881 lines
26 KiB
C
881 lines
26 KiB
C
/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
|
|
* Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
|
|
* Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
|
|
* Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
|
|
* Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
|
|
* Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
|
|
* Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
|
|
* Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
|
|
* <http://rt2x00.serialmonkey.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Module: rt2800mmio
|
|
* Abstract: rt2800 MMIO device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00mmio.h"
|
|
#include "rt2800.h"
|
|
#include "rt2800lib.h"
|
|
#include "rt2800mmio.h"
|
|
|
|
/*
|
|
* TX descriptor initialization
|
|
*/
|
|
__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
|
|
{
|
|
return (__le32 *) entry->skb->data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
|
|
|
|
void rt2800mmio_write_tx_desc(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
__le32 *txd = entry_priv->desc;
|
|
u32 word;
|
|
const unsigned int txwi_size = entry->queue->winfo_size;
|
|
|
|
/*
|
|
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
|
|
* must contains a TXWI structure + 802.11 header + padding + 802.11
|
|
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
|
|
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
|
|
* data. It means that LAST_SEC0 is always 0.
|
|
*/
|
|
|
|
/*
|
|
* Initialize TX descriptor
|
|
*/
|
|
word = 0;
|
|
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
|
|
word = 0;
|
|
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
|
|
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
|
|
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W1_BURST,
|
|
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
|
|
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
|
|
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
word = 0;
|
|
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
|
|
skbdesc->skb_dma + txwi_size);
|
|
rt2x00_desc_write(txd, 2, word);
|
|
|
|
word = 0;
|
|
rt2x00_set_field32(&word, TXD_W3_WIV,
|
|
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
|
|
rt2x00_desc_write(txd, 3, word);
|
|
|
|
/*
|
|
* Register descriptor details in skb frame descriptor.
|
|
*/
|
|
skbdesc->desc = txd;
|
|
skbdesc->desc_len = TXD_DESC_SIZE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
|
|
|
|
/*
|
|
* RX control handlers
|
|
*/
|
|
void rt2800mmio_fill_rxdone(struct queue_entry *entry,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
__le32 *rxd = entry_priv->desc;
|
|
u32 word;
|
|
|
|
word = rt2x00_desc_read(rxd, 3);
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
|
|
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
|
|
|
|
/*
|
|
* Unfortunately we don't know the cipher type used during
|
|
* decryption. This prevents us from correct providing
|
|
* correct statistics through debugfs.
|
|
*/
|
|
rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
|
|
/*
|
|
* Hardware has stripped IV/EIV data from 802.11 frame during
|
|
* decryption. Unfortunately the descriptor doesn't contain
|
|
* any fields with the EIV/IV data either, so they can't
|
|
* be restored by rt2x00lib.
|
|
*/
|
|
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
|
|
|
|
/*
|
|
* The hardware has already checked the Michael Mic and has
|
|
* stripped it from the frame. Signal this to mac80211.
|
|
*/
|
|
rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
|
|
|
|
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
|
|
rxdesc->flags |= RX_FLAG_DECRYPTED;
|
|
} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
|
|
/*
|
|
* In order to check the Michael Mic, the packet must have
|
|
* been decrypted. Mac80211 doesnt check the MMIC failure
|
|
* flag to initiate MMIC countermeasures if the decoded flag
|
|
* has not been set.
|
|
*/
|
|
rxdesc->flags |= RX_FLAG_DECRYPTED;
|
|
|
|
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
|
|
}
|
|
}
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
|
|
rxdesc->dev_flags |= RXDONE_MY_BSS;
|
|
|
|
if (rt2x00_get_field32(word, RXD_W3_L2PAD))
|
|
rxdesc->dev_flags |= RXDONE_L2PAD;
|
|
|
|
/*
|
|
* Process the RXWI structure that is at the start of the buffer.
|
|
*/
|
|
rt2800_process_rxwi(entry, rxdesc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
|
|
|
|
/*
|
|
* Interrupt functions.
|
|
*/
|
|
static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct ieee80211_conf conf = { .flags = 0 };
|
|
struct rt2x00lib_conf libconf = { .conf = &conf };
|
|
|
|
rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
|
|
}
|
|
|
|
static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
|
|
{
|
|
__le32 *txwi;
|
|
u32 word;
|
|
int wcid, tx_wcid;
|
|
|
|
wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
|
|
|
|
txwi = rt2800_drv_get_txwi(entry);
|
|
word = rt2x00_desc_read(txwi, 1);
|
|
tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
|
|
|
|
return (tx_wcid == wcid);
|
|
}
|
|
|
|
static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
|
|
{
|
|
u32 status = *(u32 *)data;
|
|
|
|
/*
|
|
* rt2800pci hardware might reorder frames when exchanging traffic
|
|
* with multiple BA enabled STAs.
|
|
*
|
|
* For example, a tx queue
|
|
* [ STA1 | STA2 | STA1 | STA2 ]
|
|
* can result in tx status reports
|
|
* [ STA1 | STA1 | STA2 | STA2 ]
|
|
* when the hw decides to aggregate the frames for STA1 into one AMPDU.
|
|
*
|
|
* To mitigate this effect, associate the tx status to the first frame
|
|
* in the tx queue with a matching wcid.
|
|
*/
|
|
if (rt2800mmio_txdone_entry_check(entry, status) &&
|
|
!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
|
|
/*
|
|
* Got a matching frame, associate the tx status with
|
|
* the frame
|
|
*/
|
|
entry->status = status;
|
|
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
|
|
return true;
|
|
}
|
|
|
|
/* Check the next frame */
|
|
return false;
|
|
}
|
|
|
|
static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
|
|
{
|
|
u32 status = *(u32 *)data;
|
|
|
|
/*
|
|
* Find the first frame without tx status and assign this status to it
|
|
* regardless if it matches or not.
|
|
*/
|
|
if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
|
|
/*
|
|
* Got a matching frame, associate the tx status with
|
|
* the frame
|
|
*/
|
|
entry->status = status;
|
|
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
|
|
return true;
|
|
}
|
|
|
|
/* Check the next frame */
|
|
return false;
|
|
}
|
|
static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
|
|
void *data)
|
|
{
|
|
if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
|
|
rt2800_txdone_entry(entry, entry->status,
|
|
rt2800mmio_get_txwi(entry), true);
|
|
return false;
|
|
}
|
|
|
|
/* No more frames to release */
|
|
return true;
|
|
}
|
|
|
|
static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
u32 status;
|
|
u8 qid;
|
|
int max_tx_done = 16;
|
|
|
|
while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
|
|
qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
|
|
if (unlikely(qid >= QID_RX)) {
|
|
/*
|
|
* Unknown queue, this shouldn't happen. Just drop
|
|
* this tx status.
|
|
*/
|
|
rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
|
|
qid);
|
|
break;
|
|
}
|
|
|
|
queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
|
|
if (unlikely(queue == NULL)) {
|
|
/*
|
|
* The queue is NULL, this shouldn't happen. Stop
|
|
* processing here and drop the tx status
|
|
*/
|
|
rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
|
|
qid);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(rt2x00queue_empty(queue))) {
|
|
/*
|
|
* The queue is empty. Stop processing here
|
|
* and drop the tx status.
|
|
*/
|
|
rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
|
|
qid);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Let's associate this tx status with the first
|
|
* matching frame.
|
|
*/
|
|
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
|
|
Q_INDEX, &status,
|
|
rt2800mmio_txdone_find_entry)) {
|
|
/*
|
|
* We cannot match the tx status to any frame, so just
|
|
* use the first one.
|
|
*/
|
|
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
|
|
Q_INDEX, &status,
|
|
rt2800mmio_txdone_match_first)) {
|
|
rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
|
|
qid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release all frames with a valid tx status.
|
|
*/
|
|
rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
|
|
Q_INDEX, NULL,
|
|
rt2800mmio_txdone_release_entries);
|
|
|
|
if (--max_tx_done == 0)
|
|
break;
|
|
}
|
|
|
|
return !max_tx_done;
|
|
}
|
|
|
|
static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_field32 irq_field)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Enable a single interrupt. The interrupt mask register
|
|
* access needs locking.
|
|
*/
|
|
spin_lock_irq(&rt2x00dev->irqmask_lock);
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
|
|
rt2x00_set_field32(®, irq_field, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
|
|
spin_unlock_irq(&rt2x00dev->irqmask_lock);
|
|
}
|
|
|
|
void rt2800mmio_txstatus_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
if (rt2800mmio_txdone(rt2x00dev))
|
|
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
|
|
|
|
/*
|
|
* No need to enable the tx status interrupt here as we always
|
|
* leave it enabled to minimize the possibility of a tx status
|
|
* register overflow. See comment in interrupt handler.
|
|
*/
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
|
|
|
|
void rt2800mmio_pretbtt_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
rt2x00lib_pretbtt(rt2x00dev);
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
|
|
|
|
void rt2800mmio_tbtt_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u32 reg;
|
|
|
|
rt2x00lib_beacondone(rt2x00dev);
|
|
|
|
if (rt2x00dev->intf_ap_count) {
|
|
/*
|
|
* The rt2800pci hardware tbtt timer is off by 1us per tbtt
|
|
* causing beacon skew and as a result causing problems with
|
|
* some powersaving clients over time. Shorten the beacon
|
|
* interval every 64 beacons by 64us to mitigate this effect.
|
|
*/
|
|
if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
|
|
(rt2x00dev->beacon_int * 16) - 1);
|
|
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
|
|
(rt2x00dev->beacon_int * 16));
|
|
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
}
|
|
drv_data->tbtt_tick++;
|
|
drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
|
|
}
|
|
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
|
|
|
|
void rt2800mmio_rxdone_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
if (rt2x00mmio_rxdone(rt2x00dev))
|
|
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
|
|
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
|
|
|
|
void rt2800mmio_autowake_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
rt2800mmio_wakeup(rt2x00dev);
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2800mmio_enable_interrupt(rt2x00dev,
|
|
INT_MASK_CSR_AUTO_WAKEUP);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
|
|
|
|
static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 status;
|
|
int i;
|
|
|
|
/*
|
|
* The TX_FIFO_STATUS interrupt needs special care. We should
|
|
* read TX_STA_FIFO but we should do it immediately as otherwise
|
|
* the register can overflow and we would lose status reports.
|
|
*
|
|
* Hence, read the TX_STA_FIFO register and copy all tx status
|
|
* reports into a kernel FIFO which is handled in the txstatus
|
|
* tasklet. We use a tasklet to process the tx status reports
|
|
* because we can schedule the tasklet multiple times (when the
|
|
* interrupt fires again during tx status processing).
|
|
*
|
|
* Furthermore we don't disable the TX_FIFO_STATUS
|
|
* interrupt here but leave it enabled so that the TX_STA_FIFO
|
|
* can also be read while the tx status tasklet gets executed.
|
|
*
|
|
* Since we have only one producer and one consumer we don't
|
|
* need to lock the kfifo.
|
|
*/
|
|
for (i = 0; i < rt2x00dev->tx->limit; i++) {
|
|
status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
|
|
|
|
if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
|
|
break;
|
|
|
|
if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
|
|
rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Schedule the tasklet for processing the tx status. */
|
|
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
|
|
}
|
|
|
|
irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = dev_instance;
|
|
u32 reg, mask;
|
|
|
|
/* Read status and ACK all interrupts */
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
|
|
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
|
|
if (!reg)
|
|
return IRQ_NONE;
|
|
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return IRQ_HANDLED;
|
|
|
|
/*
|
|
* Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
|
|
* for interrupts and interrupt masks we can just use the value of
|
|
* INT_SOURCE_CSR to create the interrupt mask.
|
|
*/
|
|
mask = ~reg;
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
|
|
rt2800mmio_txstatus_interrupt(rt2x00dev);
|
|
/*
|
|
* Never disable the TX_FIFO_STATUS interrupt.
|
|
*/
|
|
rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
|
|
}
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
|
|
tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
|
|
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
|
|
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
|
|
|
|
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
|
|
tasklet_schedule(&rt2x00dev->autowake_tasklet);
|
|
|
|
/*
|
|
* Disable all interrupts for which a tasklet was scheduled right now,
|
|
* the tasklet will reenable the appropriate interrupts.
|
|
*/
|
|
spin_lock(&rt2x00dev->irqmask_lock);
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
|
|
reg &= mask;
|
|
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
|
|
spin_unlock(&rt2x00dev->irqmask_lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
|
|
|
|
void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u32 reg;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* When interrupts are being enabled, the interrupt registers
|
|
* should clear the register to assure a clean state.
|
|
*/
|
|
if (state == STATE_RADIO_IRQ_ON) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
|
|
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
|
|
}
|
|
|
|
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
|
|
reg = 0;
|
|
if (state == STATE_RADIO_IRQ_ON) {
|
|
rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
|
|
rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1);
|
|
}
|
|
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
|
|
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
|
|
|
|
if (state == STATE_RADIO_IRQ_OFF) {
|
|
/*
|
|
* Wait for possibly running tasklets to finish.
|
|
*/
|
|
tasklet_kill(&rt2x00dev->txstatus_tasklet);
|
|
tasklet_kill(&rt2x00dev->rxdone_tasklet);
|
|
tasklet_kill(&rt2x00dev->autowake_tasklet);
|
|
tasklet_kill(&rt2x00dev->tbtt_tasklet);
|
|
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
|
|
|
|
/*
|
|
* Queue handlers.
|
|
*/
|
|
void rt2800mmio_start_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
switch (queue->qid) {
|
|
case QID_RX:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
break;
|
|
case QID_BEACON:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
|
|
rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
|
|
|
|
void rt2800mmio_kick_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
struct queue_entry *entry;
|
|
|
|
switch (queue->qid) {
|
|
case QID_AC_VO:
|
|
case QID_AC_VI:
|
|
case QID_AC_BE:
|
|
case QID_AC_BK:
|
|
entry = rt2x00queue_get_entry(queue, Q_INDEX);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
|
|
entry->entry_idx);
|
|
break;
|
|
case QID_MGMT:
|
|
entry = rt2x00queue_get_entry(queue, Q_INDEX);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
|
|
entry->entry_idx);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
|
|
|
|
void rt2800mmio_stop_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
switch (queue->qid) {
|
|
case QID_RX:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
break;
|
|
case QID_BEACON:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
|
|
rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
|
|
|
|
/*
|
|
* Wait for current invocation to finish. The tasklet
|
|
* won't be scheduled anymore afterwards since we disabled
|
|
* the TBTT and PRE TBTT timer.
|
|
*/
|
|
tasklet_kill(&rt2x00dev->tbtt_tasklet);
|
|
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
|
|
|
|
void rt2800mmio_queue_init(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
unsigned short txwi_size, rxwi_size;
|
|
|
|
rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
|
|
|
|
switch (queue->qid) {
|
|
case QID_RX:
|
|
queue->limit = 128;
|
|
queue->data_size = AGGREGATION_SIZE;
|
|
queue->desc_size = RXD_DESC_SIZE;
|
|
queue->winfo_size = rxwi_size;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_AC_VO:
|
|
case QID_AC_VI:
|
|
case QID_AC_BE:
|
|
case QID_AC_BK:
|
|
queue->limit = 64;
|
|
queue->data_size = AGGREGATION_SIZE;
|
|
queue->desc_size = TXD_DESC_SIZE;
|
|
queue->winfo_size = txwi_size;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_BEACON:
|
|
queue->limit = 8;
|
|
queue->data_size = 0; /* No DMA required for beacons */
|
|
queue->desc_size = TXD_DESC_SIZE;
|
|
queue->winfo_size = txwi_size;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_ATIM:
|
|
/* fallthrough */
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
bool rt2800mmio_get_entry_state(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
word = rt2x00_desc_read(entry_priv->desc, 1);
|
|
|
|
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
|
|
} else {
|
|
word = rt2x00_desc_read(entry_priv->desc, 1);
|
|
|
|
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
|
|
|
|
void rt2800mmio_clear_entry(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
|
|
rt2x00_desc_write(entry_priv->desc, 0, word);
|
|
|
|
word = rt2x00_desc_read(entry_priv->desc, 1);
|
|
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
|
|
rt2x00_desc_write(entry_priv->desc, 1, word);
|
|
|
|
/*
|
|
* Set RX IDX in register to inform hardware that we have
|
|
* handled this entry and it is available for reuse again.
|
|
*/
|
|
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
|
|
entry->entry_idx);
|
|
} else {
|
|
word = rt2x00_desc_read(entry_priv->desc, 1);
|
|
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
|
|
rt2x00_desc_write(entry_priv->desc, 1, word);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
|
|
|
|
int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv;
|
|
|
|
/*
|
|
* Initialize registers.
|
|
*/
|
|
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
|
|
rt2x00dev->tx[0].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
|
|
rt2x00dev->tx[1].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
|
|
rt2x00dev->tx[2].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
|
|
|
|
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
|
|
rt2x00dev->tx[3].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
|
|
|
|
entry_priv = rt2x00dev->rx->entries[0].priv_data;
|
|
rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
|
|
rt2x00dev->rx[0].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
|
|
rt2x00dev->rx[0].limit - 1);
|
|
rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
|
|
|
|
rt2800_disable_wpdma(rt2x00dev);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
|
|
|
|
int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Reset DMA indexes
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
|
|
rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
|
|
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
|
|
|
|
if (rt2x00_is_pcie(rt2x00dev) &&
|
|
(rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3390) ||
|
|
rt2x00_rt(rt2x00dev, RT3572) ||
|
|
rt2x00_rt(rt2x00dev, RT3593) ||
|
|
rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392) ||
|
|
rt2x00_rt(rt2x00dev, RT5592))) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
|
|
rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
|
|
rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
|
|
}
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
|
|
|
|
reg = 0;
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
|
|
|
|
/*
|
|
* Device state switch handlers.
|
|
*/
|
|
int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/* Wait for DMA, ignore error until we initialize queues. */
|
|
rt2800_wait_wpdma_ready(rt2x00dev);
|
|
|
|
if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
return rt2800_enable_radio(rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("rt2800 MMIO library");
|
|
MODULE_LICENSE("GPL");
|