ubuntu-linux-kernel/drivers/input/keyboard/adp5588-keys.c

673 lines
16 KiB
C

/*
* File: drivers/input/keyboard/adp5588_keys.c
* Description: keypad driver for ADP5588 and ADP5587
* I2C QWERTY Keypad and IO Expander
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* Copyright (C) 2008-2010 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/pm.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/platform_data/adp5588.h>
/* Key Event Register xy */
#define KEY_EV_PRESSED (1 << 7)
#define KEY_EV_MASK (0x7F)
#define KP_SEL(x) (0xFFFF >> (16 - x)) /* 2^x-1 */
#define KEYP_MAX_EVENT 10
/*
* Early pre 4.0 Silicon required to delay readout by at least 25ms,
* since the Event Counter Register updated 25ms after the interrupt
* asserted.
*/
#define WA_DELAYED_READOUT_REVID(rev) ((rev) < 4)
struct adp5588_kpad {
struct i2c_client *client;
struct input_dev *input;
struct delayed_work work;
unsigned long delay;
unsigned short keycode[ADP5588_KEYMAPSIZE];
const struct adp5588_gpi_map *gpimap;
unsigned short gpimapsize;
#ifdef CONFIG_GPIOLIB
unsigned char gpiomap[ADP5588_MAXGPIO];
bool export_gpio;
struct gpio_chip gc;
struct mutex gpio_lock; /* Protect cached dir, dat_out */
u8 dat_out[3];
u8 dir[3];
#endif
};
static int adp5588_read(struct i2c_client *client, u8 reg)
{
int ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
dev_err(&client->dev, "Read Error\n");
return ret;
}
static int adp5588_write(struct i2c_client *client, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(client, reg, val);
}
#ifdef CONFIG_GPIOLIB
static int adp5588_gpio_get_value(struct gpio_chip *chip, unsigned off)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int val;
mutex_lock(&kpad->gpio_lock);
if (kpad->dir[bank] & bit)
val = kpad->dat_out[bank];
else
val = adp5588_read(kpad->client, GPIO_DAT_STAT1 + bank);
mutex_unlock(&kpad->gpio_lock);
return !!(val & bit);
}
static void adp5588_gpio_set_value(struct gpio_chip *chip,
unsigned off, int val)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
mutex_lock(&kpad->gpio_lock);
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank,
kpad->dat_out[bank]);
mutex_unlock(&kpad->gpio_lock);
}
static int adp5588_gpio_direction_input(struct gpio_chip *chip, unsigned off)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_gpio_direction_output(struct gpio_chip *chip,
unsigned off, int val)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] |= bit;
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank,
kpad->dat_out[bank]);
ret |= adp5588_write(kpad->client, GPIO_DIR1 + bank,
kpad->dir[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_build_gpiomap(struct adp5588_kpad *kpad,
const struct adp5588_kpad_platform_data *pdata)
{
bool pin_used[ADP5588_MAXGPIO];
int n_unused = 0;
int i;
memset(pin_used, 0, sizeof(pin_used));
for (i = 0; i < pdata->rows; i++)
pin_used[i] = true;
for (i = 0; i < pdata->cols; i++)
pin_used[i + GPI_PIN_COL_BASE - GPI_PIN_BASE] = true;
for (i = 0; i < kpad->gpimapsize; i++)
pin_used[kpad->gpimap[i].pin - GPI_PIN_BASE] = true;
for (i = 0; i < ADP5588_MAXGPIO; i++)
if (!pin_used[i])
kpad->gpiomap[n_unused++] = i;
return n_unused;
}
static int adp5588_gpio_add(struct adp5588_kpad *kpad)
{
struct device *dev = &kpad->client->dev;
const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int i, error;
if (!gpio_data)
return 0;
kpad->gc.ngpio = adp5588_build_gpiomap(kpad, pdata);
if (kpad->gc.ngpio == 0) {
dev_info(dev, "No unused gpios left to export\n");
return 0;
}
kpad->export_gpio = true;
kpad->gc.direction_input = adp5588_gpio_direction_input;
kpad->gc.direction_output = adp5588_gpio_direction_output;
kpad->gc.get = adp5588_gpio_get_value;
kpad->gc.set = adp5588_gpio_set_value;
kpad->gc.can_sleep = 1;
kpad->gc.base = gpio_data->gpio_start;
kpad->gc.label = kpad->client->name;
kpad->gc.owner = THIS_MODULE;
kpad->gc.names = gpio_data->names;
mutex_init(&kpad->gpio_lock);
error = gpiochip_add_data(&kpad->gc, kpad);
if (error) {
dev_err(dev, "gpiochip_add failed, err: %d\n", error);
return error;
}
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
kpad->dat_out[i] = adp5588_read(kpad->client,
GPIO_DAT_OUT1 + i);
kpad->dir[i] = adp5588_read(kpad->client, GPIO_DIR1 + i);
}
if (gpio_data->setup) {
error = gpio_data->setup(kpad->client,
kpad->gc.base, kpad->gc.ngpio,
gpio_data->context);
if (error)
dev_warn(dev, "setup failed, %d\n", error);
}
return 0;
}
static void adp5588_gpio_remove(struct adp5588_kpad *kpad)
{
struct device *dev = &kpad->client->dev;
const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int error;
if (!kpad->export_gpio)
return;
if (gpio_data->teardown) {
error = gpio_data->teardown(kpad->client,
kpad->gc.base, kpad->gc.ngpio,
gpio_data->context);
if (error)
dev_warn(dev, "teardown failed %d\n", error);
}
gpiochip_remove(&kpad->gc);
}
#else
static inline int adp5588_gpio_add(struct adp5588_kpad *kpad)
{
return 0;
}
static inline void adp5588_gpio_remove(struct adp5588_kpad *kpad)
{
}
#endif
static void adp5588_report_events(struct adp5588_kpad *kpad, int ev_cnt)
{
int i, j;
for (i = 0; i < ev_cnt; i++) {
int key = adp5588_read(kpad->client, Key_EVENTA + i);
int key_val = key & KEY_EV_MASK;
if (key_val >= GPI_PIN_BASE && key_val <= GPI_PIN_END) {
for (j = 0; j < kpad->gpimapsize; j++) {
if (key_val == kpad->gpimap[j].pin) {
input_report_switch(kpad->input,
kpad->gpimap[j].sw_evt,
key & KEY_EV_PRESSED);
break;
}
}
} else {
input_report_key(kpad->input,
kpad->keycode[key_val - 1],
key & KEY_EV_PRESSED);
}
}
}
static void adp5588_work(struct work_struct *work)
{
struct adp5588_kpad *kpad = container_of(work,
struct adp5588_kpad, work.work);
struct i2c_client *client = kpad->client;
int status, ev_cnt;
status = adp5588_read(client, INT_STAT);
if (status & ADP5588_OVR_FLOW_INT) /* Unlikely and should never happen */
dev_err(&client->dev, "Event Overflow Error\n");
if (status & ADP5588_KE_INT) {
ev_cnt = adp5588_read(client, KEY_LCK_EC_STAT) & ADP5588_KEC;
if (ev_cnt) {
adp5588_report_events(kpad, ev_cnt);
input_sync(kpad->input);
}
}
adp5588_write(client, INT_STAT, status); /* Status is W1C */
}
static irqreturn_t adp5588_irq(int irq, void *handle)
{
struct adp5588_kpad *kpad = handle;
/*
* use keventd context to read the event fifo registers
* Schedule readout at least 25ms after notification for
* REVID < 4
*/
schedule_delayed_work(&kpad->work, kpad->delay);
return IRQ_HANDLED;
}
static int adp5588_setup(struct i2c_client *client)
{
const struct adp5588_kpad_platform_data *pdata =
dev_get_platdata(&client->dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int i, ret;
unsigned char evt_mode1 = 0, evt_mode2 = 0, evt_mode3 = 0;
ret = adp5588_write(client, KP_GPIO1, KP_SEL(pdata->rows));
ret |= adp5588_write(client, KP_GPIO2, KP_SEL(pdata->cols) & 0xFF);
ret |= adp5588_write(client, KP_GPIO3, KP_SEL(pdata->cols) >> 8);
if (pdata->en_keylock) {
ret |= adp5588_write(client, UNLOCK1, pdata->unlock_key1);
ret |= adp5588_write(client, UNLOCK2, pdata->unlock_key2);
ret |= adp5588_write(client, KEY_LCK_EC_STAT, ADP5588_K_LCK_EN);
}
for (i = 0; i < KEYP_MAX_EVENT; i++)
ret |= adp5588_read(client, Key_EVENTA);
for (i = 0; i < pdata->gpimapsize; i++) {
unsigned short pin = pdata->gpimap[i].pin;
if (pin <= GPI_PIN_ROW_END) {
evt_mode1 |= (1 << (pin - GPI_PIN_ROW_BASE));
} else {
evt_mode2 |= ((1 << (pin - GPI_PIN_COL_BASE)) & 0xFF);
evt_mode3 |= ((1 << (pin - GPI_PIN_COL_BASE)) >> 8);
}
}
if (pdata->gpimapsize) {
ret |= adp5588_write(client, GPI_EM1, evt_mode1);
ret |= adp5588_write(client, GPI_EM2, evt_mode2);
ret |= adp5588_write(client, GPI_EM3, evt_mode3);
}
if (gpio_data) {
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
int pull_mask = gpio_data->pullup_dis_mask;
ret |= adp5588_write(client, GPIO_PULL1 + i,
(pull_mask >> (8 * i)) & 0xFF);
}
}
ret |= adp5588_write(client, INT_STAT,
ADP5588_CMP2_INT | ADP5588_CMP1_INT |
ADP5588_OVR_FLOW_INT | ADP5588_K_LCK_INT |
ADP5588_GPI_INT | ADP5588_KE_INT); /* Status is W1C */
ret |= adp5588_write(client, CFG, ADP5588_INT_CFG |
ADP5588_OVR_FLOW_IEN |
ADP5588_KE_IEN);
if (ret < 0) {
dev_err(&client->dev, "Write Error\n");
return ret;
}
return 0;
}
static void adp5588_report_switch_state(struct adp5588_kpad *kpad)
{
int gpi_stat1 = adp5588_read(kpad->client, GPIO_DAT_STAT1);
int gpi_stat2 = adp5588_read(kpad->client, GPIO_DAT_STAT2);
int gpi_stat3 = adp5588_read(kpad->client, GPIO_DAT_STAT3);
int gpi_stat_tmp, pin_loc;
int i;
for (i = 0; i < kpad->gpimapsize; i++) {
unsigned short pin = kpad->gpimap[i].pin;
if (pin <= GPI_PIN_ROW_END) {
gpi_stat_tmp = gpi_stat1;
pin_loc = pin - GPI_PIN_ROW_BASE;
} else if ((pin - GPI_PIN_COL_BASE) < 8) {
gpi_stat_tmp = gpi_stat2;
pin_loc = pin - GPI_PIN_COL_BASE;
} else {
gpi_stat_tmp = gpi_stat3;
pin_loc = pin - GPI_PIN_COL_BASE - 8;
}
if (gpi_stat_tmp < 0) {
dev_err(&kpad->client->dev,
"Can't read GPIO_DAT_STAT switch %d default to OFF\n",
pin);
gpi_stat_tmp = 0;
}
input_report_switch(kpad->input,
kpad->gpimap[i].sw_evt,
!(gpi_stat_tmp & (1 << pin_loc)));
}
input_sync(kpad->input);
}
static int adp5588_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adp5588_kpad *kpad;
const struct adp5588_kpad_platform_data *pdata =
dev_get_platdata(&client->dev);
struct input_dev *input;
unsigned int revid;
int ret, i;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev, "SMBUS Byte Data not Supported\n");
return -EIO;
}
if (!pdata) {
dev_err(&client->dev, "no platform data?\n");
return -EINVAL;
}
if (!pdata->rows || !pdata->cols || !pdata->keymap) {
dev_err(&client->dev, "no rows, cols or keymap from pdata\n");
return -EINVAL;
}
if (pdata->keymapsize != ADP5588_KEYMAPSIZE) {
dev_err(&client->dev, "invalid keymapsize\n");
return -EINVAL;
}
if (!pdata->gpimap && pdata->gpimapsize) {
dev_err(&client->dev, "invalid gpimap from pdata\n");
return -EINVAL;
}
if (pdata->gpimapsize > ADP5588_GPIMAPSIZE_MAX) {
dev_err(&client->dev, "invalid gpimapsize\n");
return -EINVAL;
}
for (i = 0; i < pdata->gpimapsize; i++) {
unsigned short pin = pdata->gpimap[i].pin;
if (pin < GPI_PIN_BASE || pin > GPI_PIN_END) {
dev_err(&client->dev, "invalid gpi pin data\n");
return -EINVAL;
}
if (pin <= GPI_PIN_ROW_END) {
if (pin - GPI_PIN_ROW_BASE + 1 <= pdata->rows) {
dev_err(&client->dev, "invalid gpi row data\n");
return -EINVAL;
}
} else {
if (pin - GPI_PIN_COL_BASE + 1 <= pdata->cols) {
dev_err(&client->dev, "invalid gpi col data\n");
return -EINVAL;
}
}
}
if (!client->irq) {
dev_err(&client->dev, "no IRQ?\n");
return -EINVAL;
}
kpad = kzalloc(sizeof(*kpad), GFP_KERNEL);
input = input_allocate_device();
if (!kpad || !input) {
error = -ENOMEM;
goto err_free_mem;
}
kpad->client = client;
kpad->input = input;
INIT_DELAYED_WORK(&kpad->work, adp5588_work);
ret = adp5588_read(client, DEV_ID);
if (ret < 0) {
error = ret;
goto err_free_mem;
}
revid = (u8) ret & ADP5588_DEVICE_ID_MASK;
if (WA_DELAYED_READOUT_REVID(revid))
kpad->delay = msecs_to_jiffies(30);
input->name = client->name;
input->phys = "adp5588-keys/input0";
input->dev.parent = &client->dev;
input_set_drvdata(input, kpad);
input->id.bustype = BUS_I2C;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = revid;
input->keycodesize = sizeof(kpad->keycode[0]);
input->keycodemax = pdata->keymapsize;
input->keycode = kpad->keycode;
memcpy(kpad->keycode, pdata->keymap,
pdata->keymapsize * input->keycodesize);
kpad->gpimap = pdata->gpimap;
kpad->gpimapsize = pdata->gpimapsize;
/* setup input device */
__set_bit(EV_KEY, input->evbit);
if (pdata->repeat)
__set_bit(EV_REP, input->evbit);
for (i = 0; i < input->keycodemax; i++)
if (kpad->keycode[i] <= KEY_MAX)
__set_bit(kpad->keycode[i], input->keybit);
__clear_bit(KEY_RESERVED, input->keybit);
if (kpad->gpimapsize)
__set_bit(EV_SW, input->evbit);
for (i = 0; i < kpad->gpimapsize; i++)
__set_bit(kpad->gpimap[i].sw_evt, input->swbit);
error = input_register_device(input);
if (error) {
dev_err(&client->dev, "unable to register input device\n");
goto err_free_mem;
}
error = request_irq(client->irq, adp5588_irq,
IRQF_TRIGGER_FALLING,
client->dev.driver->name, kpad);
if (error) {
dev_err(&client->dev, "irq %d busy?\n", client->irq);
goto err_unreg_dev;
}
error = adp5588_setup(client);
if (error)
goto err_free_irq;
if (kpad->gpimapsize)
adp5588_report_switch_state(kpad);
error = adp5588_gpio_add(kpad);
if (error)
goto err_free_irq;
device_init_wakeup(&client->dev, 1);
i2c_set_clientdata(client, kpad);
dev_info(&client->dev, "Rev.%d keypad, irq %d\n", revid, client->irq);
return 0;
err_free_irq:
free_irq(client->irq, kpad);
cancel_delayed_work_sync(&kpad->work);
err_unreg_dev:
input_unregister_device(input);
input = NULL;
err_free_mem:
input_free_device(input);
kfree(kpad);
return error;
}
static int adp5588_remove(struct i2c_client *client)
{
struct adp5588_kpad *kpad = i2c_get_clientdata(client);
adp5588_write(client, CFG, 0);
free_irq(client->irq, kpad);
cancel_delayed_work_sync(&kpad->work);
input_unregister_device(kpad->input);
adp5588_gpio_remove(kpad);
kfree(kpad);
return 0;
}
#ifdef CONFIG_PM
static int adp5588_suspend(struct device *dev)
{
struct adp5588_kpad *kpad = dev_get_drvdata(dev);
struct i2c_client *client = kpad->client;
disable_irq(client->irq);
cancel_delayed_work_sync(&kpad->work);
if (device_may_wakeup(&client->dev))
enable_irq_wake(client->irq);
return 0;
}
static int adp5588_resume(struct device *dev)
{
struct adp5588_kpad *kpad = dev_get_drvdata(dev);
struct i2c_client *client = kpad->client;
if (device_may_wakeup(&client->dev))
disable_irq_wake(client->irq);
enable_irq(client->irq);
return 0;
}
static const struct dev_pm_ops adp5588_dev_pm_ops = {
.suspend = adp5588_suspend,
.resume = adp5588_resume,
};
#endif
static const struct i2c_device_id adp5588_id[] = {
{ "adp5588-keys", 0 },
{ "adp5587-keys", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adp5588_id);
static struct i2c_driver adp5588_driver = {
.driver = {
.name = KBUILD_MODNAME,
#ifdef CONFIG_PM
.pm = &adp5588_dev_pm_ops,
#endif
},
.probe = adp5588_probe,
.remove = adp5588_remove,
.id_table = adp5588_id,
};
module_i2c_driver(adp5588_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("ADP5588/87 Keypad driver");