/* * MTD SPI driver for ST M25Pxx (and similar) serial flash chips * * Author: Mike Lavender, mike@steroidmicros.com * * Copyright (c) 2005, Intec Automation Inc. * * Some parts are based on lart.c by Abraham Van Der Merwe * * Cleaned up and generalized based on mtd_dataflash.c * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #define MAX_CMD_SIZE 6 struct m25p { struct spi_device *spi; struct spi_nor spi_nor; u8 command[MAX_CMD_SIZE]; }; static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) { struct m25p *flash = nor->priv; struct spi_device *spi = flash->spi; int ret; ret = spi_write_then_read(spi, &code, 1, val, len); if (ret < 0) dev_err(&spi->dev, "error %d reading %x\n", ret, code); return ret; } static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd) { /* opcode is in cmd[0] */ cmd[1] = addr >> (nor->addr_width * 8 - 8); cmd[2] = addr >> (nor->addr_width * 8 - 16); cmd[3] = addr >> (nor->addr_width * 8 - 24); cmd[4] = addr >> (nor->addr_width * 8 - 32); } static int m25p_cmdsz(struct spi_nor *nor) { return 1 + nor->addr_width; } static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct m25p *flash = nor->priv; struct spi_device *spi = flash->spi; flash->command[0] = opcode; if (buf) memcpy(&flash->command[1], buf, len); return spi_write(spi, flash->command, len + 1); } static ssize_t m25p80_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *buf) { struct m25p *flash = nor->priv; struct spi_device *spi = flash->spi; unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; struct spi_transfer t[3] = {}; struct spi_message m; int cmd_sz = m25p_cmdsz(nor); ssize_t ret; /* get transfer protocols. */ inst_nbits = spi_nor_get_protocol_inst_nbits(nor->write_proto); addr_nbits = spi_nor_get_protocol_addr_nbits(nor->write_proto); data_nbits = spi_nor_get_protocol_data_nbits(nor->write_proto); spi_message_init(&m); if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) cmd_sz = 1; flash->command[0] = nor->program_opcode; m25p_addr2cmd(nor, to, flash->command); t[0].tx_buf = flash->command; t[0].tx_nbits = inst_nbits; t[0].len = cmd_sz; spi_message_add_tail(&t[0], &m); /* split the op code and address bytes into two transfers if needed. */ data_idx = 1; if (addr_nbits != inst_nbits) { t[0].len = 1; t[1].tx_buf = &flash->command[1]; t[1].tx_nbits = addr_nbits; t[1].len = cmd_sz - 1; spi_message_add_tail(&t[1], &m); data_idx = 2; } t[data_idx].tx_buf = buf; t[data_idx].tx_nbits = data_nbits; t[data_idx].len = len; spi_message_add_tail(&t[data_idx], &m); ret = spi_sync(spi, &m); if (ret) return ret; ret = m.actual_length - cmd_sz; if (ret < 0) return -EIO; return ret; } /* * Read an address range from the nor chip. The address range * may be any size provided it is within the physical boundaries. */ static ssize_t m25p80_read(struct spi_nor *nor, loff_t from, size_t len, u_char *buf) { struct m25p *flash = nor->priv; struct spi_device *spi = flash->spi; unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; struct spi_transfer t[3]; struct spi_message m; unsigned int dummy = nor->read_dummy; ssize_t ret; int cmd_sz; /* get transfer protocols. */ inst_nbits = spi_nor_get_protocol_inst_nbits(nor->read_proto); addr_nbits = spi_nor_get_protocol_addr_nbits(nor->read_proto); data_nbits = spi_nor_get_protocol_data_nbits(nor->read_proto); /* convert the dummy cycles to the number of bytes */ dummy = (dummy * addr_nbits) / 8; if (spi_flash_read_supported(spi)) { struct spi_flash_read_message msg; memset(&msg, 0, sizeof(msg)); msg.buf = buf; msg.from = from; msg.len = len; msg.read_opcode = nor->read_opcode; msg.addr_width = nor->addr_width; msg.dummy_bytes = dummy; msg.opcode_nbits = inst_nbits; msg.addr_nbits = addr_nbits; msg.data_nbits = data_nbits; ret = spi_flash_read(spi, &msg); if (ret < 0) return ret; return msg.retlen; } spi_message_init(&m); memset(t, 0, (sizeof t)); flash->command[0] = nor->read_opcode; m25p_addr2cmd(nor, from, flash->command); t[0].tx_buf = flash->command; t[0].tx_nbits = inst_nbits; t[0].len = m25p_cmdsz(nor) + dummy; spi_message_add_tail(&t[0], &m); /* * Set all dummy/mode cycle bits to avoid sending some manufacturer * specific pattern, which might make the memory enter its Continuous * Read mode by mistake. * Based on the different mode cycle bit patterns listed and described * in the JESD216B specification, the 0xff value works for all memories * and all manufacturers. */ cmd_sz = t[0].len; memset(flash->command + cmd_sz - dummy, 0xff, dummy); /* split the op code and address bytes into two transfers if needed. */ data_idx = 1; if (addr_nbits != inst_nbits) { t[0].len = 1; t[1].tx_buf = &flash->command[1]; t[1].tx_nbits = addr_nbits; t[1].len = cmd_sz - 1; spi_message_add_tail(&t[1], &m); data_idx = 2; } t[data_idx].rx_buf = buf; t[data_idx].rx_nbits = data_nbits; t[data_idx].len = min3(len, spi_max_transfer_size(spi), spi_max_message_size(spi) - cmd_sz); spi_message_add_tail(&t[data_idx], &m); ret = spi_sync(spi, &m); if (ret) return ret; ret = m.actual_length - cmd_sz; if (ret < 0) return -EIO; return ret; } /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ static int m25p_probe(struct spi_device *spi) { struct flash_platform_data *data; struct m25p *flash; struct spi_nor *nor; struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | SNOR_HWCAPS_PP, }; char *flash_name; int ret; data = dev_get_platdata(&spi->dev); flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; nor = &flash->spi_nor; /* install the hooks */ nor->read = m25p80_read; nor->write = m25p80_write; nor->write_reg = m25p80_write_reg; nor->read_reg = m25p80_read_reg; nor->dev = &spi->dev; spi_nor_set_flash_node(nor, spi->dev.of_node); nor->priv = flash; spi_set_drvdata(spi, flash); flash->spi = spi; if (spi->mode & SPI_RX_QUAD) { hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; if (spi->mode & SPI_TX_QUAD) hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 | SNOR_HWCAPS_PP_1_1_4 | SNOR_HWCAPS_PP_1_4_4); } else if (spi->mode & SPI_RX_DUAL) { hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; if (spi->mode & SPI_TX_DUAL) hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2; } if (data && data->name) nor->mtd.name = data->name; /* For some (historical?) reason many platforms provide two different * names in flash_platform_data: "name" and "type". Quite often name is * set to "m25p80" and then "type" provides a real chip name. * If that's the case, respect "type" and ignore a "name". */ if (data && data->type) flash_name = data->type; else if (!strcmp(spi->modalias, "spi-nor")) flash_name = NULL; /* auto-detect */ else flash_name = spi->modalias; ret = spi_nor_scan(nor, flash_name, &hwcaps); if (ret) return ret; return mtd_device_register(&nor->mtd, data ? data->parts : NULL, data ? data->nr_parts : 0); } static int m25p_remove(struct spi_device *spi) { struct m25p *flash = spi_get_drvdata(spi); /* Clean up MTD stuff. */ return mtd_device_unregister(&flash->spi_nor.mtd); } /* * Do NOT add to this array without reading the following: * * Historically, many flash devices are bound to this driver by their name. But * since most of these flash are compatible to some extent, and their * differences can often be differentiated by the JEDEC read-ID command, we * encourage new users to add support to the spi-nor library, and simply bind * against a generic string here (e.g., "jedec,spi-nor"). * * Many flash names are kept here in this list (as well as in spi-nor.c) to * keep them available as module aliases for existing platforms. */ static const struct spi_device_id m25p_ids[] = { /* * Allow non-DT platform devices to bind to the "spi-nor" modalias, and * hack around the fact that the SPI core does not provide uevent * matching for .of_match_table */ {"spi-nor"}, /* * Entries not used in DTs that should be safe to drop after replacing * them with "spi-nor" in platform data. */ {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, /* * Entries that were used in DTs without "jedec,spi-nor" fallback and * should be kept for backward compatibility. */ {"at25df321a"}, {"at25df641"}, {"at26df081a"}, {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, {"mx25l25635e"},{"mx66l51235l"}, {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, {"s25fl064k"}, {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, {"m25p64"}, {"m25p128"}, {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, {"w25q80bl"}, {"w25q128"}, {"w25q256"}, {"xt25f128b"}, /* Flashes that can't be detected using JEDEC */ {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, /* Everspin MRAMs (non-JEDEC) */ { "mr25h128" }, /* 128 Kib, 40 MHz */ { "mr25h256" }, /* 256 Kib, 40 MHz */ { "mr25h10" }, /* 1 Mib, 40 MHz */ { "mr25h40" }, /* 4 Mib, 40 MHz */ { }, }; MODULE_DEVICE_TABLE(spi, m25p_ids); static const struct of_device_id m25p_of_table[] = { /* * Generic compatibility for SPI NOR that can be identified by the * JEDEC READ ID opcode (0x9F). Use this, if possible. */ { .compatible = "jedec,spi-nor" }, {} }; MODULE_DEVICE_TABLE(of, m25p_of_table); static struct spi_driver m25p80_driver = { .driver = { .name = "m25p80", .of_match_table = m25p_of_table, }, .id_table = m25p_ids, .probe = m25p_probe, .remove = m25p_remove, /* REVISIT: many of these chips have deep power-down modes, which * should clearly be entered on suspend() to minimize power use. * And also when they're otherwise idle... */ }; module_spi_driver(m25p80_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");