1096 lines
30 KiB
C
1096 lines
30 KiB
C
/*
|
|
* device driver for Conexant 2388x based TV cards
|
|
* driver core
|
|
*
|
|
* (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
|
|
*
|
|
* (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
|
|
* - Multituner support
|
|
* - video_ioctl2 conversion
|
|
* - PAL/M fixes
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "cx88.h"
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/sound.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <media/v4l2-common.h>
|
|
#include <media/v4l2-ioctl.h>
|
|
|
|
MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
|
|
MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
unsigned int cx88_core_debug;
|
|
module_param_named(core_debug, cx88_core_debug, int, 0644);
|
|
MODULE_PARM_DESC(core_debug, "enable debug messages [core]");
|
|
|
|
static unsigned int nicam;
|
|
module_param(nicam, int, 0644);
|
|
MODULE_PARM_DESC(nicam, "tv audio is nicam");
|
|
|
|
static unsigned int nocomb;
|
|
module_param(nocomb, int, 0644);
|
|
MODULE_PARM_DESC(nocomb, "disable comb filter");
|
|
|
|
#define dprintk0(fmt, arg...) \
|
|
printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
|
|
__func__, ##arg) \
|
|
|
|
#define dprintk(level, fmt, arg...) do { \
|
|
if (cx88_core_debug >= level) \
|
|
printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \
|
|
__func__, ##arg); \
|
|
} while (0)
|
|
|
|
static unsigned int cx88_devcount;
|
|
static LIST_HEAD(cx88_devlist);
|
|
static DEFINE_MUTEX(devlist);
|
|
|
|
#define NO_SYNC_LINE (-1U)
|
|
|
|
/*
|
|
* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
|
|
* generated _after_ lpi lines are transferred.
|
|
*/
|
|
static __le32 *cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
|
|
unsigned int offset, u32 sync_line,
|
|
unsigned int bpl, unsigned int padding,
|
|
unsigned int lines, unsigned int lpi, bool jump)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int line, todo, sol;
|
|
|
|
if (jump) {
|
|
(*rp++) = cpu_to_le32(RISC_JUMP);
|
|
(*rp++) = 0;
|
|
}
|
|
|
|
/* sync instruction */
|
|
if (sync_line != NO_SYNC_LINE)
|
|
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
|
|
|
|
/* scan lines */
|
|
sg = sglist;
|
|
for (line = 0; line < lines; line++) {
|
|
while (offset && offset >= sg_dma_len(sg)) {
|
|
offset -= sg_dma_len(sg);
|
|
sg = sg_next(sg);
|
|
}
|
|
if (lpi && line > 0 && !(line % lpi))
|
|
sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
|
|
else
|
|
sol = RISC_SOL;
|
|
if (bpl <= sg_dma_len(sg) - offset) {
|
|
/* fits into current chunk */
|
|
*(rp++) = cpu_to_le32(RISC_WRITE | sol |
|
|
RISC_EOL | bpl);
|
|
*(rp++) = cpu_to_le32(sg_dma_address(sg) + offset);
|
|
offset += bpl;
|
|
} else {
|
|
/* scanline needs to be split */
|
|
todo = bpl;
|
|
*(rp++) = cpu_to_le32(RISC_WRITE | sol |
|
|
(sg_dma_len(sg) - offset));
|
|
*(rp++) = cpu_to_le32(sg_dma_address(sg) + offset);
|
|
todo -= (sg_dma_len(sg) - offset);
|
|
offset = 0;
|
|
sg = sg_next(sg);
|
|
while (todo > sg_dma_len(sg)) {
|
|
*(rp++) = cpu_to_le32(RISC_WRITE |
|
|
sg_dma_len(sg));
|
|
*(rp++) = cpu_to_le32(sg_dma_address(sg));
|
|
todo -= sg_dma_len(sg);
|
|
sg = sg_next(sg);
|
|
}
|
|
*(rp++) = cpu_to_le32(RISC_WRITE | RISC_EOL | todo);
|
|
*(rp++) = cpu_to_le32(sg_dma_address(sg));
|
|
offset += todo;
|
|
}
|
|
offset += padding;
|
|
}
|
|
|
|
return rp;
|
|
}
|
|
|
|
int cx88_risc_buffer(struct pci_dev *pci, struct cx88_riscmem *risc,
|
|
struct scatterlist *sglist,
|
|
unsigned int top_offset, unsigned int bottom_offset,
|
|
unsigned int bpl, unsigned int padding, unsigned int lines)
|
|
{
|
|
u32 instructions, fields;
|
|
__le32 *rp;
|
|
|
|
fields = 0;
|
|
if (top_offset != UNSET)
|
|
fields++;
|
|
if (bottom_offset != UNSET)
|
|
fields++;
|
|
|
|
/*
|
|
* estimate risc mem: worst case is one write per page border +
|
|
* one write per scan line + syncs + jump (all 2 dwords). Padding
|
|
* can cause next bpl to start close to a page border. First DMA
|
|
* region may be smaller than PAGE_SIZE
|
|
*/
|
|
instructions = fields * (1 + ((bpl + padding) * lines) /
|
|
PAGE_SIZE + lines);
|
|
instructions += 4;
|
|
risc->size = instructions * 8;
|
|
risc->dma = 0;
|
|
risc->cpu = pci_zalloc_consistent(pci, risc->size, &risc->dma);
|
|
if (!risc->cpu)
|
|
return -ENOMEM;
|
|
|
|
/* write risc instructions */
|
|
rp = risc->cpu;
|
|
if (top_offset != UNSET)
|
|
rp = cx88_risc_field(rp, sglist, top_offset, 0,
|
|
bpl, padding, lines, 0, true);
|
|
if (bottom_offset != UNSET)
|
|
rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
|
|
bpl, padding, lines, 0,
|
|
top_offset == UNSET);
|
|
|
|
/* save pointer to jmp instruction address */
|
|
risc->jmp = rp;
|
|
WARN_ON((risc->jmp - risc->cpu + 2) * sizeof(*risc->cpu) > risc->size);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_risc_buffer);
|
|
|
|
int cx88_risc_databuffer(struct pci_dev *pci, struct cx88_riscmem *risc,
|
|
struct scatterlist *sglist, unsigned int bpl,
|
|
unsigned int lines, unsigned int lpi)
|
|
{
|
|
u32 instructions;
|
|
__le32 *rp;
|
|
|
|
/*
|
|
* estimate risc mem: worst case is one write per page border +
|
|
* one write per scan line + syncs + jump (all 2 dwords). Here
|
|
* there is no padding and no sync. First DMA region may be smaller
|
|
* than PAGE_SIZE
|
|
*/
|
|
instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
|
|
instructions += 3;
|
|
risc->size = instructions * 8;
|
|
risc->dma = 0;
|
|
risc->cpu = pci_zalloc_consistent(pci, risc->size, &risc->dma);
|
|
if (!risc->cpu)
|
|
return -ENOMEM;
|
|
|
|
/* write risc instructions */
|
|
rp = risc->cpu;
|
|
rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0,
|
|
lines, lpi, !lpi);
|
|
|
|
/* save pointer to jmp instruction address */
|
|
risc->jmp = rp;
|
|
WARN_ON((risc->jmp - risc->cpu + 2) * sizeof(*risc->cpu) > risc->size);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_risc_databuffer);
|
|
|
|
/*
|
|
* our SRAM memory layout
|
|
*/
|
|
|
|
/*
|
|
* we are going to put all thr risc programs into host memory, so we
|
|
* can use the whole SDRAM for the DMA fifos. To simplify things, we
|
|
* use a static memory layout. That surely will waste memory in case
|
|
* we don't use all DMA channels at the same time (which will be the
|
|
* case most of the time). But that still gives us enough FIFO space
|
|
* to be able to deal with insane long pci latencies ...
|
|
*
|
|
* FIFO space allocations:
|
|
* channel 21 (y video) - 10.0k
|
|
* channel 22 (u video) - 2.0k
|
|
* channel 23 (v video) - 2.0k
|
|
* channel 24 (vbi) - 4.0k
|
|
* channels 25+26 (audio) - 4.0k
|
|
* channel 28 (mpeg) - 4.0k
|
|
* channel 27 (audio rds)- 3.0k
|
|
* TOTAL = 29.0k
|
|
*
|
|
* Every channel has 160 bytes control data (64 bytes instruction
|
|
* queue and 6 CDT entries), which is close to 2k total.
|
|
*
|
|
* Address layout:
|
|
* 0x0000 - 0x03ff CMDs / reserved
|
|
* 0x0400 - 0x0bff instruction queues + CDs
|
|
* 0x0c00 - FIFOs
|
|
*/
|
|
|
|
const struct sram_channel cx88_sram_channels[] = {
|
|
[SRAM_CH21] = {
|
|
.name = "video y / packed",
|
|
.cmds_start = 0x180040,
|
|
.ctrl_start = 0x180400,
|
|
.cdt = 0x180400 + 64,
|
|
.fifo_start = 0x180c00,
|
|
.fifo_size = 0x002800,
|
|
.ptr1_reg = MO_DMA21_PTR1,
|
|
.ptr2_reg = MO_DMA21_PTR2,
|
|
.cnt1_reg = MO_DMA21_CNT1,
|
|
.cnt2_reg = MO_DMA21_CNT2,
|
|
},
|
|
[SRAM_CH22] = {
|
|
.name = "video u",
|
|
.cmds_start = 0x180080,
|
|
.ctrl_start = 0x1804a0,
|
|
.cdt = 0x1804a0 + 64,
|
|
.fifo_start = 0x183400,
|
|
.fifo_size = 0x000800,
|
|
.ptr1_reg = MO_DMA22_PTR1,
|
|
.ptr2_reg = MO_DMA22_PTR2,
|
|
.cnt1_reg = MO_DMA22_CNT1,
|
|
.cnt2_reg = MO_DMA22_CNT2,
|
|
},
|
|
[SRAM_CH23] = {
|
|
.name = "video v",
|
|
.cmds_start = 0x1800c0,
|
|
.ctrl_start = 0x180540,
|
|
.cdt = 0x180540 + 64,
|
|
.fifo_start = 0x183c00,
|
|
.fifo_size = 0x000800,
|
|
.ptr1_reg = MO_DMA23_PTR1,
|
|
.ptr2_reg = MO_DMA23_PTR2,
|
|
.cnt1_reg = MO_DMA23_CNT1,
|
|
.cnt2_reg = MO_DMA23_CNT2,
|
|
},
|
|
[SRAM_CH24] = {
|
|
.name = "vbi",
|
|
.cmds_start = 0x180100,
|
|
.ctrl_start = 0x1805e0,
|
|
.cdt = 0x1805e0 + 64,
|
|
.fifo_start = 0x184400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA24_PTR1,
|
|
.ptr2_reg = MO_DMA24_PTR2,
|
|
.cnt1_reg = MO_DMA24_CNT1,
|
|
.cnt2_reg = MO_DMA24_CNT2,
|
|
},
|
|
[SRAM_CH25] = {
|
|
.name = "audio from",
|
|
.cmds_start = 0x180140,
|
|
.ctrl_start = 0x180680,
|
|
.cdt = 0x180680 + 64,
|
|
.fifo_start = 0x185400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA25_PTR1,
|
|
.ptr2_reg = MO_DMA25_PTR2,
|
|
.cnt1_reg = MO_DMA25_CNT1,
|
|
.cnt2_reg = MO_DMA25_CNT2,
|
|
},
|
|
[SRAM_CH26] = {
|
|
.name = "audio to",
|
|
.cmds_start = 0x180180,
|
|
.ctrl_start = 0x180720,
|
|
.cdt = 0x180680 + 64, /* same as audio IN */
|
|
.fifo_start = 0x185400, /* same as audio IN */
|
|
.fifo_size = 0x001000, /* same as audio IN */
|
|
.ptr1_reg = MO_DMA26_PTR1,
|
|
.ptr2_reg = MO_DMA26_PTR2,
|
|
.cnt1_reg = MO_DMA26_CNT1,
|
|
.cnt2_reg = MO_DMA26_CNT2,
|
|
},
|
|
[SRAM_CH28] = {
|
|
.name = "mpeg",
|
|
.cmds_start = 0x180200,
|
|
.ctrl_start = 0x1807C0,
|
|
.cdt = 0x1807C0 + 64,
|
|
.fifo_start = 0x186400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA28_PTR1,
|
|
.ptr2_reg = MO_DMA28_PTR2,
|
|
.cnt1_reg = MO_DMA28_CNT1,
|
|
.cnt2_reg = MO_DMA28_CNT2,
|
|
},
|
|
[SRAM_CH27] = {
|
|
.name = "audio rds",
|
|
.cmds_start = 0x1801C0,
|
|
.ctrl_start = 0x180860,
|
|
.cdt = 0x180860 + 64,
|
|
.fifo_start = 0x187400,
|
|
.fifo_size = 0x000C00,
|
|
.ptr1_reg = MO_DMA27_PTR1,
|
|
.ptr2_reg = MO_DMA27_PTR2,
|
|
.cnt1_reg = MO_DMA27_CNT1,
|
|
.cnt2_reg = MO_DMA27_CNT2,
|
|
},
|
|
};
|
|
EXPORT_SYMBOL(cx88_sram_channels);
|
|
|
|
int cx88_sram_channel_setup(struct cx88_core *core,
|
|
const struct sram_channel *ch,
|
|
unsigned int bpl, u32 risc)
|
|
{
|
|
unsigned int i, lines;
|
|
u32 cdt;
|
|
|
|
bpl = (bpl + 7) & ~7; /* alignment */
|
|
cdt = ch->cdt;
|
|
lines = ch->fifo_size / bpl;
|
|
if (lines > 6)
|
|
lines = 6;
|
|
WARN_ON(lines < 2);
|
|
|
|
/* write CDT */
|
|
for (i = 0; i < lines; i++)
|
|
cx_write(cdt + 16 * i, ch->fifo_start + bpl * i);
|
|
|
|
/* write CMDS */
|
|
cx_write(ch->cmds_start + 0, risc);
|
|
cx_write(ch->cmds_start + 4, cdt);
|
|
cx_write(ch->cmds_start + 8, (lines * 16) >> 3);
|
|
cx_write(ch->cmds_start + 12, ch->ctrl_start);
|
|
cx_write(ch->cmds_start + 16, 64 >> 2);
|
|
for (i = 20; i < 64; i += 4)
|
|
cx_write(ch->cmds_start + i, 0);
|
|
|
|
/* fill registers */
|
|
cx_write(ch->ptr1_reg, ch->fifo_start);
|
|
cx_write(ch->ptr2_reg, cdt);
|
|
cx_write(ch->cnt1_reg, (bpl >> 3) - 1);
|
|
cx_write(ch->cnt2_reg, (lines * 16) >> 3);
|
|
|
|
dprintk(2, "sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_sram_channel_setup);
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* debug helper code */
|
|
|
|
static int cx88_risc_decode(u32 risc)
|
|
{
|
|
static const char * const instr[16] = {
|
|
[RISC_SYNC >> 28] = "sync",
|
|
[RISC_WRITE >> 28] = "write",
|
|
[RISC_WRITEC >> 28] = "writec",
|
|
[RISC_READ >> 28] = "read",
|
|
[RISC_READC >> 28] = "readc",
|
|
[RISC_JUMP >> 28] = "jump",
|
|
[RISC_SKIP >> 28] = "skip",
|
|
[RISC_WRITERM >> 28] = "writerm",
|
|
[RISC_WRITECM >> 28] = "writecm",
|
|
[RISC_WRITECR >> 28] = "writecr",
|
|
};
|
|
static int const incr[16] = {
|
|
[RISC_WRITE >> 28] = 2,
|
|
[RISC_JUMP >> 28] = 2,
|
|
[RISC_WRITERM >> 28] = 3,
|
|
[RISC_WRITECM >> 28] = 3,
|
|
[RISC_WRITECR >> 28] = 4,
|
|
};
|
|
static const char * const bits[] = {
|
|
"12", "13", "14", "resync",
|
|
"cnt0", "cnt1", "18", "19",
|
|
"20", "21", "22", "23",
|
|
"irq1", "irq2", "eol", "sol",
|
|
};
|
|
int i;
|
|
|
|
dprintk0("0x%08x [ %s", risc,
|
|
instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
|
|
for (i = ARRAY_SIZE(bits) - 1; i >= 0; i--)
|
|
if (risc & (1 << (i + 12)))
|
|
pr_cont(" %s", bits[i]);
|
|
pr_cont(" count=%d ]\n", risc & 0xfff);
|
|
return incr[risc >> 28] ? incr[risc >> 28] : 1;
|
|
}
|
|
|
|
void cx88_sram_channel_dump(struct cx88_core *core,
|
|
const struct sram_channel *ch)
|
|
{
|
|
static const char * const name[] = {
|
|
"initial risc",
|
|
"cdt base",
|
|
"cdt size",
|
|
"iq base",
|
|
"iq size",
|
|
"risc pc",
|
|
"iq wr ptr",
|
|
"iq rd ptr",
|
|
"cdt current",
|
|
"pci target",
|
|
"line / byte",
|
|
};
|
|
u32 risc;
|
|
unsigned int i, j, n;
|
|
|
|
dprintk0("%s - dma channel status dump\n", ch->name);
|
|
for (i = 0; i < ARRAY_SIZE(name); i++)
|
|
dprintk0(" cmds: %-12s: 0x%08x\n",
|
|
name[i], cx_read(ch->cmds_start + 4 * i));
|
|
for (n = 1, i = 0; i < 4; i++) {
|
|
risc = cx_read(ch->cmds_start + 4 * (i + 11));
|
|
pr_cont(" risc%d: ", i);
|
|
if (--n)
|
|
pr_cont("0x%08x [ arg #%d ]\n", risc, n);
|
|
else
|
|
n = cx88_risc_decode(risc);
|
|
}
|
|
for (i = 0; i < 16; i += n) {
|
|
risc = cx_read(ch->ctrl_start + 4 * i);
|
|
dprintk0(" iq %x: ", i);
|
|
n = cx88_risc_decode(risc);
|
|
for (j = 1; j < n; j++) {
|
|
risc = cx_read(ch->ctrl_start + 4 * (i + j));
|
|
pr_cont(" iq %x: 0x%08x [ arg #%d ]\n",
|
|
i + j, risc, j);
|
|
}
|
|
}
|
|
|
|
dprintk0("fifo: 0x%08x -> 0x%x\n",
|
|
ch->fifo_start, ch->fifo_start + ch->fifo_size);
|
|
dprintk0("ctrl: 0x%08x -> 0x%x\n",
|
|
ch->ctrl_start, ch->ctrl_start + 6 * 16);
|
|
dprintk0(" ptr1_reg: 0x%08x\n", cx_read(ch->ptr1_reg));
|
|
dprintk0(" ptr2_reg: 0x%08x\n", cx_read(ch->ptr2_reg));
|
|
dprintk0(" cnt1_reg: 0x%08x\n", cx_read(ch->cnt1_reg));
|
|
dprintk0(" cnt2_reg: 0x%08x\n", cx_read(ch->cnt2_reg));
|
|
}
|
|
EXPORT_SYMBOL(cx88_sram_channel_dump);
|
|
|
|
static const char *cx88_pci_irqs[32] = {
|
|
"vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
|
|
"src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
|
|
"brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
|
|
"i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
|
|
};
|
|
|
|
void cx88_print_irqbits(const char *tag, const char *strings[],
|
|
int len, u32 bits, u32 mask)
|
|
{
|
|
unsigned int i;
|
|
|
|
dprintk0("%s [0x%x]", tag, bits);
|
|
for (i = 0; i < len; i++) {
|
|
if (!(bits & (1 << i)))
|
|
continue;
|
|
if (strings[i])
|
|
pr_cont(" %s", strings[i]);
|
|
else
|
|
pr_cont(" %d", i);
|
|
if (!(mask & (1 << i)))
|
|
continue;
|
|
pr_cont("*");
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
EXPORT_SYMBOL(cx88_print_irqbits);
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
int cx88_core_irq(struct cx88_core *core, u32 status)
|
|
{
|
|
int handled = 0;
|
|
|
|
if (status & PCI_INT_IR_SMPINT) {
|
|
cx88_ir_irq(core);
|
|
handled++;
|
|
}
|
|
if (!handled)
|
|
cx88_print_irqbits("irq pci",
|
|
cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
|
|
status, core->pci_irqmask);
|
|
return handled;
|
|
}
|
|
EXPORT_SYMBOL(cx88_core_irq);
|
|
|
|
void cx88_wakeup(struct cx88_core *core,
|
|
struct cx88_dmaqueue *q, u32 count)
|
|
{
|
|
struct cx88_buffer *buf;
|
|
|
|
buf = list_entry(q->active.next,
|
|
struct cx88_buffer, list);
|
|
buf->vb.vb2_buf.timestamp = ktime_get_ns();
|
|
buf->vb.field = core->field;
|
|
buf->vb.sequence = q->count++;
|
|
list_del(&buf->list);
|
|
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
|
|
}
|
|
EXPORT_SYMBOL(cx88_wakeup);
|
|
|
|
void cx88_shutdown(struct cx88_core *core)
|
|
{
|
|
/* disable RISC controller + IRQs */
|
|
cx_write(MO_DEV_CNTRL2, 0);
|
|
|
|
/* stop dma transfers */
|
|
cx_write(MO_VID_DMACNTRL, 0x0);
|
|
cx_write(MO_AUD_DMACNTRL, 0x0);
|
|
cx_write(MO_TS_DMACNTRL, 0x0);
|
|
cx_write(MO_VIP_DMACNTRL, 0x0);
|
|
cx_write(MO_GPHST_DMACNTRL, 0x0);
|
|
|
|
/* stop interrupts */
|
|
cx_write(MO_PCI_INTMSK, 0x0);
|
|
cx_write(MO_VID_INTMSK, 0x0);
|
|
cx_write(MO_AUD_INTMSK, 0x0);
|
|
cx_write(MO_TS_INTMSK, 0x0);
|
|
cx_write(MO_VIP_INTMSK, 0x0);
|
|
cx_write(MO_GPHST_INTMSK, 0x0);
|
|
|
|
/* stop capturing */
|
|
cx_write(VID_CAPTURE_CONTROL, 0);
|
|
}
|
|
EXPORT_SYMBOL(cx88_shutdown);
|
|
|
|
int cx88_reset(struct cx88_core *core)
|
|
{
|
|
dprintk(1, "");
|
|
cx88_shutdown(core);
|
|
|
|
/* clear irq status */
|
|
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
|
|
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
|
|
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
|
|
|
|
/* wait a bit */
|
|
msleep(100);
|
|
|
|
/* init sram */
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21],
|
|
720 * 4, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28],
|
|
188 * 4, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
|
|
|
|
/* misc init ... */
|
|
cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
|
|
(1 << 12) | // agc gain
|
|
(1 << 11) | // adaptibe agc
|
|
(0 << 10) | // chroma agc
|
|
(0 << 9) | // ckillen
|
|
(7)));
|
|
|
|
/* setup image format */
|
|
cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
|
|
|
|
/* setup FIFO Thresholds */
|
|
cx_write(MO_PDMA_STHRSH, 0x0807);
|
|
cx_write(MO_PDMA_DTHRSH, 0x0807);
|
|
|
|
/* fixes flashing of image */
|
|
cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
|
|
cx_write(MO_AGC_BACK_VBI, 0x00E00555);
|
|
|
|
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
|
|
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
|
|
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
|
|
|
|
/* Reset on-board parts */
|
|
cx_write(MO_SRST_IO, 0);
|
|
usleep_range(10000, 20000);
|
|
cx_write(MO_SRST_IO, 1);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_reset);
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
static inline unsigned int norm_swidth(v4l2_std_id norm)
|
|
{
|
|
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
|
|
}
|
|
|
|
static inline unsigned int norm_hdelay(v4l2_std_id norm)
|
|
{
|
|
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
|
|
}
|
|
|
|
static inline unsigned int norm_vdelay(v4l2_std_id norm)
|
|
{
|
|
return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
|
|
}
|
|
|
|
static inline unsigned int norm_fsc8(v4l2_std_id norm)
|
|
{
|
|
if (norm & V4L2_STD_PAL_M)
|
|
return 28604892; // 3.575611 MHz
|
|
|
|
if (norm & (V4L2_STD_PAL_Nc))
|
|
return 28656448; // 3.582056 MHz
|
|
|
|
if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
|
|
return 28636360; // 3.57954545 MHz +/- 10 Hz
|
|
|
|
/*
|
|
* SECAM have also different sub carrier for chroma,
|
|
* but step_db and step_dr, at cx88_set_tvnorm already handles that.
|
|
*
|
|
* The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
|
|
*/
|
|
|
|
return 35468950; // 4.43361875 MHz +/- 5 Hz
|
|
}
|
|
|
|
static inline unsigned int norm_htotal(v4l2_std_id norm)
|
|
{
|
|
unsigned int fsc4 = norm_fsc8(norm) / 2;
|
|
|
|
/* returns 4*FSC / vtotal / frames per seconds */
|
|
return (norm & V4L2_STD_625_50) ?
|
|
((fsc4 + 312) / 625 + 12) / 25 :
|
|
((fsc4 + 262) / 525 * 1001 + 15000) / 30000;
|
|
}
|
|
|
|
static inline unsigned int norm_vbipack(v4l2_std_id norm)
|
|
{
|
|
return (norm & V4L2_STD_625_50) ? 511 : 400;
|
|
}
|
|
|
|
int cx88_set_scale(struct cx88_core *core, unsigned int width,
|
|
unsigned int height, enum v4l2_field field)
|
|
{
|
|
unsigned int swidth = norm_swidth(core->tvnorm);
|
|
unsigned int sheight = norm_maxh(core->tvnorm);
|
|
u32 value;
|
|
|
|
dprintk(1, "set_scale: %dx%d [%s%s,%s]\n", width, height,
|
|
V4L2_FIELD_HAS_TOP(field) ? "T" : "",
|
|
V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
|
|
v4l2_norm_to_name(core->tvnorm));
|
|
if (!V4L2_FIELD_HAS_BOTH(field))
|
|
height *= 2;
|
|
|
|
// recalc H delay and scale registers
|
|
value = (width * norm_hdelay(core->tvnorm)) / swidth;
|
|
value &= 0x3fe;
|
|
cx_write(MO_HDELAY_EVEN, value);
|
|
cx_write(MO_HDELAY_ODD, value);
|
|
dprintk(1, "set_scale: hdelay 0x%04x (width %d)\n", value, swidth);
|
|
|
|
value = (swidth * 4096 / width) - 4096;
|
|
cx_write(MO_HSCALE_EVEN, value);
|
|
cx_write(MO_HSCALE_ODD, value);
|
|
dprintk(1, "set_scale: hscale 0x%04x\n", value);
|
|
|
|
cx_write(MO_HACTIVE_EVEN, width);
|
|
cx_write(MO_HACTIVE_ODD, width);
|
|
dprintk(1, "set_scale: hactive 0x%04x\n", width);
|
|
|
|
// recalc V scale Register (delay is constant)
|
|
cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
|
|
cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
|
|
dprintk(1, "set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
|
|
|
|
value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
|
|
cx_write(MO_VSCALE_EVEN, value);
|
|
cx_write(MO_VSCALE_ODD, value);
|
|
dprintk(1, "set_scale: vscale 0x%04x\n", value);
|
|
|
|
cx_write(MO_VACTIVE_EVEN, sheight);
|
|
cx_write(MO_VACTIVE_ODD, sheight);
|
|
dprintk(1, "set_scale: vactive 0x%04x\n", sheight);
|
|
|
|
// setup filters
|
|
value = 0;
|
|
value |= (1 << 19); // CFILT (default)
|
|
if (core->tvnorm & V4L2_STD_SECAM) {
|
|
value |= (1 << 15);
|
|
value |= (1 << 16);
|
|
}
|
|
if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
|
|
value |= (1 << 13) | (1 << 5);
|
|
if (field == V4L2_FIELD_INTERLACED)
|
|
value |= (1 << 3); // VINT (interlaced vertical scaling)
|
|
if (width < 385)
|
|
value |= (1 << 0); // 3-tap interpolation
|
|
if (width < 193)
|
|
value |= (1 << 1); // 5-tap interpolation
|
|
if (nocomb)
|
|
value |= (3 << 5); // disable comb filter
|
|
|
|
cx_andor(MO_FILTER_EVEN, 0x7ffc7f, value); /* preserve PEAKEN, PSEL */
|
|
cx_andor(MO_FILTER_ODD, 0x7ffc7f, value);
|
|
dprintk(1, "set_scale: filter 0x%04x\n", value);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_set_scale);
|
|
|
|
static const u32 xtal = 28636363;
|
|
|
|
static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
|
|
{
|
|
static const u32 pre[] = { 0, 0, 0, 3, 2, 1 };
|
|
u64 pll;
|
|
u32 reg;
|
|
int i;
|
|
|
|
if (prescale < 2)
|
|
prescale = 2;
|
|
if (prescale > 5)
|
|
prescale = 5;
|
|
|
|
pll = ofreq * 8 * prescale * (u64)(1 << 20);
|
|
do_div(pll, xtal);
|
|
reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
|
|
if (((reg >> 20) & 0x3f) < 14) {
|
|
pr_err("pll out of range\n");
|
|
return -1;
|
|
}
|
|
|
|
dprintk(1, "set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
|
|
reg, cx_read(MO_PLL_REG), ofreq);
|
|
cx_write(MO_PLL_REG, reg);
|
|
for (i = 0; i < 100; i++) {
|
|
reg = cx_read(MO_DEVICE_STATUS);
|
|
if (reg & (1 << 2)) {
|
|
dprintk(1, "pll locked [pre=%d,ofreq=%d]\n",
|
|
prescale, ofreq);
|
|
return 0;
|
|
}
|
|
dprintk(1, "pll not locked yet, waiting ...\n");
|
|
usleep_range(10000, 20000);
|
|
}
|
|
dprintk(1, "pll NOT locked [pre=%d,ofreq=%d]\n", prescale, ofreq);
|
|
return -1;
|
|
}
|
|
|
|
int cx88_start_audio_dma(struct cx88_core *core)
|
|
{
|
|
/* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
|
|
int bpl = cx88_sram_channels[SRAM_CH25].fifo_size / 4;
|
|
|
|
int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size / AUD_RDS_LINES;
|
|
|
|
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
|
|
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
|
|
return 0;
|
|
|
|
/* setup fifo + format */
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
|
|
rds_bpl, 0);
|
|
|
|
cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
|
|
cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
|
|
|
|
/* enable Up, Down and Audio RDS fifo */
|
|
cx_write(MO_AUD_DMACNTRL, 0x0007);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cx88_stop_audio_dma(struct cx88_core *core)
|
|
{
|
|
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
|
|
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
|
|
return 0;
|
|
|
|
/* stop dma */
|
|
cx_write(MO_AUD_DMACNTRL, 0x0000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_tvaudio(struct cx88_core *core)
|
|
{
|
|
v4l2_std_id norm = core->tvnorm;
|
|
|
|
if (INPUT(core->input).type != CX88_VMUX_TELEVISION &&
|
|
INPUT(core->input).type != CX88_VMUX_CABLE)
|
|
return 0;
|
|
|
|
if (V4L2_STD_PAL_BG & norm) {
|
|
core->tvaudio = WW_BG;
|
|
|
|
} else if (V4L2_STD_PAL_DK & norm) {
|
|
core->tvaudio = WW_DK;
|
|
|
|
} else if (V4L2_STD_PAL_I & norm) {
|
|
core->tvaudio = WW_I;
|
|
|
|
} else if (V4L2_STD_SECAM_L & norm) {
|
|
core->tvaudio = WW_L;
|
|
|
|
} else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) &
|
|
norm) {
|
|
core->tvaudio = WW_BG;
|
|
|
|
} else if (V4L2_STD_SECAM_DK & norm) {
|
|
core->tvaudio = WW_DK;
|
|
|
|
} else if ((V4L2_STD_NTSC_M & norm) ||
|
|
(V4L2_STD_PAL_M & norm)) {
|
|
core->tvaudio = WW_BTSC;
|
|
|
|
} else if (V4L2_STD_NTSC_M_JP & norm) {
|
|
core->tvaudio = WW_EIAJ;
|
|
|
|
} else {
|
|
pr_info("tvaudio support needs work for this tv norm [%s], sorry\n",
|
|
v4l2_norm_to_name(core->tvnorm));
|
|
core->tvaudio = WW_NONE;
|
|
return 0;
|
|
}
|
|
|
|
cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
|
|
cx88_set_tvaudio(core);
|
|
/* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
|
|
|
|
/*
|
|
* This should be needed only on cx88-alsa. It seems that some cx88 chips have
|
|
* bugs and does require DMA enabled for it to work.
|
|
*/
|
|
cx88_start_audio_dma(core);
|
|
return 0;
|
|
}
|
|
|
|
int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
|
|
{
|
|
u32 fsc8;
|
|
u32 adc_clock;
|
|
u32 vdec_clock;
|
|
u32 step_db, step_dr;
|
|
u64 tmp64;
|
|
u32 bdelay, agcdelay, htotal;
|
|
u32 cxiformat, cxoformat;
|
|
|
|
if (norm == core->tvnorm)
|
|
return 0;
|
|
if (core->v4ldev && (vb2_is_busy(&core->v4ldev->vb2_vidq) ||
|
|
vb2_is_busy(&core->v4ldev->vb2_vbiq)))
|
|
return -EBUSY;
|
|
if (core->dvbdev && vb2_is_busy(&core->dvbdev->vb2_mpegq))
|
|
return -EBUSY;
|
|
core->tvnorm = norm;
|
|
fsc8 = norm_fsc8(norm);
|
|
adc_clock = xtal;
|
|
vdec_clock = fsc8;
|
|
step_db = fsc8;
|
|
step_dr = fsc8;
|
|
|
|
if (norm & V4L2_STD_NTSC_M_JP) {
|
|
cxiformat = VideoFormatNTSCJapan;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_NTSC_443) {
|
|
cxiformat = VideoFormatNTSC443;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_PAL_M) {
|
|
cxiformat = VideoFormatPALM;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_N) {
|
|
cxiformat = VideoFormatPALN;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_Nc) {
|
|
cxiformat = VideoFormatPALNC;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_60) {
|
|
cxiformat = VideoFormatPAL60;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_NTSC) {
|
|
cxiformat = VideoFormatNTSC;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_SECAM) {
|
|
step_db = 4250000 * 8;
|
|
step_dr = 4406250 * 8;
|
|
|
|
cxiformat = VideoFormatSECAM;
|
|
cxoformat = 0x181f0008;
|
|
} else { /* PAL */
|
|
cxiformat = VideoFormatPAL;
|
|
cxoformat = 0x181f0008;
|
|
}
|
|
|
|
dprintk(1, "set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
|
|
v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
|
|
step_db, step_dr);
|
|
set_pll(core, 2, vdec_clock);
|
|
|
|
dprintk(1, "set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
|
|
cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
|
|
/*
|
|
* Chroma AGC must be disabled if SECAM is used, we enable it
|
|
* by default on PAL and NTSC
|
|
*/
|
|
cx_andor(MO_INPUT_FORMAT, 0x40f,
|
|
norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
|
|
|
|
// FIXME: as-is from DScaler
|
|
dprintk(1, "set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
|
|
cxoformat, cx_read(MO_OUTPUT_FORMAT));
|
|
cx_write(MO_OUTPUT_FORMAT, cxoformat);
|
|
|
|
// MO_SCONV_REG = adc clock / video dec clock * 2^17
|
|
tmp64 = adc_clock * (u64)(1 << 17);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1, "set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SCONV_REG));
|
|
cx_write(MO_SCONV_REG, (u32)tmp64);
|
|
|
|
// MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
|
|
tmp64 = step_db * (u64)(1 << 22);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1, "set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SUB_STEP));
|
|
cx_write(MO_SUB_STEP, (u32)tmp64);
|
|
|
|
// MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
|
|
tmp64 = step_dr * (u64)(1 << 22);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1, "set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SUB_STEP_DR));
|
|
cx_write(MO_SUB_STEP_DR, (u32)tmp64);
|
|
|
|
// bdelay + agcdelay
|
|
bdelay = vdec_clock * 65 / 20000000 + 21;
|
|
agcdelay = vdec_clock * 68 / 20000000 + 15;
|
|
dprintk(1,
|
|
"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
|
|
(bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST),
|
|
bdelay, agcdelay);
|
|
cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
|
|
|
|
// htotal
|
|
tmp64 = norm_htotal(norm) * (u64)vdec_clock;
|
|
do_div(tmp64, fsc8);
|
|
htotal = (u32)tmp64;
|
|
dprintk(1,
|
|
"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
|
|
htotal, cx_read(MO_HTOTAL), (u32)tmp64);
|
|
cx_andor(MO_HTOTAL, 0x07ff, htotal);
|
|
|
|
// vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
|
|
// the effective vbi offset ~244 samples, the same as the Bt8x8
|
|
cx_write(MO_VBI_PACKET, (10 << 11) | norm_vbipack(norm));
|
|
|
|
// this is needed as well to set all tvnorm parameter
|
|
cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
|
|
|
|
// audio
|
|
set_tvaudio(core);
|
|
|
|
// tell i2c chips
|
|
call_all(core, video, s_std, norm);
|
|
|
|
/*
|
|
* The chroma_agc control should be inaccessible
|
|
* if the video format is SECAM
|
|
*/
|
|
v4l2_ctrl_grab(core->chroma_agc, cxiformat == VideoFormatSECAM);
|
|
|
|
// done
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cx88_set_tvnorm);
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
void cx88_vdev_init(struct cx88_core *core,
|
|
struct pci_dev *pci,
|
|
struct video_device *vfd,
|
|
const struct video_device *template_,
|
|
const char *type)
|
|
{
|
|
*vfd = *template_;
|
|
|
|
/*
|
|
* The dev pointer of v4l2_device is NULL, instead we set the
|
|
* video_device dev_parent pointer to the correct PCI bus device.
|
|
* This driver is a rare example where there is one v4l2_device,
|
|
* but the video nodes have different parent (PCI) devices.
|
|
*/
|
|
vfd->v4l2_dev = &core->v4l2_dev;
|
|
vfd->dev_parent = &pci->dev;
|
|
vfd->release = video_device_release_empty;
|
|
vfd->lock = &core->lock;
|
|
snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
|
|
core->name, type, core->board.name);
|
|
}
|
|
EXPORT_SYMBOL(cx88_vdev_init);
|
|
|
|
struct cx88_core *cx88_core_get(struct pci_dev *pci)
|
|
{
|
|
struct cx88_core *core;
|
|
|
|
mutex_lock(&devlist);
|
|
list_for_each_entry(core, &cx88_devlist, devlist) {
|
|
if (pci->bus->number != core->pci_bus)
|
|
continue;
|
|
if (PCI_SLOT(pci->devfn) != core->pci_slot)
|
|
continue;
|
|
|
|
if (cx88_get_resources(core, pci) != 0) {
|
|
mutex_unlock(&devlist);
|
|
return NULL;
|
|
}
|
|
refcount_inc(&core->refcount);
|
|
mutex_unlock(&devlist);
|
|
return core;
|
|
}
|
|
|
|
core = cx88_core_create(pci, cx88_devcount);
|
|
if (core) {
|
|
cx88_devcount++;
|
|
list_add_tail(&core->devlist, &cx88_devlist);
|
|
}
|
|
|
|
mutex_unlock(&devlist);
|
|
return core;
|
|
}
|
|
EXPORT_SYMBOL(cx88_core_get);
|
|
|
|
void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
|
|
{
|
|
release_mem_region(pci_resource_start(pci, 0),
|
|
pci_resource_len(pci, 0));
|
|
|
|
if (!refcount_dec_and_test(&core->refcount))
|
|
return;
|
|
|
|
mutex_lock(&devlist);
|
|
cx88_ir_fini(core);
|
|
if (core->i2c_rc == 0) {
|
|
if (core->i2c_rtc)
|
|
i2c_unregister_device(core->i2c_rtc);
|
|
i2c_del_adapter(&core->i2c_adap);
|
|
}
|
|
list_del(&core->devlist);
|
|
iounmap(core->lmmio);
|
|
cx88_devcount--;
|
|
mutex_unlock(&devlist);
|
|
v4l2_ctrl_handler_free(&core->video_hdl);
|
|
v4l2_ctrl_handler_free(&core->audio_hdl);
|
|
v4l2_device_unregister(&core->v4l2_dev);
|
|
kfree(core);
|
|
}
|
|
EXPORT_SYMBOL(cx88_core_put);
|