
static const struct rfkill_ops pega_rfkill_ops = {
.set_block = pega_rfkill_set,
};
static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
const char *name, int controlid, int rfkill_type)
{
return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
&pega_rfkill_ops);
}
static int pega_rfkill_init(struct asus_laptop *asus)
{
int ret = 0;
if(!asus->is_pega_lucid)
return -ENODEV;
ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
PEGA_WLAN, RFKILL_TYPE_WLAN);
if(ret)
goto exit;
ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
if(ret)
goto exit;
ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
PEGA_WWAN, RFKILL_TYPE_WWAN);
exit:
if (ret)
asus_rfkill_exit(asus);
return ret;
}
/*
* Input device (i.e. hotkeys)
*/
static void asus_input_notify(struct asus_laptop *asus, int event)
{
if (!asus->inputdev)
return ;
if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
pr_info("Unknown key %x pressed\n", event);
}
static int asus_input_init(struct asus_laptop *asus)
{
struct input_dev *input;
int error;
input = input_allocate_device();
if (!input)
return -ENOMEM;
input->name = "Asus Laptop extra buttons";
input->phys = ASUS_LAPTOP_FILE "/input0";
input->id.bustype = BUS_HOST;
input->dev.parent = &asus->platform_device->dev;
error = sparse_keymap_setup(input, asus_keymap, NULL);
if (error) {
pr_err("Unable to setup input device keymap\n");
goto err_free_dev;
}
error = input_register_device(input);
if (error) {
pr_warn("Unable to register input device\n");
goto err_free_dev;
}
asus->inputdev = input;
return 0;
err_free_dev:
input_free_device(input);
return error;
}
static void asus_input_exit(struct asus_laptop *asus)
{
if (asus->inputdev)
input_unregister_device(asus->inputdev);
asus->inputdev = NULL;
}
/*
* ACPI driver
*/
static void asus_acpi_notify(struct acpi_device *device, u32 event)
{
struct asus_laptop *asus = acpi_driver_data(device);
u16 count;
/* TODO Find a better way to handle events count. */
count = asus->event_count[event % 128]++;
acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
dev_name(&asus->device->dev), event,
count);
if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
event = ATKD_BRNUP;
else if (event >= ATKD_BRNDOWN_MIN &&
event <= ATKD_BRNDOWN_MAX)
event = ATKD_BRNDOWN;
/* Brightness events are special */
if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
if (asus->backlight_device != NULL) {
/* Update the backlight device. */
asus_backlight_notify(asus);
return ;
}
}
/* Accelerometer "coarse orientation change" event */
if (asus->pega_accel_poll && event == 0xEA) {
kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
KOBJ_CHANGE);
return ;
}
asus_input_notify(asus, event);
}
static struct attribute *asus_attributes[] = {
&dev_attr_infos.attr,
&dev_attr_wlan.attr,
&dev_attr_bluetooth.attr,
&dev_attr_wimax.attr,
&dev_attr_wwan.attr,
&dev_attr_display.attr,
&dev_attr_ledd.attr,
&dev_attr_ls_value.attr,
&dev_attr_ls_level.attr,
&dev_attr_ls_switch.attr,
&dev_attr_gps.attr,
NULL
};
static umode_t asus_sysfs_is_visible(struct kobject *kobj,
struct attribute *attr,
int idx)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct platform_device *pdev = to_platform_device(dev);
struct asus_laptop *asus = platform_get_drvdata(pdev);
acpi_handle handle = asus->handle;
bool supported;
if (asus->is_pega_lucid) {
/* no ls_level interface on the Lucid */
if (attr == &dev_attr_ls_switch.attr)
supported = true;
else if (attr == &dev_attr_ls_level.attr)
supported = false;
else
goto normal;
return supported ? attr->mode : 0;
}
normal:
if (attr == &dev_attr_wlan.attr) {
supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
} else if (attr == &dev_attr_bluetooth.attr) {
supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
} else if (attr == &dev_attr_display.attr) {
supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
} else if (attr == &dev_attr_wimax.attr) {
supported =
!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
} else if (attr == &dev_attr_wwan.attr) {
supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
} else if (attr == &dev_attr_ledd.attr) {
supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
} else if (attr == &dev_attr_ls_switch.attr ||
attr == &dev_attr_ls_level.attr) {
supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
} else if (attr == &dev_attr_ls_value.attr) {
supported = asus->is_pega_lucid;
} else if (attr == &dev_attr_gps.attr) {
supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
!acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
!acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
} else {
supported = true;
}
return supported ? attr->mode : 0;
}
static const struct attribute_group asus_attr_group = {
.is_visible = asus_sysfs_is_visible,
.attrs = asus_attributes,
};
static int asus_platform_init(struct asus_laptop *asus)
{
int result;
asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
if (!asus->platform_device)
return -ENOMEM;
platform_set_drvdata(asus->platform_device, asus);
result = platform_device_add(asus->platform_device);
if (result)
goto fail_platform_device;
result = sysfs_create_group(&asus->platform_device->dev.kobj,
&asus_attr_group);
if (result)
goto fail_sysfs;
return 0;
fail_sysfs:
platform_device_del(asus->platform_device);
fail_platform_device:
platform_device_put(asus->platform_device);
return result;
}
static void asus_platform_exit(struct asus_laptop *asus)
{
sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
platform_device_unregister(asus->platform_device);
}
static struct platform_driver platform_driver = {
.driver = {
.name = ASUS_LAPTOP_FILE,
},
};
/*
* This function is used to initialize the context with right values. In this
* method, we can make all the detection we want, and modify the asus_laptop
* struct
*/
static int asus_laptop_get_info(struct asus_laptop *asus)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *model = NULL;
unsigned long long bsts_result;
char *string = NULL;
acpi_status status;
/*
* Get DSDT headers early enough to allow for differentiating between
* models, but late enough to allow acpi_bus_register_driver() to fail
* before doing anything ACPI-specific. Should we encounter a machine,
* which needs special handling (i.e. its hotkey device has a different
* HID), this bit will be moved.
*/
status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
if (ACPI_FAILURE(status))
pr_warn("Couldn't get the DSDT table header\n");
/* We have to write 0 on init this far for all ASUS models */
if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
pr_err("Hotkey initialization failed\n");
return -ENODEV;
}
/* This needs to be called for some laptops to init properly */
status =
acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
if (ACPI_FAILURE(status))
pr_warn("Error calling BSTS\n");
else if (bsts_result)
pr_notice("BSTS called, 0x%02x returned\n",
(uint) bsts_result);
/* This too ... */
if (write_acpi_int(asus->handle, "CWAP", wapf))
pr_err("Error calling CWAP(%d)\n", wapf);
/*
* Try to match the object returned by INIT to the specific model.
* Handle every possible object (or the lack of thereof) the DSDT
* writers might throw at us. When in trouble, we pass NULL to
* asus_model_match() and try something completely different.
*/
if (buffer.pointer) {
model = buffer.pointer;
switch (model->type) {
case ACPI_TYPE_STRING:
string = model->string.pointer;
break;
case ACPI_TYPE_BUFFER:
string = model->buffer.pointer;
break;
default:
string = "";
break;
}
}
asus->name = kstrdup(string, GFP_KERNEL);
if (!asus->name) {
kfree(buffer.pointer);
return -ENOMEM;
}
if (string)
pr_notice(" %s model detected\n", string);
if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
asus->have_rsts = true;
kfree(model);
return AE_OK;
}
static int asus_acpi_init(struct asus_laptop *asus)
{
int result = 0;
result = acpi_bus_get_status(asus->device);
if (result)
return result;
if (!asus->device->status.present) {
pr_err("Hotkey device not present, aborting\n");
return -ENODEV;
}
result = asus_laptop_get_info(asus);
if (result)
return result;
if (!strcmp(bled_type, "led"))
asus->bled_type = TYPE_LED;
else if (!strcmp(bled_type, "rfkill"))
asus->bled_type = TYPE_RFKILL;
if (!strcmp(wled_type, "led"))
asus->wled_type = TYPE_LED;
else if (!strcmp(wled_type, "rfkill"))
asus->wled_type = TYPE_RFKILL;
if (bluetooth_status >= 0)
asus_bluetooth_set(asus, !!bluetooth_status);
if (wlan_status >= 0)
asus_wlan_set(asus, !!wlan_status);
if (wimax_status >= 0)
asus_wimax_set(asus, !!wimax_status);
if (wwan_status >= 0)
asus_wwan_set(asus, !!wwan_status);
/* Keyboard Backlight is on by default */
if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
asus_kled_set(asus, 1);
/* LED display is off by default */
asus->ledd_status = 0xFFF;
/* Set initial values of light sensor and level */
asus->light_switch = !!als_status;
asus->light_level = 5; /* level 5 for sensor sensitivity */
if (asus->is_pega_lucid) {
asus_als_switch(asus, asus->light_switch);
} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
!acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
asus_als_switch(asus, asus->light_switch);
asus_als_level(asus, asus->light_level);
}
return result;
}
static void asus_dmi_check(void)
{
const char *model;
model = dmi_get_system_info(DMI_PRODUCT_NAME);
if (!model)
return;
/* On L1400B WLED control the sound card, don't mess with it ... */
if (strncmp(model, "L1400B", 6) == 0) {
wlan_status = -1;
}
}
static bool asus_device_present;
static int asus_acpi_add(struct acpi_device *device)
{
struct asus_laptop *asus;
int result;
pr_notice("Asus Laptop Support version %s\n",
ASUS_LAPTOP_VERSION);
asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
if (!asus)
return -ENOMEM;
asus->handle = device->handle;
strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
device->driver_data = asus;
asus->device = device;
asus_dmi_check();
result = asus_acpi_init(asus);
if (result)
goto fail_platform;
/*
* Need platform type detection first, then the platform
* device. It is used as a parent for the sub-devices below.
*/
asus->is_pega_lucid = asus_check_pega_lucid(asus);
result = asus_platform_init(asus);
if (result)
goto fail_platform;
if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
result = asus_backlight_init(asus);
if (result)
goto fail_backlight;
}
result = asus_input_init(asus);
if (result)
goto fail_input;
result = asus_led_init(asus);
if (result)
goto fail_led;
result = asus_rfkill_init(asus);
if (result && result != -ENODEV)
goto fail_rfkill;
result = pega_accel_init(asus);
if (result && result != -ENODEV)
goto fail_pega_accel;
result = pega_rfkill_init(asus);
if (result && result != -ENODEV)
goto fail_pega_rfkill;
asus_device_present = true;
return 0;
fail_pega_rfkill:
pega_accel_exit(asus);
fail_pega_accel:
asus_rfkill_exit(asus);
fail_rfkill:
asus_led_exit(asus);
fail_led:
asus_input_exit(asus);
fail_input:
asus_backlight_exit(asus);
fail_backlight:
asus_platform_exit(asus);
fail_platform:
kfree(asus);
return result;
}
static int asus_acpi_remove(struct acpi_device *device)
{
struct asus_laptop *asus = acpi_driver_data(device);
asus_backlight_exit(asus);
asus_rfkill_exit(asus);
asus_led_exit(asus);
asus_input_exit(asus);
pega_accel_exit(asus);
asus_platform_exit(asus);
kfree(asus->name);
kfree(asus);
return 0;
}
static const struct acpi_device_id asus_device_ids[] = {
{"ATK0100", 0},
{"ATK0101", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, asus_device_ids);
static struct acpi_driver asus_acpi_driver = {
.name = ASUS_LAPTOP_NAME,
.class = ASUS_LAPTOP_CLASS,
.owner = THIS_MODULE,
.ids = asus_device_ids,
.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
.ops = {
.add = asus_acpi_add,
.remove = asus_acpi_remove,
.notify = asus_acpi_notify,
},
};
static int __init asus_laptop_init(void)
{
int result;
result = platform_driver_register(&platform_driver);
if (result < 0)
return result;
result = acpi_bus_register_driver(&asus_acpi_driver);
if (result < 0)
goto fail_acpi_driver;
if (!asus_device_present) {
result = -ENODEV;
goto fail_no_device;
}
return 0;
fail_no_device:
acpi_bus_unregister_driver(&asus_acpi_driver);
fail_acpi_driver:
platform_driver_unregister(&platform_driver);
return result;
}
static void __exit asus_laptop_exit(void)
{
acpi_bus_unregister_driver(&asus_acpi_driver);
platform_driver_unregister(&platform_driver);
}
module_init(asus_laptop_init);
module_exit(asus_laptop_exit);