ubuntu-linux-kernel/arch/tile/kernel/setup.c

1744 lines
49 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/node.h>
#include <linux/cpu.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/kexec.h>
#include <linux/pci.h>
#include <linux/swiotlb.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/smp.h>
#include <linux/timex.h>
#include <linux/hugetlb.h>
#include <linux/start_kernel.h>
#include <linux/screen_info.h>
#include <linux/tick.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <hv/hypervisor.h>
#include <arch/interrupts.h>
/* <linux/smp.h> doesn't provide this definition. */
#ifndef CONFIG_SMP
#define setup_max_cpus 1
#endif
static inline int ABS(int x) { return x >= 0 ? x : -x; }
/* Chip information */
char chip_model[64] __ro_after_init;
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
/* Information on the NUMA nodes that we compute early */
unsigned long node_start_pfn[MAX_NUMNODES];
unsigned long node_end_pfn[MAX_NUMNODES];
unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
unsigned long __initdata node_free_pfn[MAX_NUMNODES];
static unsigned long __initdata node_percpu[MAX_NUMNODES];
/*
* per-CPU stack and boot info.
*/
DEFINE_PER_CPU(unsigned long, boot_sp) =
(unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA;
#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
#else
/*
* The variable must be __initdata since it references __init code.
* With CONFIG_SMP it is per-cpu data, which is exempt from validation.
*/
unsigned long __initdata boot_pc = (unsigned long)start_kernel;
#endif
#ifdef CONFIG_HIGHMEM
/* Page frame index of end of lowmem on each controller. */
unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
/* Number of pages that can be mapped into lowmem. */
static unsigned long __initdata mappable_physpages;
#endif
/* Data on which physical memory controller corresponds to which NUMA node */
int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
#ifdef CONFIG_HIGHMEM
/* Map information from VAs to PAs */
unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
__ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(pbase_map);
/* Map information from PAs to VAs */
void *vbase_map[NR_PA_HIGHBIT_VALUES]
__ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(vbase_map);
#endif
/* Node number as a function of the high PA bits */
int highbits_to_node[NR_PA_HIGHBIT_VALUES] __ro_after_init;
EXPORT_SYMBOL(highbits_to_node);
static unsigned int __initdata maxmem_pfn = -1U;
static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
[0 ... MAX_NUMNODES-1] = -1U
};
static nodemask_t __initdata isolnodes;
#if defined(CONFIG_PCI) && !defined(__tilegx__)
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
unsigned long __initdata pci_reserve_end_pfn = -1U;
#endif
static int __init setup_maxmem(char *str)
{
unsigned long long maxmem;
if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
return -EINVAL;
maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
pr_info("Forcing RAM used to no more than %dMB\n",
maxmem_pfn >> (20 - PAGE_SHIFT));
return 0;
}
early_param("maxmem", setup_maxmem);
static int __init setup_maxnodemem(char *str)
{
char *endp;
unsigned long long maxnodemem;
unsigned long node;
node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
if (node >= MAX_NUMNODES || *endp != ':')
return -EINVAL;
maxnodemem = memparse(endp+1, NULL);
maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
(HPAGE_SHIFT - PAGE_SHIFT);
pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
return 0;
}
early_param("maxnodemem", setup_maxnodemem);
struct memmap_entry {
u64 addr; /* start of memory segment */
u64 size; /* size of memory segment */
};
static struct memmap_entry memmap_map[64];
static int memmap_nr;
static void add_memmap_region(u64 addr, u64 size)
{
if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
pr_err("Ooops! Too many entries in the memory map!\n");
return;
}
memmap_map[memmap_nr].addr = addr;
memmap_map[memmap_nr].size = size;
memmap_nr++;
}
static int __init setup_memmap(char *p)
{
char *oldp;
u64 start_at, mem_size;
if (!p)
return -EINVAL;
if (!strncmp(p, "exactmap", 8)) {
pr_err("\"memmap=exactmap\" not valid on tile\n");
return 0;
}
oldp = p;
mem_size = memparse(p, &p);
if (p == oldp)
return -EINVAL;
if (*p == '@') {
pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
} else if (*p == '#') {
pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
} else if (*p == '$') {
start_at = memparse(p+1, &p);
add_memmap_region(start_at, mem_size);
} else {
if (mem_size == 0)
return -EINVAL;
maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
(HPAGE_SHIFT - PAGE_SHIFT);
}
return *p == '\0' ? 0 : -EINVAL;
}
early_param("memmap", setup_memmap);
static int __init setup_mem(char *str)
{
return setup_maxmem(str);
}
early_param("mem", setup_mem); /* compatibility with x86 */
static int __init setup_isolnodes(char *str)
{
if (str == NULL || nodelist_parse(str, isolnodes) != 0)
return -EINVAL;
pr_info("Set isolnodes value to '%*pbl'\n",
nodemask_pr_args(&isolnodes));
return 0;
}
early_param("isolnodes", setup_isolnodes);
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static int __init setup_pci_reserve(char* str)
{
if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
pci_reserve_mb > 3 * 1024)
return -EINVAL;
pr_info("Reserving %dMB for PCIE root complex mappings\n",
pci_reserve_mb);
return 0;
}
early_param("pci_reserve", setup_pci_reserve);
#endif
#ifndef __tilegx__
/*
* vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
* This can be used to increase (or decrease) the vmalloc area.
*/
static int __init parse_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
/* See validate_va() for more on this test. */
if ((long)_VMALLOC_START >= 0)
early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
return 0;
}
early_param("vmalloc", parse_vmalloc);
#endif
#ifdef CONFIG_HIGHMEM
/*
* Determine for each controller where its lowmem is mapped and how much of
* it is mapped there. On controller zero, the first few megabytes are
* already mapped in as code at MEM_SV_START, so in principle we could
* start our data mappings higher up, but for now we don't bother, to avoid
* additional confusion.
*
* One question is whether, on systems with more than 768 Mb and
* controllers of different sizes, to map in a proportionate amount of
* each one, or to try to map the same amount from each controller.
* (E.g. if we have three controllers with 256MB, 1GB, and 256MB
* respectively, do we map 256MB from each, or do we map 128 MB, 512
* MB, and 128 MB respectively?) For now we use a proportionate
* solution like the latter.
*
* The VA/PA mapping demands that we align our decisions at 16 MB
* boundaries so that we can rapidly convert VA to PA.
*/
static void *__init setup_pa_va_mapping(void)
{
unsigned long curr_pages = 0;
unsigned long vaddr = PAGE_OFFSET;
nodemask_t highonlynodes = isolnodes;
int i, j;
memset(pbase_map, -1, sizeof(pbase_map));
memset(vbase_map, -1, sizeof(vbase_map));
/* Node zero cannot be isolated for LOWMEM purposes. */
node_clear(0, highonlynodes);
/* Count up the number of pages on non-highonlynodes controllers. */
mappable_physpages = 0;
for_each_online_node(i) {
if (!node_isset(i, highonlynodes))
mappable_physpages +=
node_end_pfn[i] - node_start_pfn[i];
}
for_each_online_node(i) {
unsigned long start = node_start_pfn[i];
unsigned long end = node_end_pfn[i];
unsigned long size = end - start;
unsigned long vaddr_end;
if (node_isset(i, highonlynodes)) {
/* Mark this controller as having no lowmem. */
node_lowmem_end_pfn[i] = start;
continue;
}
curr_pages += size;
if (mappable_physpages > MAXMEM_PFN) {
vaddr_end = PAGE_OFFSET +
(((u64)curr_pages * MAXMEM_PFN /
mappable_physpages)
<< PAGE_SHIFT);
} else {
vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
}
for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
unsigned long this_pfn =
start + (j << HUGETLB_PAGE_ORDER);
pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
if (vbase_map[__pfn_to_highbits(this_pfn)] ==
(void *)-1)
vbase_map[__pfn_to_highbits(this_pfn)] =
(void *)(vaddr & HPAGE_MASK);
}
node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
BUG_ON(node_lowmem_end_pfn[i] > end);
}
/* Return highest address of any mapped memory. */
return (void *)vaddr;
}
#endif /* CONFIG_HIGHMEM */
/*
* Register our most important memory mappings with the debug stub.
*
* This is up to 4 mappings for lowmem, one mapping per memory
* controller, plus one for our text segment.
*/
static void store_permanent_mappings(void)
{
int i;
for_each_online_node(i) {
HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
#else
HV_PhysAddr high_mapped_pa = node_end_pfn[i];
#endif
unsigned long pages = high_mapped_pa - node_start_pfn[i];
HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
}
hv_store_mapping((HV_VirtAddr)_text,
(uint32_t)(_einittext - _text), 0);
}
/*
* Use hv_inquire_physical() to populate node_{start,end}_pfn[]
* and node_online_map, doing suitable sanity-checking.
* Also set min_low_pfn, max_low_pfn, and max_pfn.
*/
static void __init setup_memory(void)
{
int i, j;
int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
#ifdef CONFIG_HIGHMEM
long highmem_pages;
#endif
#ifndef __tilegx__
int cap;
#endif
#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
long lowmem_pages;
#endif
unsigned long physpages = 0;
/* We are using a char to hold the cpu_2_node[] mapping */
BUILD_BUG_ON(MAX_NUMNODES > 127);
/* Discover the ranges of memory available to us */
for (i = 0; ; ++i) {
unsigned long start, size, end, highbits;
HV_PhysAddrRange range = hv_inquire_physical(i);
if (range.size == 0)
break;
#ifdef CONFIG_FLATMEM
if (i > 0) {
pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
range.size, range.start + range.size);
continue;
}
#endif
#ifndef __tilegx__
if ((unsigned long)range.start) {
pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
#endif
if ((range.start & (HPAGE_SIZE-1)) != 0 ||
(range.size & (HPAGE_SIZE-1)) != 0) {
unsigned long long start_pa = range.start;
unsigned long long orig_size = range.size;
range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
range.size -= (range.start - start_pa);
range.size &= HPAGE_MASK;
pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
start_pa, start_pa + orig_size,
range.start, range.start + range.size);
}
highbits = __pa_to_highbits(range.start);
if (highbits >= NR_PA_HIGHBIT_VALUES) {
pr_err("PA high bits too high: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
if (highbits_seen[highbits]) {
pr_err("Range overlaps in high bits: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
highbits_seen[highbits] = 1;
if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
int max_size = maxnodemem_pfn[i];
if (max_size > 0) {
pr_err("Maxnodemem reduced node %d to %d pages\n",
i, max_size);
range.size = PFN_PHYS(max_size);
} else {
pr_err("Maxnodemem disabled node %d\n", i);
continue;
}
}
if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
int max_size = maxmem_pfn - physpages;
if (max_size > 0) {
pr_err("Maxmem reduced node %d to %d pages\n",
i, max_size);
range.size = PFN_PHYS(max_size);
} else {
pr_err("Maxmem disabled node %d\n", i);
continue;
}
}
if (i >= MAX_NUMNODES) {
pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
i, range.size, range.size + range.start);
continue;
}
start = range.start >> PAGE_SHIFT;
size = range.size >> PAGE_SHIFT;
end = start + size;
#ifndef __tilegx__
if (((HV_PhysAddr)end << PAGE_SHIFT) !=
(range.start + range.size)) {
pr_err("PAs too high to represent: %#llx..%#llx\n",
range.start, range.start + range.size);
continue;
}
#endif
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Blocks that overlap the pci reserved region must
* have enough space to hold the maximum percpu data
* region at the top of the range. If there isn't
* enough space above the reserved region, just
* truncate the node.
*/
if (start <= pci_reserve_start_pfn &&
end > pci_reserve_start_pfn) {
unsigned int per_cpu_size =
__per_cpu_end - __per_cpu_start;
unsigned int percpu_pages =
NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
if (end < pci_reserve_end_pfn + percpu_pages) {
end = pci_reserve_start_pfn;
pr_err("PCI mapping region reduced node %d to %ld pages\n",
i, end - start);
}
}
#endif
for (j = __pfn_to_highbits(start);
j <= __pfn_to_highbits(end - 1); j++)
highbits_to_node[j] = i;
node_start_pfn[i] = start;
node_end_pfn[i] = end;
node_controller[i] = range.controller;
physpages += size;
max_pfn = end;
/* Mark node as online */
node_set(i, node_online_map);
node_set(i, node_possible_map);
}
#ifndef __tilegx__
/*
* For 4KB pages, mem_map "struct page" data is 1% of the size
* of the physical memory, so can be quite big (640 MB for
* four 16G zones). These structures must be mapped in
* lowmem, and since we currently cap out at about 768 MB,
* it's impractical to try to use this much address space.
* For now, arbitrarily cap the amount of physical memory
* we're willing to use at 8 million pages (32GB of 4KB pages).
*/
cap = 8 * 1024 * 1024; /* 8 million pages */
if (physpages > cap) {
int num_nodes = num_online_nodes();
int cap_each = cap / num_nodes;
unsigned long dropped_pages = 0;
for (i = 0; i < num_nodes; ++i) {
int size = node_end_pfn[i] - node_start_pfn[i];
if (size > cap_each) {
dropped_pages += (size - cap_each);
node_end_pfn[i] = node_start_pfn[i] + cap_each;
}
}
physpages -= dropped_pages;
pr_warn("Only using %ldMB memory - ignoring %ldMB\n",
physpages >> (20 - PAGE_SHIFT),
dropped_pages >> (20 - PAGE_SHIFT));
pr_warn("Consider using a larger page size\n");
}
#endif
/* Heap starts just above the last loaded address. */
min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
#ifdef CONFIG_HIGHMEM
/* Find where we map lowmem from each controller. */
high_memory = setup_pa_va_mapping();
/* Set max_low_pfn based on what node 0 can directly address. */
max_low_pfn = node_lowmem_end_pfn[0];
lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
MAXMEM_PFN : mappable_physpages;
highmem_pages = (long) (physpages - lowmem_pages);
pr_notice("%ldMB HIGHMEM available\n",
pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
#else
/* Set max_low_pfn based on what node 0 can directly address. */
max_low_pfn = node_end_pfn[0];
#ifndef __tilegx__
if (node_end_pfn[0] > MAXMEM_PFN) {
pr_warn("Only using %ldMB LOWMEM\n", MAXMEM >> 20);
pr_warn("Use a HIGHMEM enabled kernel\n");
max_low_pfn = MAXMEM_PFN;
max_pfn = MAXMEM_PFN;
node_end_pfn[0] = MAXMEM_PFN;
} else {
pr_notice("%ldMB memory available\n",
pages_to_mb(node_end_pfn[0]));
}
for (i = 1; i < MAX_NUMNODES; ++i) {
node_start_pfn[i] = 0;
node_end_pfn[i] = 0;
}
high_memory = __va(node_end_pfn[0]);
#else
lowmem_pages = 0;
for (i = 0; i < MAX_NUMNODES; ++i) {
int pages = node_end_pfn[i] - node_start_pfn[i];
lowmem_pages += pages;
if (pages)
high_memory = pfn_to_kaddr(node_end_pfn[i]);
}
pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
#endif
#endif
}
/*
* On 32-bit machines, we only put bootmem on the low controller,
* since PAs > 4GB can't be used in bootmem. In principle one could
* imagine, e.g., multiple 1 GB controllers all of which could support
* bootmem, but in practice using controllers this small isn't a
* particularly interesting scenario, so we just keep it simple and
* use only the first controller for bootmem on 32-bit machines.
*/
static inline int node_has_bootmem(int nid)
{
#ifdef CONFIG_64BIT
return 1;
#else
return nid == 0;
#endif
}
static inline unsigned long alloc_bootmem_pfn(int nid,
unsigned long size,
unsigned long goal)
{
void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
PAGE_SIZE, goal);
unsigned long pfn = kaddr_to_pfn(kva);
BUG_ON(goal && PFN_PHYS(pfn) != goal);
return pfn;
}
static void __init setup_bootmem_allocator_node(int i)
{
unsigned long start, end, mapsize, mapstart;
if (node_has_bootmem(i)) {
NODE_DATA(i)->bdata = &bootmem_node_data[i];
} else {
/* Share controller zero's bdata for now. */
NODE_DATA(i)->bdata = &bootmem_node_data[0];
return;
}
/* Skip up to after the bss in node 0. */
start = (i == 0) ? min_low_pfn : node_start_pfn[i];
/* Only lowmem, if we're a HIGHMEM build. */
#ifdef CONFIG_HIGHMEM
end = node_lowmem_end_pfn[i];
#else
end = node_end_pfn[i];
#endif
/* No memory here. */
if (end == start)
return;
/* Figure out where the bootmem bitmap is located. */
mapsize = bootmem_bootmap_pages(end - start);
if (i == 0) {
/* Use some space right before the heap on node 0. */
mapstart = start;
start += mapsize;
} else {
/* Allocate bitmap on node 0 to avoid page table issues. */
mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
}
/* Initialize a node. */
init_bootmem_node(NODE_DATA(i), mapstart, start, end);
/* Free all the space back into the allocator. */
free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Throw away any memory aliased by the PCI region.
*/
if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
start = max(pci_reserve_start_pfn, start);
end = min(pci_reserve_end_pfn, end);
reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
BOOTMEM_EXCLUSIVE);
}
#endif
}
static void __init setup_bootmem_allocator(void)
{
int i;
for (i = 0; i < MAX_NUMNODES; ++i)
setup_bootmem_allocator_node(i);
/* Reserve any memory excluded by "memmap" arguments. */
for (i = 0; i < memmap_nr; ++i) {
struct memmap_entry *m = &memmap_map[i];
reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
/* Make sure the initrd memory region is not modified. */
if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
BOOTMEM_EXCLUSIVE)) {
pr_crit("The initrd memory region has been polluted. Disabling it.\n");
initrd_start = 0;
initrd_end = 0;
} else {
/*
* Translate initrd_start & initrd_end from PA to VA for
* future access.
*/
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
}
#endif
#ifdef CONFIG_KEXEC
if (crashk_res.start != crashk_res.end)
reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
BOOTMEM_DEFAULT);
#endif
}
void *__init alloc_remap(int nid, unsigned long size)
{
int pages = node_end_pfn[nid] - node_start_pfn[nid];
void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
BUG_ON(size != pages * sizeof(struct page));
memset(map, 0, size);
return map;
}
static int __init percpu_size(void)
{
int size = __per_cpu_end - __per_cpu_start;
size += PERCPU_MODULE_RESERVE;
size += PERCPU_DYNAMIC_EARLY_SIZE;
if (size < PCPU_MIN_UNIT_SIZE)
size = PCPU_MIN_UNIT_SIZE;
size = roundup(size, PAGE_SIZE);
/* In several places we assume the per-cpu data fits on a huge page. */
BUG_ON(kdata_huge && size > HPAGE_SIZE);
return size;
}
static void __init zone_sizes_init(void)
{
unsigned long zones_size[MAX_NR_ZONES] = { 0 };
int size = percpu_size();
int num_cpus = smp_height * smp_width;
const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
int i;
for (i = 0; i < num_cpus; ++i)
node_percpu[cpu_to_node(i)] += size;
for_each_online_node(i) {
unsigned long start = node_start_pfn[i];
unsigned long end = node_end_pfn[i];
#ifdef CONFIG_HIGHMEM
unsigned long lowmem_end = node_lowmem_end_pfn[i];
#else
unsigned long lowmem_end = end;
#endif
int memmap_size = (end - start) * sizeof(struct page);
node_free_pfn[i] = start;
/*
* Set aside pages for per-cpu data and the mem_map array.
*
* Since the per-cpu data requires special homecaching,
* if we are in kdata_huge mode, we put it at the end of
* the lowmem region. If we're not in kdata_huge mode,
* we take the per-cpu pages from the bottom of the
* controller, since that avoids fragmenting a huge page
* that users might want. We always take the memmap
* from the bottom of the controller, since with
* kdata_huge that lets it be under a huge TLB entry.
*
* If the user has requested isolnodes for a controller,
* though, there'll be no lowmem, so we just alloc_bootmem
* the memmap. There will be no percpu memory either.
*/
if (i != 0 && node_isset(i, isolnodes)) {
node_memmap_pfn[i] =
alloc_bootmem_pfn(0, memmap_size, 0);
BUG_ON(node_percpu[i] != 0);
} else if (node_has_bootmem(start)) {
unsigned long goal = 0;
node_memmap_pfn[i] =
alloc_bootmem_pfn(i, memmap_size, 0);
if (kdata_huge)
goal = PFN_PHYS(lowmem_end) - node_percpu[i];
if (node_percpu[i])
node_percpu_pfn[i] =
alloc_bootmem_pfn(i, node_percpu[i],
goal);
} else {
/* In non-bootmem zones, just reserve some pages. */
node_memmap_pfn[i] = node_free_pfn[i];
node_free_pfn[i] += PFN_UP(memmap_size);
if (!kdata_huge) {
node_percpu_pfn[i] = node_free_pfn[i];
node_free_pfn[i] += PFN_UP(node_percpu[i]);
} else {
node_percpu_pfn[i] =
lowmem_end - PFN_UP(node_percpu[i]);
}
}
#ifdef CONFIG_HIGHMEM
if (start > lowmem_end) {
zones_size[ZONE_NORMAL] = 0;
zones_size[ZONE_HIGHMEM] = end - start;
} else {
zones_size[ZONE_NORMAL] = lowmem_end - start;
zones_size[ZONE_HIGHMEM] = end - lowmem_end;
}
#else
zones_size[ZONE_NORMAL] = end - start;
#endif
if (start < dma_end) {
zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
dma_end - start);
zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
} else {
zones_size[ZONE_DMA] = 0;
}
/* Take zone metadata from controller 0 if we're isolnode. */
if (node_isset(i, isolnodes))
NODE_DATA(i)->bdata = &bootmem_node_data[0];
free_area_init_node(i, zones_size, start, NULL);
printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
PFN_UP(node_percpu[i]));
/* Track the type of memory on each node */
if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
node_set_state(i, N_NORMAL_MEMORY);
#ifdef CONFIG_HIGHMEM
if (end != start)
node_set_state(i, N_HIGH_MEMORY);
#endif
node_set_online(i);
}
}
#ifdef CONFIG_NUMA
/* which logical CPUs are on which nodes */
struct cpumask node_2_cpu_mask[MAX_NUMNODES] __ro_after_init;
EXPORT_SYMBOL(node_2_cpu_mask);
/* which node each logical CPU is on */
char cpu_2_node[NR_CPUS] __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(cpu_2_node);
/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
{
if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
return -1;
else
return cpu_to_node(cpu);
}
/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
static int __init node_neighbors(int node, int cpu,
struct cpumask *unbound_cpus)
{
int neighbors = 0;
int w = smp_width;
int h = smp_height;
int x = cpu % w;
int y = cpu / w;
if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
++neighbors;
if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
++neighbors;
if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
++neighbors;
if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
++neighbors;
return neighbors;
}
static void __init setup_numa_mapping(void)
{
u8 distance[MAX_NUMNODES][NR_CPUS];
HV_Coord coord;
int cpu, node, cpus, i, x, y;
int num_nodes = num_online_nodes();
struct cpumask unbound_cpus;
nodemask_t default_nodes;
cpumask_clear(&unbound_cpus);
/* Get set of nodes we will use for defaults */
nodes_andnot(default_nodes, node_online_map, isolnodes);
if (nodes_empty(default_nodes)) {
BUG_ON(!node_isset(0, node_online_map));
pr_err("Forcing NUMA node zero available as a default node\n");
node_set(0, default_nodes);
}
/* Populate the distance[] array */
memset(distance, -1, sizeof(distance));
cpu = 0;
for (coord.y = 0; coord.y < smp_height; ++coord.y) {
for (coord.x = 0; coord.x < smp_width;
++coord.x, ++cpu) {
BUG_ON(cpu >= nr_cpu_ids);
if (!cpu_possible(cpu)) {
cpu_2_node[cpu] = -1;
continue;
}
for_each_node_mask(node, default_nodes) {
HV_MemoryControllerInfo info =
hv_inquire_memory_controller(
coord, node_controller[node]);
distance[node][cpu] =
ABS(info.coord.x) + ABS(info.coord.y);
}
cpumask_set_cpu(cpu, &unbound_cpus);
}
}
cpus = cpu;
/*
* Round-robin through the NUMA nodes until all the cpus are
* assigned. We could be more clever here (e.g. create four
* sorted linked lists on the same set of cpu nodes, and pull
* off them in round-robin sequence, removing from all four
* lists each time) but given the relatively small numbers
* involved, O(n^2) seem OK for a one-time cost.
*/
node = first_node(default_nodes);
while (!cpumask_empty(&unbound_cpus)) {
int best_cpu = -1;
int best_distance = INT_MAX;
for (cpu = 0; cpu < cpus; ++cpu) {
if (cpumask_test_cpu(cpu, &unbound_cpus)) {
/*
* Compute metric, which is how much
* closer the cpu is to this memory
* controller than the others, shifted
* up, and then the number of
* neighbors already in the node as an
* epsilon adjustment to try to keep
* the nodes compact.
*/
int d = distance[node][cpu] * num_nodes;
for_each_node_mask(i, default_nodes) {
if (i != node)
d -= distance[i][cpu];
}
d *= 8; /* allow space for epsilon */
d -= node_neighbors(node, cpu, &unbound_cpus);
if (d < best_distance) {
best_cpu = cpu;
best_distance = d;
}
}
}
BUG_ON(best_cpu < 0);
cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
cpu_2_node[best_cpu] = node;
cpumask_clear_cpu(best_cpu, &unbound_cpus);
node = next_node_in(node, default_nodes);
}
/* Print out node assignments and set defaults for disabled cpus */
cpu = 0;
for (y = 0; y < smp_height; ++y) {
printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
for (x = 0; x < smp_width; ++x, ++cpu) {
if (cpu_to_node(cpu) < 0) {
pr_cont(" -");
cpu_2_node[cpu] = first_node(default_nodes);
} else {
pr_cont(" %d", cpu_to_node(cpu));
}
}
pr_cont("\n");
}
}
static struct cpu cpu_devices[NR_CPUS];
static int __init topology_init(void)
{
int i;
for_each_online_node(i)
register_one_node(i);
for (i = 0; i < smp_height * smp_width; ++i)
register_cpu(&cpu_devices[i], i);
return 0;
}
subsys_initcall(topology_init);
#else /* !CONFIG_NUMA */
#define setup_numa_mapping() do { } while (0)
#endif /* CONFIG_NUMA */
/*
* Initialize hugepage support on this cpu. We do this on all cores
* early in boot: before argument parsing for the boot cpu, and after
* argument parsing but before the init functions run on the secondaries.
* So the values we set up here in the hypervisor may be overridden on
* the boot cpu as arguments are parsed.
*/
static void init_super_pages(void)
{
#ifdef CONFIG_HUGETLB_SUPER_PAGES
int i;
for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
hv_set_pte_super_shift(i, huge_shift[i]);
#endif
}
/**
* setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
* @boot: Is this the boot cpu?
*
* Called from setup_arch() on the boot cpu, or online_secondary().
*/
void setup_cpu(int boot)
{
/* The boot cpu sets up its permanent mappings much earlier. */
if (!boot)
store_permanent_mappings();
/* Allow asynchronous TLB interrupts. */
#if CHIP_HAS_TILE_DMA()
arch_local_irq_unmask(INT_DMATLB_MISS);
arch_local_irq_unmask(INT_DMATLB_ACCESS);
#endif
#ifdef __tilegx__
arch_local_irq_unmask(INT_SINGLE_STEP_K);
#endif
/*
* Allow user access to many generic SPRs, like the cycle
* counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
*/
__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
#if CHIP_HAS_SN()
/* Static network is not restricted. */
__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
#endif
/*
* Set the MPL for interrupt control 0 & 1 to the corresponding
* values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
* SPRs, as well as the interrupt mask.
*/
__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
/* Initialize IRQ support for this cpu. */
setup_irq_regs();
#ifdef CONFIG_HARDWALL
/* Reset the network state on this cpu. */
reset_network_state();
#endif
init_super_pages();
}
#ifdef CONFIG_BLK_DEV_INITRD
static int __initdata set_initramfs_file;
static char __initdata initramfs_file[128] = "initramfs";
static int __init setup_initramfs_file(char *str)
{
if (str == NULL)
return -EINVAL;
strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
set_initramfs_file = 1;
return 0;
}
early_param("initramfs_file", setup_initramfs_file);
/*
* We look for a file called "initramfs" in the hvfs. If there is one, we
* allocate some memory for it and it will be unpacked to the initramfs.
* If it's compressed, the initd code will uncompress it first.
*/
static void __init load_hv_initrd(void)
{
HV_FS_StatInfo stat;
int fd, rc;
void *initrd;
/* If initrd has already been set, skip initramfs file in hvfs. */
if (initrd_start)
return;
fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
if (fd == HV_ENOENT) {
if (set_initramfs_file) {
pr_warn("No such hvfs initramfs file '%s'\n",
initramfs_file);
return;
} else {
/* Try old backwards-compatible name. */
fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
if (fd == HV_ENOENT)
return;
}
}
BUG_ON(fd < 0);
stat = hv_fs_fstat(fd);
BUG_ON(stat.size < 0);
if (stat.flags & HV_FS_ISDIR) {
pr_warn("Ignoring hvfs file '%s': it's a directory\n",
initramfs_file);
return;
}
initrd = alloc_bootmem_pages(stat.size);
rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
if (rc != stat.size) {
pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
stat.size, initramfs_file, rc);
free_initrd_mem((unsigned long) initrd, stat.size);
return;
}
initrd_start = (unsigned long) initrd;
initrd_end = initrd_start + stat.size;
}
void __init free_initrd_mem(unsigned long begin, unsigned long end)
{
free_bootmem_late(__pa(begin), end - begin);
}
static int __init setup_initrd(char *str)
{
char *endp;
unsigned long initrd_size;
initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
if (initrd_size == 0 || *endp != '@')
return -EINVAL;
initrd_start = simple_strtoul(endp+1, &endp, 0);
if (initrd_start == 0)
return -EINVAL;
initrd_end = initrd_start + initrd_size;
return 0;
}
early_param("initrd", setup_initrd);
#else
static inline void load_hv_initrd(void) {}
#endif /* CONFIG_BLK_DEV_INITRD */
static void __init validate_hv(void)
{
/*
* It may already be too late, but let's check our built-in
* configuration against what the hypervisor is providing.
*/
unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
HV_ASIDRange asid_range;
#ifndef CONFIG_SMP
HV_Topology topology = hv_inquire_topology();
BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
if (topology.width != 1 || topology.height != 1) {
pr_warn("Warning: booting UP kernel on %dx%d grid; will ignore all but first tile\n",
topology.width, topology.height);
}
#endif
if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
early_panic("Hypervisor glue size %ld is too big!\n",
glue_size);
if (hv_page_size != PAGE_SIZE)
early_panic("Hypervisor page size %#x != our %#lx\n",
hv_page_size, PAGE_SIZE);
if (hv_hpage_size != HPAGE_SIZE)
early_panic("Hypervisor huge page size %#x != our %#lx\n",
hv_hpage_size, HPAGE_SIZE);
#ifdef CONFIG_SMP
/*
* Some hypervisor APIs take a pointer to a bitmap array
* whose size is at least the number of cpus on the chip.
* We use a struct cpumask for this, so it must be big enough.
*/
if ((smp_height * smp_width) > nr_cpu_ids)
early_panic("Hypervisor %d x %d grid too big for Linux NR_CPUS %u\n",
smp_height, smp_width, nr_cpu_ids);
#endif
/*
* Check that we're using allowed ASIDs, and initialize the
* various asid variables to their appropriate initial states.
*/
asid_range = hv_inquire_asid(0);
min_asid = asid_range.start;
__this_cpu_write(current_asid, min_asid);
max_asid = asid_range.start + asid_range.size - 1;
if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
sizeof(chip_model)) < 0) {
pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
strlcpy(chip_model, "unknown", sizeof(chip_model));
}
}
static void __init validate_va(void)
{
#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
/*
* Similarly, make sure we're only using allowed VAs.
* We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
* and 0 .. KERNEL_HIGH_VADDR.
* In addition, make sure we CAN'T use the end of memory, since
* we use the last chunk of each pgd for the pgd_list.
*/
int i, user_kernel_ok = 0;
unsigned long max_va = 0;
unsigned long list_va =
((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
for (i = 0; ; ++i) {
HV_VirtAddrRange range = hv_inquire_virtual(i);
if (range.size == 0)
break;
if (range.start <= MEM_USER_INTRPT &&
range.start + range.size >= MEM_HV_START)
user_kernel_ok = 1;
if (range.start == 0)
max_va = range.size;
BUG_ON(range.start + range.size > list_va);
}
if (!user_kernel_ok)
early_panic("Hypervisor not configured for user/kernel VAs\n");
if (max_va == 0)
early_panic("Hypervisor not configured for low VAs\n");
if (max_va < KERNEL_HIGH_VADDR)
early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
max_va, KERNEL_HIGH_VADDR);
/* Kernel PCs must have their high bit set; see intvec.S. */
if ((long)VMALLOC_START >= 0)
early_panic("Linux VMALLOC region below the 2GB line (%#lx)!\n"
"Reconfigure the kernel with smaller VMALLOC_RESERVE\n",
VMALLOC_START);
#endif
}
/*
* cpu_lotar_map lists all the cpus that are valid for the supervisor
* to cache data on at a page level, i.e. what cpus can be placed in
* the LOTAR field of a PTE. It is equivalent to the set of possible
* cpus plus any other cpus that are willing to share their cache.
* It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
*/
struct cpumask __ro_after_init cpu_lotar_map;
EXPORT_SYMBOL(cpu_lotar_map);
/*
* hash_for_home_map lists all the tiles that hash-for-home data
* will be cached on. Note that this may includes tiles that are not
* valid for this supervisor to use otherwise (e.g. if a hypervisor
* device is being shared between multiple supervisors).
* It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
*/
struct cpumask hash_for_home_map;
EXPORT_SYMBOL(hash_for_home_map);
/*
* cpu_cacheable_map lists all the cpus whose caches the hypervisor can
* flush on our behalf. It is set to cpu_possible_mask OR'ed with
* hash_for_home_map, and it is what should be passed to
* hv_flush_remote() to flush all caches. Note that if there are
* dedicated hypervisor driver tiles that have authorized use of their
* cache, those tiles will only appear in cpu_lotar_map, NOT in
* cpu_cacheable_map, as they are a special case.
*/
struct cpumask __ro_after_init cpu_cacheable_map;
EXPORT_SYMBOL(cpu_cacheable_map);
static __initdata struct cpumask disabled_map;
static int __init disabled_cpus(char *str)
{
int boot_cpu = smp_processor_id();
if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
return -EINVAL;
if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
cpumask_clear_cpu(boot_cpu, &disabled_map);
}
return 0;
}
early_param("disabled_cpus", disabled_cpus);
void __init print_disabled_cpus(void)
{
if (!cpumask_empty(&disabled_map))
pr_info("CPUs not available for Linux: %*pbl\n",
cpumask_pr_args(&disabled_map));
}
static void __init setup_cpu_maps(void)
{
struct cpumask hv_disabled_map, cpu_possible_init;
int boot_cpu = smp_processor_id();
int cpus, i, rc;
/* Learn which cpus are allowed by the hypervisor. */
rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
(HV_VirtAddr) cpumask_bits(&cpu_possible_init),
sizeof(cpu_cacheable_map));
if (rc < 0)
early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
/* Compute the cpus disabled by the hvconfig file. */
cpumask_complement(&hv_disabled_map, &cpu_possible_init);
/* Include them with the cpus disabled by "disabled_cpus". */
cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
/*
* Disable every cpu after "setup_max_cpus". But don't mark
* as disabled the cpus that are outside of our initial rectangle,
* since that turns out to be confusing.
*/
cpus = 1; /* this cpu */
cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
for (i = 0; cpus < setup_max_cpus; ++i)
if (!cpumask_test_cpu(i, &disabled_map))
++cpus;
for (; i < smp_height * smp_width; ++i)
cpumask_set_cpu(i, &disabled_map);
cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
for (i = smp_height * smp_width; i < NR_CPUS; ++i)
cpumask_clear_cpu(i, &disabled_map);
/*
* Setup cpu_possible map as every cpu allocated to us, minus
* the results of any "disabled_cpus" settings.
*/
cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
init_cpu_possible(&cpu_possible_init);
/* Learn which cpus are valid for LOTAR caching. */
rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
(HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
sizeof(cpu_lotar_map));
if (rc < 0) {
pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
cpu_lotar_map = *cpu_possible_mask;
}
/* Retrieve set of CPUs used for hash-for-home caching */
rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
(HV_VirtAddr) hash_for_home_map.bits,
sizeof(hash_for_home_map));
if (rc < 0)
early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
}
static int __init dataplane(char *str)
{
pr_warn("WARNING: dataplane support disabled in this kernel\n");
return 0;
}
early_param("dataplane", dataplane);
#ifdef CONFIG_NO_HZ_FULL
/* Warn if hypervisor shared cpus are marked as nohz_full. */
static int __init check_nohz_full_cpus(void)
{
struct cpumask shared;
int cpu;
if (hv_inquire_tiles(HV_INQ_TILES_SHARED,
(HV_VirtAddr) shared.bits, sizeof(shared)) < 0) {
pr_warn("WARNING: No support for inquiring hv shared tiles\n");
return 0;
}
for_each_cpu(cpu, &shared) {
if (tick_nohz_full_cpu(cpu))
pr_warn("WARNING: nohz_full cpu %d receives hypervisor interrupts!\n",
cpu);
}
return 0;
}
arch_initcall(check_nohz_full_cpus);
#endif
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif
void __init setup_arch(char **cmdline_p)
{
int len;
#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
len = hv_get_command_line((HV_VirtAddr) boot_command_line,
COMMAND_LINE_SIZE);
if (boot_command_line[0])
pr_warn("WARNING: ignoring dynamic command line \"%s\"\n",
boot_command_line);
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
char *hv_cmdline;
#if defined(CONFIG_CMDLINE_BOOL)
if (builtin_cmdline[0]) {
int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
COMMAND_LINE_SIZE);
if (builtin_len < COMMAND_LINE_SIZE-1)
boot_command_line[builtin_len++] = ' ';
hv_cmdline = &boot_command_line[builtin_len];
len = COMMAND_LINE_SIZE - builtin_len;
} else
#endif
{
hv_cmdline = boot_command_line;
len = COMMAND_LINE_SIZE;
}
len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
if (len < 0 || len > COMMAND_LINE_SIZE)
early_panic("hv_get_command_line failed: %d\n", len);
#endif
*cmdline_p = boot_command_line;
/* Set disabled_map and setup_max_cpus very early */
parse_early_param();
/* Make sure the kernel is compatible with the hypervisor. */
validate_hv();
validate_va();
setup_cpu_maps();
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Initialize the PCI structures. This is done before memory
* setup so that we know whether or not a pci_reserve region
* is necessary.
*/
if (tile_pci_init() == 0)
pci_reserve_mb = 0;
/* PCI systems reserve a region just below 4GB for mapping iomem. */
pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
pci_reserve_start_pfn = pci_reserve_end_pfn -
(pci_reserve_mb << (20 - PAGE_SHIFT));
#endif
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
setup_memory();
store_permanent_mappings();
setup_bootmem_allocator();
/*
* NOTE: before this point _nobody_ is allowed to allocate
* any memory using the bootmem allocator.
*/
#ifdef CONFIG_SWIOTLB
swiotlb_init(0);
#endif
paging_init();
setup_numa_mapping();
zone_sizes_init();
set_page_homes();
setup_cpu(1);
setup_clock();
load_hv_initrd();
}
/*
* Set up per-cpu memory.
*/
unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init;
EXPORT_SYMBOL(__per_cpu_offset);
static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
/*
* As the percpu code allocates pages, we return the pages from the
* end of the node for the specified cpu.
*/
static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
{
int nid = cpu_to_node(cpu);
unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
BUG_ON(size % PAGE_SIZE != 0);
pfn_offset[nid] += size / PAGE_SIZE;
BUG_ON(node_percpu[nid] < size);
node_percpu[nid] -= size;
if (percpu_pfn[cpu] == 0)
percpu_pfn[cpu] = pfn;
return pfn_to_kaddr(pfn);
}
/*
* Pages reserved for percpu memory are not freeable, and in any case we are
* on a short path to panic() in setup_per_cpu_area() at this point anyway.
*/
static void __init pcpu_fc_free(void *ptr, size_t size)
{
}
/*
* Set up vmalloc page tables using bootmem for the percpu code.
*/
static void __init pcpu_fc_populate_pte(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
BUG_ON(pgd_addr_invalid(addr));
if (addr < VMALLOC_START || addr >= VMALLOC_END)
panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
addr, VMALLOC_START, VMALLOC_END);
pgd = swapper_pg_dir + pgd_index(addr);
pud = pud_offset(pgd, addr);
BUG_ON(!pud_present(*pud));
pmd = pmd_offset(pud, addr);
if (pmd_present(*pmd)) {
BUG_ON(pmd_huge_page(*pmd));
} else {
pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
HV_PAGE_TABLE_ALIGN, 0);
pmd_populate_kernel(&init_mm, pmd, pte);
}
}
void __init setup_per_cpu_areas(void)
{
struct page *pg;
unsigned long delta, pfn, lowmem_va;
unsigned long size = percpu_size();
char *ptr;
int rc, cpu, i;
rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
pcpu_fc_free, pcpu_fc_populate_pte);
if (rc < 0)
panic("Cannot initialize percpu area (err=%d)", rc);
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
/* finv the copy out of cache so we can change homecache */
ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
__finv_buffer(ptr, size);
pfn = percpu_pfn[cpu];
/* Rewrite the page tables to cache on that cpu */
pg = pfn_to_page(pfn);
for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
/* Update the vmalloc mapping and page home. */
unsigned long addr = (unsigned long)ptr + i;
pte_t *ptep = virt_to_kpte(addr);
pte_t pte = *ptep;
BUG_ON(pfn != pte_pfn(pte));
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
pte = set_remote_cache_cpu(pte, cpu);
set_pte_at(&init_mm, addr, ptep, pte);
/* Update the lowmem mapping for consistency. */
lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
ptep = virt_to_kpte(lowmem_va);
if (pte_huge(*ptep)) {
printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
lowmem_va);
shatter_pmd((pmd_t *)ptep);
ptep = virt_to_kpte(lowmem_va);
BUG_ON(pte_huge(*ptep));
}
BUG_ON(pfn != pte_pfn(*ptep));
set_pte_at(&init_mm, lowmem_va, ptep, pte);
}
}
/* Set our thread pointer appropriately. */
set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
/* Make sure the finv's have completed. */
mb_incoherent();
/* Flush the TLB so we reference it properly from here on out. */
local_flush_tlb_all();
}
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};
/*
* On Pro, we reserve all resources above 4GB so that PCI won't try to put
* mappings above 4GB.
*/
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static struct resource* __init
insert_non_bus_resource(void)
{
struct resource *res =
kzalloc(sizeof(struct resource), GFP_ATOMIC);
if (!res)
return NULL;
res->name = "Non-Bus Physical Address Space";
res->start = (1ULL << 32);
res->end = -1LL;
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
if (insert_resource(&iomem_resource, res)) {
kfree(res);
return NULL;
}
return res;
}
#endif
static struct resource* __init
insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
{
struct resource *res =
kzalloc(sizeof(struct resource), GFP_ATOMIC);
if (!res)
return NULL;
res->start = start_pfn << PAGE_SHIFT;
res->end = (end_pfn << PAGE_SHIFT) - 1;
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
if (reserved) {
res->name = "Reserved";
} else {
res->name = "System RAM";
res->flags |= IORESOURCE_SYSRAM;
}
if (insert_resource(&iomem_resource, res)) {
kfree(res);
return NULL;
}
return res;
}
/*
* Request address space for all standard resources
*
* If the system includes PCI root complex drivers, we need to create
* a window just below 4GB where PCI BARs can be mapped.
*/
static int __init request_standard_resources(void)
{
int i;
enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
#if defined(CONFIG_PCI) && !defined(__tilegx__)
insert_non_bus_resource();
#endif
for_each_online_node(i) {
u64 start_pfn = node_start_pfn[i];
u64 end_pfn = node_end_pfn[i];
#if defined(CONFIG_PCI) && !defined(__tilegx__)
if (start_pfn <= pci_reserve_start_pfn &&
end_pfn > pci_reserve_start_pfn) {
if (end_pfn > pci_reserve_end_pfn)
insert_ram_resource(pci_reserve_end_pfn,
end_pfn, 0);
end_pfn = pci_reserve_start_pfn;
}
#endif
insert_ram_resource(start_pfn, end_pfn, 0);
}
code_resource.start = __pa(_text - CODE_DELTA);
code_resource.end = __pa(_etext - CODE_DELTA)-1;
data_resource.start = __pa(_sdata);
data_resource.end = __pa(_end)-1;
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &data_resource);
/* Mark any "memmap" regions busy for the resource manager. */
for (i = 0; i < memmap_nr; ++i) {
struct memmap_entry *m = &memmap_map[i];
insert_ram_resource(PFN_DOWN(m->addr),
PFN_UP(m->addr + m->size - 1), 1);
}
#ifdef CONFIG_KEXEC
insert_resource(&iomem_resource, &crashk_res);
#endif
return 0;
}
subsys_initcall(request_standard_resources);