631 lines
16 KiB
C
631 lines
16 KiB
C
/*
|
|
* Kernel Probes (KProbes)
|
|
* arch/mips/kernel/kprobes.c
|
|
*
|
|
* Copyright 2006 Sony Corp.
|
|
* Copyright 2010 Cavium Networks
|
|
*
|
|
* Some portions copied from the powerpc version.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/ptrace.h>
|
|
#include <asm/branch.h>
|
|
#include <asm/break.h>
|
|
|
|
#include "probes-common.h"
|
|
|
|
static const union mips_instruction breakpoint_insn = {
|
|
.b_format = {
|
|
.opcode = spec_op,
|
|
.code = BRK_KPROBE_BP,
|
|
.func = break_op
|
|
}
|
|
};
|
|
|
|
static const union mips_instruction breakpoint2_insn = {
|
|
.b_format = {
|
|
.opcode = spec_op,
|
|
.code = BRK_KPROBE_SSTEPBP,
|
|
.func = break_op
|
|
}
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static int __kprobes insn_has_delayslot(union mips_instruction insn)
|
|
{
|
|
return __insn_has_delay_slot(insn);
|
|
}
|
|
|
|
/*
|
|
* insn_has_ll_or_sc function checks whether instruction is ll or sc
|
|
* one; putting breakpoint on top of atomic ll/sc pair is bad idea;
|
|
* so we need to prevent it and refuse kprobes insertion for such
|
|
* instructions; cannot do much about breakpoint in the middle of
|
|
* ll/sc pair; it is upto user to avoid those places
|
|
*/
|
|
static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
case ll_op:
|
|
case lld_op:
|
|
case sc_op:
|
|
case scd_op:
|
|
ret = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
union mips_instruction insn;
|
|
union mips_instruction prev_insn;
|
|
int ret = 0;
|
|
|
|
insn = p->addr[0];
|
|
|
|
if (insn_has_ll_or_sc(insn)) {
|
|
pr_notice("Kprobes for ll and sc instructions are not"
|
|
"supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
|
sizeof(mips_instruction)) == 0) &&
|
|
insn_has_delayslot(prev_insn)) {
|
|
pr_notice("Kprobes for branch delayslot are not supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (__insn_is_compact_branch(insn)) {
|
|
pr_notice("Kprobes for compact branches are not supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* insn: must be on special executable page on mips. */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* In the kprobe->ainsn.insn[] array we store the original
|
|
* instruction at index zero and a break trap instruction at
|
|
* index one.
|
|
*
|
|
* On MIPS arch if the instruction at probed address is a
|
|
* branch instruction, we need to execute the instruction at
|
|
* Branch Delayslot (BD) at the time of probe hit. As MIPS also
|
|
* doesn't have single stepping support, the BD instruction can
|
|
* not be executed in-line and it would be executed on SSOL slot
|
|
* using a normal breakpoint instruction in the next slot.
|
|
* So, read the instruction and save it for later execution.
|
|
*/
|
|
if (insn_has_delayslot(insn))
|
|
memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
|
|
else
|
|
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.insn[1] = breakpoint2_insn;
|
|
p->opcode = *p->addr;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = breakpoint_insn;
|
|
flush_insn_slot(p);
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
flush_insn_slot(p);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
|
|
kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
|
|
kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
|
|
}
|
|
|
|
static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
|
|
kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
|
|
kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
|
|
}
|
|
|
|
static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
|
|
kcb->kprobe_saved_epc = regs->cp0_epc;
|
|
}
|
|
|
|
/**
|
|
* evaluate_branch_instrucion -
|
|
*
|
|
* Evaluate the branch instruction at probed address during probe hit. The
|
|
* result of evaluation would be the updated epc. The insturction in delayslot
|
|
* would actually be single stepped using a normal breakpoint) on SSOL slot.
|
|
*
|
|
* The result is also saved in the kprobe control block for later use,
|
|
* in case we need to execute the delayslot instruction. The latter will be
|
|
* false for NOP instruction in dealyslot and the branch-likely instructions
|
|
* when the branch is taken. And for those cases we set a flag as
|
|
* SKIP_DELAYSLOT in the kprobe control block
|
|
*/
|
|
static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
union mips_instruction insn = p->opcode;
|
|
long epc;
|
|
int ret = 0;
|
|
|
|
epc = regs->cp0_epc;
|
|
if (epc & 3)
|
|
goto unaligned;
|
|
|
|
if (p->ainsn.insn->word == 0)
|
|
kcb->flags |= SKIP_DELAYSLOT;
|
|
else
|
|
kcb->flags &= ~SKIP_DELAYSLOT;
|
|
|
|
ret = __compute_return_epc_for_insn(regs, insn);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == BRANCH_LIKELY_TAKEN)
|
|
kcb->flags |= SKIP_DELAYSLOT;
|
|
|
|
kcb->target_epc = regs->cp0_epc;
|
|
|
|
return 0;
|
|
|
|
unaligned:
|
|
pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
|
|
force_sig(SIGBUS, current);
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
int ret = 0;
|
|
|
|
regs->cp0_status &= ~ST0_IE;
|
|
|
|
/* single step inline if the instruction is a break */
|
|
if (p->opcode.word == breakpoint_insn.word ||
|
|
p->opcode.word == breakpoint2_insn.word)
|
|
regs->cp0_epc = (unsigned long)p->addr;
|
|
else if (insn_has_delayslot(p->opcode)) {
|
|
ret = evaluate_branch_instruction(p, regs, kcb);
|
|
if (ret < 0) {
|
|
pr_notice("Kprobes: Error in evaluating branch\n");
|
|
return;
|
|
}
|
|
}
|
|
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
|
}
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "break 0"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*
|
|
* This function prepares to return from the post-single-step
|
|
* breakpoint trap. In case of branch instructions, the target
|
|
* epc to be restored.
|
|
*/
|
|
static void __kprobes resume_execution(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
if (insn_has_delayslot(p->opcode))
|
|
regs->cp0_epc = kcb->target_epc;
|
|
else {
|
|
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
|
regs->cp0_epc = orig_epc + 4;
|
|
}
|
|
}
|
|
|
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
int ret = 0;
|
|
kprobe_opcode_t *addr;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
addr = (kprobe_opcode_t *) regs->cp0_epc;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
/* Check we're not actually recursing */
|
|
if (kprobe_running()) {
|
|
p = get_kprobe(addr);
|
|
if (p) {
|
|
if (kcb->kprobe_status == KPROBE_HIT_SS &&
|
|
p->ainsn.insn->word == breakpoint_insn.word) {
|
|
regs->cp0_status &= ~ST0_IE;
|
|
regs->cp0_status |= kcb->kprobe_saved_SR;
|
|
goto no_kprobe;
|
|
}
|
|
/*
|
|
* We have reentered the kprobe_handler(), since
|
|
* another probe was hit while within the handler.
|
|
* We here save the original kprobes variables and
|
|
* just single step on the instruction of the new probe
|
|
* without calling any user handlers.
|
|
*/
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kprobes_inc_nmissed_count(p);
|
|
prepare_singlestep(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
|
resume_execution(p, regs, kcb);
|
|
restore_previous_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
}
|
|
return 1;
|
|
} else {
|
|
if (addr->word != breakpoint_insn.word) {
|
|
/*
|
|
* The breakpoint instruction was removed by
|
|
* another cpu right after we hit, no further
|
|
* handling of this interrupt is appropriate
|
|
*/
|
|
ret = 1;
|
|
goto no_kprobe;
|
|
}
|
|
p = __this_cpu_read(current_kprobe);
|
|
if (p->break_handler && p->break_handler(p, regs))
|
|
goto ss_probe;
|
|
}
|
|
goto no_kprobe;
|
|
}
|
|
|
|
p = get_kprobe(addr);
|
|
if (!p) {
|
|
if (addr->word != breakpoint_insn.word) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
*/
|
|
ret = 1;
|
|
}
|
|
/* Not one of ours: let kernel handle it */
|
|
goto no_kprobe;
|
|
}
|
|
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
/* handler has already set things up, so skip ss setup */
|
|
return 1;
|
|
}
|
|
|
|
ss_probe:
|
|
prepare_singlestep(p, regs, kcb);
|
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (p->post_handler)
|
|
p->post_handler(p, regs, 0);
|
|
resume_execution(p, regs, kcb);
|
|
preempt_enable_no_resched();
|
|
} else
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
|
return 1;
|
|
|
|
no_kprobe:
|
|
preempt_enable_no_resched();
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline int post_kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
resume_execution(cur, regs, kcb);
|
|
|
|
regs->cp0_status |= kcb->kprobe_saved_SR;
|
|
|
|
/* Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
reset_current_kprobe();
|
|
out:
|
|
preempt_enable_no_resched();
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
|
|
if (kcb->kprobe_status & KPROBE_HIT_SS) {
|
|
resume_execution(cur, regs, kcb);
|
|
regs->cp0_status |= kcb->kprobe_old_SR;
|
|
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper routine for handling exceptions.
|
|
*/
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
|
|
struct die_args *args = (struct die_args *)data;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_BREAK:
|
|
if (kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_SSTEPBP:
|
|
if (post_kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
|
|
case DIE_PAGE_FAULT:
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
preempt_disable();
|
|
|
|
if (kprobe_running()
|
|
&& kprobe_fault_handler(args->regs, args->trapnr))
|
|
ret = NOTIFY_STOP;
|
|
preempt_enable();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
kcb->jprobe_saved_regs = *regs;
|
|
kcb->jprobe_saved_sp = regs->regs[29];
|
|
|
|
memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
|
|
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
|
|
|
|
regs->cp0_epc = (unsigned long)(jp->entry);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Defined in the inline asm below. */
|
|
void jprobe_return_end(void);
|
|
|
|
void __kprobes jprobe_return(void)
|
|
{
|
|
/* Assembler quirk necessitates this '0,code' business. */
|
|
asm volatile(
|
|
"break 0,%0\n\t"
|
|
".globl jprobe_return_end\n"
|
|
"jprobe_return_end:\n"
|
|
: : "n" (BRK_KPROBE_BP) : "memory");
|
|
}
|
|
|
|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (regs->cp0_epc >= (unsigned long)jprobe_return &&
|
|
regs->cp0_epc <= (unsigned long)jprobe_return_end) {
|
|
*regs = kcb->jprobe_saved_regs;
|
|
memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
|
|
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
|
|
preempt_enable_no_resched();
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function return probe trampoline:
|
|
* - init_kprobes() establishes a probepoint here
|
|
* - When the probed function returns, this probe causes the
|
|
* handlers to fire
|
|
*/
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
asm volatile(
|
|
".set push\n\t"
|
|
/* Keep the assembler from reordering and placing JR here. */
|
|
".set noreorder\n\t"
|
|
"nop\n\t"
|
|
".global kretprobe_trampoline\n"
|
|
"kretprobe_trampoline:\n\t"
|
|
"nop\n\t"
|
|
".set pop"
|
|
: : : "memory");
|
|
}
|
|
|
|
void kretprobe_trampoline(void);
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->regs[31] = (unsigned long)kretprobe_trampoline;
|
|
}
|
|
|
|
/*
|
|
* Called when the probe at kretprobe trampoline is hit
|
|
*/
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because an multiple functions in the call path
|
|
* have a return probe installed on them, and/or more than one return
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
if (ri->rp && ri->rp->handler)
|
|
ri->rp->handler(ri, regs);
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
instruction_pointer(regs) = orig_ret_address;
|
|
|
|
reset_current_kprobe();
|
|
kretprobe_hash_unlock(current, &flags);
|
|
preempt_enable_no_resched();
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
/*
|
|
* By returning a non-zero value, we are telling
|
|
* kprobe_handler() that we don't want the post_handler
|
|
* to run (and have re-enabled preemption)
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *)kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline_p);
|
|
}
|