/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_dbgmgr.h" static long kfd_ioctl(struct file *, unsigned int, unsigned long); static int kfd_open(struct inode *, struct file *); static int kfd_mmap(struct file *, struct vm_area_struct *); static const char kfd_dev_name[] = "kfd"; static const struct file_operations kfd_fops = { .owner = THIS_MODULE, .unlocked_ioctl = kfd_ioctl, .compat_ioctl = kfd_ioctl, .open = kfd_open, .mmap = kfd_mmap, }; static int kfd_char_dev_major = -1; static struct class *kfd_class; struct device *kfd_device; int kfd_chardev_init(void) { int err = 0; kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); err = kfd_char_dev_major; if (err < 0) goto err_register_chrdev; kfd_class = class_create(THIS_MODULE, kfd_dev_name); err = PTR_ERR(kfd_class); if (IS_ERR(kfd_class)) goto err_class_create; kfd_device = device_create(kfd_class, NULL, MKDEV(kfd_char_dev_major, 0), NULL, kfd_dev_name); err = PTR_ERR(kfd_device); if (IS_ERR(kfd_device)) goto err_device_create; return 0; err_device_create: class_destroy(kfd_class); err_class_create: unregister_chrdev(kfd_char_dev_major, kfd_dev_name); err_register_chrdev: return err; } void kfd_chardev_exit(void) { device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); class_destroy(kfd_class); unregister_chrdev(kfd_char_dev_major, kfd_dev_name); } struct device *kfd_chardev(void) { return kfd_device; } static int kfd_open(struct inode *inode, struct file *filep) { struct kfd_process *process; bool is_32bit_user_mode; if (iminor(inode) != 0) return -ENODEV; is_32bit_user_mode = in_compat_syscall(); if (is_32bit_user_mode) { dev_warn(kfd_device, "Process %d (32-bit) failed to open /dev/kfd\n" "32-bit processes are not supported by amdkfd\n", current->pid); return -EPERM; } process = kfd_create_process(current); if (IS_ERR(process)) return PTR_ERR(process); dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", process->pasid, process->is_32bit_user_mode); return 0; } static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_version_args *args = data; args->major_version = KFD_IOCTL_MAJOR_VERSION; args->minor_version = KFD_IOCTL_MINOR_VERSION; return 0; } static int set_queue_properties_from_user(struct queue_properties *q_properties, struct kfd_ioctl_create_queue_args *args) { if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok(VERIFY_WRITE, (const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } if (!access_ok(VERIFY_WRITE, (const void __user *) args->read_pointer_address, sizeof(uint32_t))) { pr_err("Can't access read pointer\n"); return -EFAULT; } if (!access_ok(VERIFY_WRITE, (const void __user *) args->write_pointer_address, sizeof(uint32_t))) { pr_err("Can't access write pointer\n"); return -EFAULT; } if (args->eop_buffer_address && !access_ok(VERIFY_WRITE, (const void __user *) args->eop_buffer_address, sizeof(uint32_t))) { pr_debug("Can't access eop buffer"); return -EFAULT; } if (args->ctx_save_restore_address && !access_ok(VERIFY_WRITE, (const void __user *) args->ctx_save_restore_address, sizeof(uint32_t))) { pr_debug("Can't access ctx save restore buffer"); return -EFAULT; } q_properties->is_interop = false; q_properties->queue_percent = args->queue_percentage; q_properties->priority = args->queue_priority; q_properties->queue_address = args->ring_base_address; q_properties->queue_size = args->ring_size; q_properties->read_ptr = (uint32_t *) args->read_pointer_address; q_properties->write_ptr = (uint32_t *) args->write_pointer_address; q_properties->eop_ring_buffer_address = args->eop_buffer_address; q_properties->eop_ring_buffer_size = args->eop_buffer_size; q_properties->ctx_save_restore_area_address = args->ctx_save_restore_address; q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->type = KFD_QUEUE_TYPE_COMPUTE; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) q_properties->type = KFD_QUEUE_TYPE_SDMA; else return -ENOTSUPP; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->format = KFD_QUEUE_FORMAT_AQL; else q_properties->format = KFD_QUEUE_FORMAT_PM4; pr_debug("Queue Percentage: %d, %d\n", q_properties->queue_percent, args->queue_percentage); pr_debug("Queue Priority: %d, %d\n", q_properties->priority, args->queue_priority); pr_debug("Queue Address: 0x%llX, 0x%llX\n", q_properties->queue_address, args->ring_base_address); pr_debug("Queue Size: 0x%llX, %u\n", q_properties->queue_size, args->ring_size); pr_debug("Queue r/w Pointers: %p, %p\n", q_properties->read_ptr, q_properties->write_ptr); pr_debug("Queue Format: %d\n", q_properties->format); pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); pr_debug("Queue CTX save area: 0x%llX\n", q_properties->ctx_save_restore_area_address); return 0; } static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_create_queue_args *args = data; struct kfd_dev *dev; int err = 0; unsigned int queue_id; struct kfd_process_device *pdd; struct queue_properties q_properties; memset(&q_properties, 0, sizeof(struct queue_properties)); pr_debug("Creating queue ioctl\n"); err = set_queue_properties_from_user(&q_properties, args); if (err) return err; pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); dev = kfd_device_by_id(args->gpu_id); if (!dev) { pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); return -EINVAL; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto err_bind_process; } pr_debug("Creating queue for PASID %d on gpu 0x%x\n", p->pasid, dev->id); err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id); if (err != 0) goto err_create_queue; args->queue_id = queue_id; /* Return gpu_id as doorbell offset for mmap usage */ args->doorbell_offset = (KFD_MMAP_DOORBELL_MASK | args->gpu_id); args->doorbell_offset <<= PAGE_SHIFT; mutex_unlock(&p->mutex); pr_debug("Queue id %d was created successfully\n", args->queue_id); pr_debug("Ring buffer address == 0x%016llX\n", args->ring_base_address); pr_debug("Read ptr address == 0x%016llX\n", args->read_pointer_address); pr_debug("Write ptr address == 0x%016llX\n", args->write_pointer_address); return 0; err_create_queue: err_bind_process: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_destroy_queue_args *args = data; pr_debug("Destroying queue id %d for pasid %d\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_destroy_queue(&p->pqm, args->queue_id); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_update_queue_args *args = data; struct queue_properties properties; if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok(VERIFY_WRITE, (const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } properties.queue_address = args->ring_base_address; properties.queue_size = args->ring_size; properties.queue_percent = args->queue_percentage; properties.priority = args->queue_priority; pr_debug("Updating queue id %d for pasid %d\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_update_queue(&p->pqm, args->queue_id, &properties); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_set_memory_policy(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_memory_policy_args *args = data; struct kfd_dev *dev; int err = 0; struct kfd_process_device *pdd; enum cache_policy default_policy, alternate_policy; if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto out; } default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; alternate_policy = (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm, &pdd->qpd, default_policy, alternate_policy, (void __user *)args->alternate_aperture_base, args->alternate_aperture_size)) err = -EINVAL; out: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_dbg_register(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_register_args *args = data; struct kfd_dev *dev; struct kfd_dbgmgr *dbgmgr_ptr; struct kfd_process_device *pdd; bool create_ok; long status = 0; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_register not supported on CZ\n"); return -EINVAL; } mutex_lock(&p->mutex); mutex_lock(kfd_get_dbgmgr_mutex()); /* * make sure that we have pdd, if this the first queue created for * this process */ pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { status = PTR_ERR(pdd); goto out; } if (!dev->dbgmgr) { /* In case of a legal call, we have no dbgmgr yet */ create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev); if (create_ok) { status = kfd_dbgmgr_register(dbgmgr_ptr, p); if (status != 0) kfd_dbgmgr_destroy(dbgmgr_ptr); else dev->dbgmgr = dbgmgr_ptr; } } else { pr_debug("debugger already registered\n"); status = -EINVAL; } out: mutex_unlock(kfd_get_dbgmgr_mutex()); mutex_unlock(&p->mutex); return status; } static int kfd_ioctl_dbg_unregister(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_unregister_args *args = data; struct kfd_dev *dev; long status; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n"); return -EINVAL; } mutex_lock(kfd_get_dbgmgr_mutex()); status = kfd_dbgmgr_unregister(dev->dbgmgr, p); if (!status) { kfd_dbgmgr_destroy(dev->dbgmgr); dev->dbgmgr = NULL; } mutex_unlock(kfd_get_dbgmgr_mutex()); return status; } /* * Parse and generate variable size data structure for address watch. * Total size of the buffer and # watch points is limited in order * to prevent kernel abuse. (no bearing to the much smaller HW limitation * which is enforced by dbgdev module) * please also note that the watch address itself are not "copied from user", * since it be set into the HW in user mode values. * */ static int kfd_ioctl_dbg_address_watch(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_address_watch_args *args = data; struct kfd_dev *dev; struct dbg_address_watch_info aw_info; unsigned char *args_buff; long status; void __user *cmd_from_user; uint64_t watch_mask_value = 0; unsigned int args_idx = 0; memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info)); dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n"); return -EINVAL; } cmd_from_user = (void __user *) args->content_ptr; /* Validate arguments */ if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) || (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) || (cmd_from_user == NULL)) return -EINVAL; /* this is the actual buffer to work with */ args_buff = memdup_user(cmd_from_user, args->buf_size_in_bytes - sizeof(*args)); if (IS_ERR(args_buff)) return PTR_ERR(args_buff); aw_info.process = p; aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx])); args_idx += sizeof(aw_info.num_watch_points); aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx]; args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points; /* * set watch address base pointer to point on the array base * within args_buff */ aw_info.watch_address = (uint64_t *) &args_buff[args_idx]; /* skip over the addresses buffer */ args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points; if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) { status = -EINVAL; goto out; } watch_mask_value = (uint64_t) args_buff[args_idx]; if (watch_mask_value > 0) { /* * There is an array of masks. * set watch mask base pointer to point on the array base * within args_buff */ aw_info.watch_mask = (uint64_t *) &args_buff[args_idx]; /* skip over the masks buffer */ args_idx += sizeof(aw_info.watch_mask) * aw_info.num_watch_points; } else { /* just the NULL mask, set to NULL and skip over it */ aw_info.watch_mask = NULL; args_idx += sizeof(aw_info.watch_mask); } if (args_idx >= args->buf_size_in_bytes - sizeof(args)) { status = -EINVAL; goto out; } /* Currently HSA Event is not supported for DBG */ aw_info.watch_event = NULL; mutex_lock(kfd_get_dbgmgr_mutex()); status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info); mutex_unlock(kfd_get_dbgmgr_mutex()); out: kfree(args_buff); return status; } /* Parse and generate fixed size data structure for wave control */ static int kfd_ioctl_dbg_wave_control(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_wave_control_args *args = data; struct kfd_dev *dev; struct dbg_wave_control_info wac_info; unsigned char *args_buff; uint32_t computed_buff_size; long status; void __user *cmd_from_user; unsigned int args_idx = 0; memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info)); /* we use compact form, independent of the packing attribute value */ computed_buff_size = sizeof(*args) + sizeof(wac_info.mode) + sizeof(wac_info.operand) + sizeof(wac_info.dbgWave_msg.DbgWaveMsg) + sizeof(wac_info.dbgWave_msg.MemoryVA) + sizeof(wac_info.trapId); dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n"); return -EINVAL; } /* input size must match the computed "compact" size */ if (args->buf_size_in_bytes != computed_buff_size) { pr_debug("size mismatch, computed : actual %u : %u\n", args->buf_size_in_bytes, computed_buff_size); return -EINVAL; } cmd_from_user = (void __user *) args->content_ptr; if (cmd_from_user == NULL) return -EINVAL; /* copy the entire buffer from user */ args_buff = memdup_user(cmd_from_user, args->buf_size_in_bytes - sizeof(*args)); if (IS_ERR(args_buff)) return PTR_ERR(args_buff); /* move ptr to the start of the "pay-load" area */ wac_info.process = p; wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.operand); wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.mode); wac_info.trapId = *((uint32_t *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.trapId); wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value = *((uint32_t *)(&args_buff[args_idx])); wac_info.dbgWave_msg.MemoryVA = NULL; mutex_lock(kfd_get_dbgmgr_mutex()); pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n", wac_info.process, wac_info.operand, wac_info.mode, wac_info.trapId, wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value); status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info); pr_debug("Returned status of dbg manager is %ld\n", status); mutex_unlock(kfd_get_dbgmgr_mutex()); kfree(args_buff); return status; } static int kfd_ioctl_get_clock_counters(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_clock_counters_args *args = data; struct kfd_dev *dev; struct timespec64 time; dev = kfd_device_by_id(args->gpu_id); if (dev == NULL) return -EINVAL; /* Reading GPU clock counter from KGD */ args->gpu_clock_counter = dev->kfd2kgd->get_gpu_clock_counter(dev->kgd); /* No access to rdtsc. Using raw monotonic time */ getrawmonotonic64(&time); args->cpu_clock_counter = (uint64_t)timespec64_to_ns(&time); get_monotonic_boottime64(&time); args->system_clock_counter = (uint64_t)timespec64_to_ns(&time); /* Since the counter is in nano-seconds we use 1GHz frequency */ args->system_clock_freq = 1000000000; return 0; } static int kfd_ioctl_get_process_apertures(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_get_process_apertures_args *args = data; struct kfd_process_device_apertures *pAperture; struct kfd_process_device *pdd; dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid); args->num_of_nodes = 0; mutex_lock(&p->mutex); /*if the process-device list isn't empty*/ if (kfd_has_process_device_data(p)) { /* Run over all pdd of the process */ pdd = kfd_get_first_process_device_data(p); do { pAperture = &args->process_apertures[args->num_of_nodes]; pAperture->gpu_id = pdd->dev->id; pAperture->lds_base = pdd->lds_base; pAperture->lds_limit = pdd->lds_limit; pAperture->gpuvm_base = pdd->gpuvm_base; pAperture->gpuvm_limit = pdd->gpuvm_limit; pAperture->scratch_base = pdd->scratch_base; pAperture->scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "node id %u\n", args->num_of_nodes); dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); args->num_of_nodes++; pdd = kfd_get_next_process_device_data(p, pdd); } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS)); } mutex_unlock(&p->mutex); return 0; } static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_create_event_args *args = data; int err; err = kfd_event_create(filp, p, args->event_type, args->auto_reset != 0, args->node_id, &args->event_id, &args->event_trigger_data, &args->event_page_offset, &args->event_slot_index); return err; } static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_destroy_event_args *args = data; return kfd_event_destroy(p, args->event_id); } static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_set_event_args *args = data; return kfd_set_event(p, args->event_id); } static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_reset_event_args *args = data; return kfd_reset_event(p, args->event_id); } static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_wait_events_args *args = data; int err; err = kfd_wait_on_events(p, args->num_events, (void __user *)args->events_ptr, (args->wait_for_all != 0), args->timeout, &args->wait_result); return err; } static int kfd_ioctl_set_scratch_backing_va(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_scratch_backing_va_args *args = data; struct kfd_process_device *pdd; struct kfd_dev *dev; long err; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto bind_process_to_device_fail; } pdd->qpd.sh_hidden_private_base = args->va_addr; mutex_unlock(&p->mutex); if (sched_policy == KFD_SCHED_POLICY_NO_HWS && pdd->qpd.vmid != 0) dev->kfd2kgd->set_scratch_backing_va( dev->kgd, args->va_addr, pdd->qpd.vmid); return 0; bind_process_to_device_fail: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_get_tile_config(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_tile_config_args *args = data; struct kfd_dev *dev; struct tile_config config; int err = 0; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; dev->kfd2kgd->get_tile_config(dev->kgd, &config); args->gb_addr_config = config.gb_addr_config; args->num_banks = config.num_banks; args->num_ranks = config.num_ranks; if (args->num_tile_configs > config.num_tile_configs) args->num_tile_configs = config.num_tile_configs; err = copy_to_user((void __user *)args->tile_config_ptr, config.tile_config_ptr, args->num_tile_configs * sizeof(uint32_t)); if (err) { args->num_tile_configs = 0; return -EFAULT; } if (args->num_macro_tile_configs > config.num_macro_tile_configs) args->num_macro_tile_configs = config.num_macro_tile_configs; err = copy_to_user((void __user *)args->macro_tile_config_ptr, config.macro_tile_config_ptr, args->num_macro_tile_configs * sizeof(uint32_t)); if (err) { args->num_macro_tile_configs = 0; return -EFAULT; } return 0; } #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ .cmd_drv = 0, .name = #ioctl} /** Ioctl table */ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, kfd_ioctl_get_version, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, kfd_ioctl_create_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, kfd_ioctl_destroy_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, kfd_ioctl_set_memory_policy, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, kfd_ioctl_get_clock_counters, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, kfd_ioctl_get_process_apertures, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, kfd_ioctl_update_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, kfd_ioctl_create_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, kfd_ioctl_destroy_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, kfd_ioctl_set_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, kfd_ioctl_reset_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, kfd_ioctl_wait_events, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER, kfd_ioctl_dbg_register, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER, kfd_ioctl_dbg_unregister, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH, kfd_ioctl_dbg_address_watch, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL, kfd_ioctl_dbg_wave_control, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, kfd_ioctl_set_scratch_backing_va, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, kfd_ioctl_get_tile_config, 0) }; #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct kfd_process *process; amdkfd_ioctl_t *func; const struct amdkfd_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); char stack_kdata[128]; char *kdata = NULL; unsigned int usize, asize; int retcode = -EINVAL; if (nr >= AMDKFD_CORE_IOCTL_COUNT) goto err_i1; if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { u32 amdkfd_size; ioctl = &amdkfd_ioctls[nr]; amdkfd_size = _IOC_SIZE(ioctl->cmd); usize = asize = _IOC_SIZE(cmd); if (amdkfd_size > asize) asize = amdkfd_size; cmd = ioctl->cmd; } else goto err_i1; dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg); process = kfd_get_process(current); if (IS_ERR(process)) { dev_dbg(kfd_device, "no process\n"); goto err_i1; } /* Do not trust userspace, use our own definition */ func = ioctl->func; if (unlikely(!func)) { dev_dbg(kfd_device, "no function\n"); retcode = -EINVAL; goto err_i1; } if (cmd & (IOC_IN | IOC_OUT)) { if (asize <= sizeof(stack_kdata)) { kdata = stack_kdata; } else { kdata = kmalloc(asize, GFP_KERNEL); if (!kdata) { retcode = -ENOMEM; goto err_i1; } } if (asize > usize) memset(kdata + usize, 0, asize - usize); } if (cmd & IOC_IN) { if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { retcode = -EFAULT; goto err_i1; } } else if (cmd & IOC_OUT) { memset(kdata, 0, usize); } retcode = func(filep, process, kdata); if (cmd & IOC_OUT) if (copy_to_user((void __user *)arg, kdata, usize) != 0) retcode = -EFAULT; err_i1: if (!ioctl) dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", task_pid_nr(current), cmd, nr); if (kdata != stack_kdata) kfree(kdata); if (retcode) dev_dbg(kfd_device, "ret = %d\n", retcode); return retcode; } static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) { struct kfd_process *process; process = kfd_get_process(current); if (IS_ERR(process)) return PTR_ERR(process); if ((vma->vm_pgoff & KFD_MMAP_DOORBELL_MASK) == KFD_MMAP_DOORBELL_MASK) { vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_DOORBELL_MASK; return kfd_doorbell_mmap(process, vma); } else if ((vma->vm_pgoff & KFD_MMAP_EVENTS_MASK) == KFD_MMAP_EVENTS_MASK) { vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK; return kfd_event_mmap(process, vma); } return -EFAULT; }