/* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "qed.h" #include "qed_cxt.h" #include "qed_dev_api.h" #include "qed_hsi.h" #include "qed_hw.h" #include "qed_int.h" #include "qed_iscsi.h" #include "qed_mcp.h" #include "qed_ooo.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_rdma.h" /*************************************************************************** * Structures & Definitions ***************************************************************************/ #define SPQ_HIGH_PRI_RESERVE_DEFAULT (1) #define SPQ_BLOCK_DELAY_MAX_ITER (10) #define SPQ_BLOCK_DELAY_US (10) #define SPQ_BLOCK_SLEEP_MAX_ITER (1000) #define SPQ_BLOCK_SLEEP_MS (5) /*************************************************************************** * Blocking Imp. (BLOCK/EBLOCK mode) ***************************************************************************/ static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn, void *cookie, union event_ring_data *data, u8 fw_return_code) { struct qed_spq_comp_done *comp_done; comp_done = (struct qed_spq_comp_done *)cookie; comp_done->fw_return_code = fw_return_code; /* Make sure completion done is visible on waiting thread */ smp_store_release(&comp_done->done, 0x1); } static int __qed_spq_block(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent, u8 *p_fw_ret, bool sleep_between_iter) { struct qed_spq_comp_done *comp_done; u32 iter_cnt; comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie; iter_cnt = sleep_between_iter ? SPQ_BLOCK_SLEEP_MAX_ITER : SPQ_BLOCK_DELAY_MAX_ITER; while (iter_cnt--) { /* Validate we receive completion update */ if (READ_ONCE(comp_done->done) == 1) { /* Read updated FW return value */ smp_read_barrier_depends(); if (p_fw_ret) *p_fw_ret = comp_done->fw_return_code; return 0; } if (sleep_between_iter) msleep(SPQ_BLOCK_SLEEP_MS); else udelay(SPQ_BLOCK_DELAY_US); } return -EBUSY; } static int qed_spq_block(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent, u8 *p_fw_ret, bool skip_quick_poll) { struct qed_spq_comp_done *comp_done; struct qed_ptt *p_ptt; int rc; /* A relatively short polling period w/o sleeping, to allow the FW to * complete the ramrod and thus possibly to avoid the following sleeps. */ if (!skip_quick_poll) { rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, false); if (!rc) return 0; } /* Move to polling with a sleeping period between iterations */ rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true); if (!rc) return 0; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) { DP_NOTICE(p_hwfn, "ptt, failed to acquire\n"); return -EAGAIN; } DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n"); rc = qed_mcp_drain(p_hwfn, p_ptt); if (rc) { DP_NOTICE(p_hwfn, "MCP drain failed\n"); goto err; } /* Retry after drain */ rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true); if (!rc) goto out; comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie; if (comp_done->done == 1) if (p_fw_ret) *p_fw_ret = comp_done->fw_return_code; out: qed_ptt_release(p_hwfn, p_ptt); return 0; err: qed_ptt_release(p_hwfn, p_ptt); DP_NOTICE(p_hwfn, "Ramrod is stuck [CID %08x cmd %02x protocol %02x echo %04x]\n", le32_to_cpu(p_ent->elem.hdr.cid), p_ent->elem.hdr.cmd_id, p_ent->elem.hdr.protocol_id, le16_to_cpu(p_ent->elem.hdr.echo)); return -EBUSY; } /*************************************************************************** * SPQ entries inner API ***************************************************************************/ static int qed_spq_fill_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent) { p_ent->flags = 0; switch (p_ent->comp_mode) { case QED_SPQ_MODE_EBLOCK: case QED_SPQ_MODE_BLOCK: p_ent->comp_cb.function = qed_spq_blocking_cb; break; case QED_SPQ_MODE_CB: break; default: DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n", p_ent->comp_mode); return -EINVAL; } DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Ramrod header: [CID 0x%08x CMD 0x%02x protocol 0x%02x] Data pointer: [%08x:%08x] Completion Mode: %s\n", p_ent->elem.hdr.cid, p_ent->elem.hdr.cmd_id, p_ent->elem.hdr.protocol_id, p_ent->elem.data_ptr.hi, p_ent->elem.data_ptr.lo, D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK, QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK", "MODE_CB")); return 0; } /*************************************************************************** * HSI access ***************************************************************************/ static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn, struct qed_spq *p_spq) { struct core_conn_context *p_cxt; struct qed_cxt_info cxt_info; u16 physical_q; int rc; cxt_info.iid = p_spq->cid; rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info); if (rc < 0) { DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n", p_spq->cid); return; } p_cxt = cxt_info.p_cxt; SET_FIELD(p_cxt->xstorm_ag_context.flags10, XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1); SET_FIELD(p_cxt->xstorm_ag_context.flags1, XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1); SET_FIELD(p_cxt->xstorm_ag_context.flags9, XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1); /* QM physical queue */ physical_q = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB); p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(physical_q); p_cxt->xstorm_st_context.spq_base_lo = DMA_LO_LE(p_spq->chain.p_phys_addr); p_cxt->xstorm_st_context.spq_base_hi = DMA_HI_LE(p_spq->chain.p_phys_addr); DMA_REGPAIR_LE(p_cxt->xstorm_st_context.consolid_base_addr, p_hwfn->p_consq->chain.p_phys_addr); } static int qed_spq_hw_post(struct qed_hwfn *p_hwfn, struct qed_spq *p_spq, struct qed_spq_entry *p_ent) { struct qed_chain *p_chain = &p_hwfn->p_spq->chain; u16 echo = qed_chain_get_prod_idx(p_chain); struct slow_path_element *elem; struct core_db_data db; p_ent->elem.hdr.echo = cpu_to_le16(echo); elem = qed_chain_produce(p_chain); if (!elem) { DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n"); return -EINVAL; } *elem = p_ent->elem; /* struct assignment */ /* send a doorbell on the slow hwfn session */ memset(&db, 0, sizeof(db)); SET_FIELD(db.params, CORE_DB_DATA_DEST, DB_DEST_XCM); SET_FIELD(db.params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); SET_FIELD(db.params, CORE_DB_DATA_AGG_VAL_SEL, DQ_XCM_CORE_SPQ_PROD_CMD); db.agg_flags = DQ_XCM_CORE_DQ_CF_CMD; db.spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain)); /* make sure the SPQE is updated before the doorbell */ wmb(); DOORBELL(p_hwfn, qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), *(u32 *)&db); /* make sure doorbell is rang */ wmb(); DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n", qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), p_spq->cid, db.params, db.agg_flags, qed_chain_get_prod_idx(p_chain)); return 0; } /*************************************************************************** * Asynchronous events ***************************************************************************/ static int qed_async_event_completion(struct qed_hwfn *p_hwfn, struct event_ring_entry *p_eqe) { qed_spq_async_comp_cb cb; if (!p_hwfn->p_spq || (p_eqe->protocol_id >= MAX_PROTOCOL_TYPE)) return -EINVAL; cb = p_hwfn->p_spq->async_comp_cb[p_eqe->protocol_id]; if (cb) { return cb(p_hwfn, p_eqe->opcode, p_eqe->echo, &p_eqe->data, p_eqe->fw_return_code); } else { DP_NOTICE(p_hwfn, "Unknown Async completion for protocol: %d\n", p_eqe->protocol_id); return -EINVAL; } } int qed_spq_register_async_cb(struct qed_hwfn *p_hwfn, enum protocol_type protocol_id, qed_spq_async_comp_cb cb) { if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE)) return -EINVAL; p_hwfn->p_spq->async_comp_cb[protocol_id] = cb; return 0; } void qed_spq_unregister_async_cb(struct qed_hwfn *p_hwfn, enum protocol_type protocol_id) { if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE)) return; p_hwfn->p_spq->async_comp_cb[protocol_id] = NULL; } /*************************************************************************** * EQ API ***************************************************************************/ void qed_eq_prod_update(struct qed_hwfn *p_hwfn, u16 prod) { u32 addr = GTT_BAR0_MAP_REG_USDM_RAM + USTORM_EQE_CONS_OFFSET(p_hwfn->rel_pf_id); REG_WR16(p_hwfn, addr, prod); /* keep prod updates ordered */ mmiowb(); } int qed_eq_completion(struct qed_hwfn *p_hwfn, void *cookie) { struct qed_eq *p_eq = cookie; struct qed_chain *p_chain = &p_eq->chain; int rc = 0; /* take a snapshot of the FW consumer */ u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons); DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx); /* Need to guarantee the fw_cons index we use points to a usuable * element (to comply with our chain), so our macros would comply */ if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) == qed_chain_get_usable_per_page(p_chain)) fw_cons_idx += qed_chain_get_unusable_per_page(p_chain); /* Complete current segment of eq entries */ while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) { struct event_ring_entry *p_eqe = qed_chain_consume(p_chain); if (!p_eqe) { rc = -EINVAL; break; } DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "op %x prot %x res0 %x echo %x fwret %x flags %x\n", p_eqe->opcode, p_eqe->protocol_id, p_eqe->reserved0, le16_to_cpu(p_eqe->echo), p_eqe->fw_return_code, p_eqe->flags); if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) { if (qed_async_event_completion(p_hwfn, p_eqe)) rc = -EINVAL; } else if (qed_spq_completion(p_hwfn, p_eqe->echo, p_eqe->fw_return_code, &p_eqe->data)) { rc = -EINVAL; } qed_chain_recycle_consumed(p_chain); } qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain)); return rc; } int qed_eq_alloc(struct qed_hwfn *p_hwfn, u16 num_elem) { struct qed_eq *p_eq; /* Allocate EQ struct */ p_eq = kzalloc(sizeof(*p_eq), GFP_KERNEL); if (!p_eq) return -ENOMEM; /* Allocate and initialize EQ chain*/ if (qed_chain_alloc(p_hwfn->cdev, QED_CHAIN_USE_TO_PRODUCE, QED_CHAIN_MODE_PBL, QED_CHAIN_CNT_TYPE_U16, num_elem, sizeof(union event_ring_element), &p_eq->chain, NULL)) goto eq_allocate_fail; /* register EQ completion on the SP SB */ qed_int_register_cb(p_hwfn, qed_eq_completion, p_eq, &p_eq->eq_sb_index, &p_eq->p_fw_cons); p_hwfn->p_eq = p_eq; return 0; eq_allocate_fail: kfree(p_eq); return -ENOMEM; } void qed_eq_setup(struct qed_hwfn *p_hwfn) { qed_chain_reset(&p_hwfn->p_eq->chain); } void qed_eq_free(struct qed_hwfn *p_hwfn) { if (!p_hwfn->p_eq) return; qed_chain_free(p_hwfn->cdev, &p_hwfn->p_eq->chain); kfree(p_hwfn->p_eq); p_hwfn->p_eq = NULL; } /*************************************************************************** * CQE API - manipulate EQ functionality ***************************************************************************/ static int qed_cqe_completion(struct qed_hwfn *p_hwfn, struct eth_slow_path_rx_cqe *cqe, enum protocol_type protocol) { if (IS_VF(p_hwfn->cdev)) return 0; /* @@@tmp - it's possible we'll eventually want to handle some * actual commands that can arrive here, but for now this is only * used to complete the ramrod using the echo value on the cqe */ return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL); } int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn, struct eth_slow_path_rx_cqe *cqe) { int rc; rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH); if (rc) DP_NOTICE(p_hwfn, "Failed to handle RXQ CQE [cmd 0x%02x]\n", cqe->ramrod_cmd_id); return rc; } /*************************************************************************** * Slow hwfn Queue (spq) ***************************************************************************/ void qed_spq_setup(struct qed_hwfn *p_hwfn) { struct qed_spq *p_spq = p_hwfn->p_spq; struct qed_spq_entry *p_virt = NULL; dma_addr_t p_phys = 0; u32 i, capacity; INIT_LIST_HEAD(&p_spq->pending); INIT_LIST_HEAD(&p_spq->completion_pending); INIT_LIST_HEAD(&p_spq->free_pool); INIT_LIST_HEAD(&p_spq->unlimited_pending); spin_lock_init(&p_spq->lock); /* SPQ empty pool */ p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod); p_virt = p_spq->p_virt; capacity = qed_chain_get_capacity(&p_spq->chain); for (i = 0; i < capacity; i++) { DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys); list_add_tail(&p_virt->list, &p_spq->free_pool); p_virt++; p_phys += sizeof(struct qed_spq_entry); } /* Statistics */ p_spq->normal_count = 0; p_spq->comp_count = 0; p_spq->comp_sent_count = 0; p_spq->unlimited_pending_count = 0; bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE); p_spq->comp_bitmap_idx = 0; /* SPQ cid, cannot fail */ qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid); qed_spq_hw_initialize(p_hwfn, p_spq); /* reset the chain itself */ qed_chain_reset(&p_spq->chain); } int qed_spq_alloc(struct qed_hwfn *p_hwfn) { struct qed_spq_entry *p_virt = NULL; struct qed_spq *p_spq = NULL; dma_addr_t p_phys = 0; u32 capacity; /* SPQ struct */ p_spq = kzalloc(sizeof(struct qed_spq), GFP_KERNEL); if (!p_spq) return -ENOMEM; /* SPQ ring */ if (qed_chain_alloc(p_hwfn->cdev, QED_CHAIN_USE_TO_PRODUCE, QED_CHAIN_MODE_SINGLE, QED_CHAIN_CNT_TYPE_U16, 0, /* N/A when the mode is SINGLE */ sizeof(struct slow_path_element), &p_spq->chain, NULL)) goto spq_allocate_fail; /* allocate and fill the SPQ elements (incl. ramrod data list) */ capacity = qed_chain_get_capacity(&p_spq->chain); p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, capacity * sizeof(struct qed_spq_entry), &p_phys, GFP_KERNEL); if (!p_virt) goto spq_allocate_fail; p_spq->p_virt = p_virt; p_spq->p_phys = p_phys; p_hwfn->p_spq = p_spq; return 0; spq_allocate_fail: qed_chain_free(p_hwfn->cdev, &p_spq->chain); kfree(p_spq); return -ENOMEM; } void qed_spq_free(struct qed_hwfn *p_hwfn) { struct qed_spq *p_spq = p_hwfn->p_spq; u32 capacity; if (!p_spq) return; if (p_spq->p_virt) { capacity = qed_chain_get_capacity(&p_spq->chain); dma_free_coherent(&p_hwfn->cdev->pdev->dev, capacity * sizeof(struct qed_spq_entry), p_spq->p_virt, p_spq->p_phys); } qed_chain_free(p_hwfn->cdev, &p_spq->chain); kfree(p_spq); p_hwfn->p_spq = NULL; } int qed_spq_get_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry **pp_ent) { struct qed_spq *p_spq = p_hwfn->p_spq; struct qed_spq_entry *p_ent = NULL; int rc = 0; spin_lock_bh(&p_spq->lock); if (list_empty(&p_spq->free_pool)) { p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC); if (!p_ent) { DP_NOTICE(p_hwfn, "Failed to allocate an SPQ entry for a pending ramrod\n"); rc = -ENOMEM; goto out_unlock; } p_ent->queue = &p_spq->unlimited_pending; } else { p_ent = list_first_entry(&p_spq->free_pool, struct qed_spq_entry, list); list_del(&p_ent->list); p_ent->queue = &p_spq->pending; } *pp_ent = p_ent; out_unlock: spin_unlock_bh(&p_spq->lock); return rc; } /* Locked variant; Should be called while the SPQ lock is taken */ static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent) { list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool); } void qed_spq_return_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent) { spin_lock_bh(&p_hwfn->p_spq->lock); __qed_spq_return_entry(p_hwfn, p_ent); spin_unlock_bh(&p_hwfn->p_spq->lock); } /** * @brief qed_spq_add_entry - adds a new entry to the pending * list. Should be used while lock is being held. * * Addes an entry to the pending list is there is room (en empty * element is available in the free_pool), or else places the * entry in the unlimited_pending pool. * * @param p_hwfn * @param p_ent * @param priority * * @return int */ static int qed_spq_add_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent, enum spq_priority priority) { struct qed_spq *p_spq = p_hwfn->p_spq; if (p_ent->queue == &p_spq->unlimited_pending) { if (list_empty(&p_spq->free_pool)) { list_add_tail(&p_ent->list, &p_spq->unlimited_pending); p_spq->unlimited_pending_count++; return 0; } else { struct qed_spq_entry *p_en2; p_en2 = list_first_entry(&p_spq->free_pool, struct qed_spq_entry, list); list_del(&p_en2->list); /* Copy the ring element physical pointer to the new * entry, since we are about to override the entire ring * entry and don't want to lose the pointer. */ p_ent->elem.data_ptr = p_en2->elem.data_ptr; *p_en2 = *p_ent; /* EBLOCK responsible to free the allocated p_ent */ if (p_ent->comp_mode != QED_SPQ_MODE_EBLOCK) kfree(p_ent); p_ent = p_en2; } } /* entry is to be placed in 'pending' queue */ switch (priority) { case QED_SPQ_PRIORITY_NORMAL: list_add_tail(&p_ent->list, &p_spq->pending); p_spq->normal_count++; break; case QED_SPQ_PRIORITY_HIGH: list_add(&p_ent->list, &p_spq->pending); p_spq->high_count++; break; default: return -EINVAL; } return 0; } /*************************************************************************** * Accessor ***************************************************************************/ u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn) { if (!p_hwfn->p_spq) return 0xffffffff; /* illegal */ return p_hwfn->p_spq->cid; } /*************************************************************************** * Posting new Ramrods ***************************************************************************/ static int qed_spq_post_list(struct qed_hwfn *p_hwfn, struct list_head *head, u32 keep_reserve) { struct qed_spq *p_spq = p_hwfn->p_spq; int rc; while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve && !list_empty(head)) { struct qed_spq_entry *p_ent = list_first_entry(head, struct qed_spq_entry, list); list_del(&p_ent->list); list_add_tail(&p_ent->list, &p_spq->completion_pending); p_spq->comp_sent_count++; rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent); if (rc) { list_del(&p_ent->list); __qed_spq_return_entry(p_hwfn, p_ent); return rc; } } return 0; } static int qed_spq_pend_post(struct qed_hwfn *p_hwfn) { struct qed_spq *p_spq = p_hwfn->p_spq; struct qed_spq_entry *p_ent = NULL; while (!list_empty(&p_spq->free_pool)) { if (list_empty(&p_spq->unlimited_pending)) break; p_ent = list_first_entry(&p_spq->unlimited_pending, struct qed_spq_entry, list); if (!p_ent) return -EINVAL; list_del(&p_ent->list); qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority); } return qed_spq_post_list(p_hwfn, &p_spq->pending, SPQ_HIGH_PRI_RESERVE_DEFAULT); } int qed_spq_post(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent, u8 *fw_return_code) { int rc = 0; struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL; bool b_ret_ent = true; bool eblock; if (!p_hwfn) return -EINVAL; if (!p_ent) { DP_NOTICE(p_hwfn, "Got a NULL pointer\n"); return -EINVAL; } /* Complete the entry */ rc = qed_spq_fill_entry(p_hwfn, p_ent); spin_lock_bh(&p_spq->lock); /* Check return value after LOCK is taken for cleaner error flow */ if (rc) goto spq_post_fail; /* Check if entry is in block mode before qed_spq_add_entry, * which might kfree p_ent. */ eblock = (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK); /* Add the request to the pending queue */ rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority); if (rc) goto spq_post_fail; rc = qed_spq_pend_post(p_hwfn); if (rc) { /* Since it's possible that pending failed for a different * entry [although unlikely], the failed entry was already * dealt with; No need to return it here. */ b_ret_ent = false; goto spq_post_fail; } spin_unlock_bh(&p_spq->lock); if (eblock) { /* For entries in QED BLOCK mode, the completion code cannot * perform the necessary cleanup - if it did, we couldn't * access p_ent here to see whether it's successful or not. * Thus, after gaining the answer perform the cleanup here. */ rc = qed_spq_block(p_hwfn, p_ent, fw_return_code, p_ent->queue == &p_spq->unlimited_pending); if (p_ent->queue == &p_spq->unlimited_pending) { /* This is an allocated p_ent which does not need to * return to pool. */ kfree(p_ent); return rc; } if (rc) goto spq_post_fail2; /* return to pool */ qed_spq_return_entry(p_hwfn, p_ent); } return rc; spq_post_fail2: spin_lock_bh(&p_spq->lock); list_del(&p_ent->list); qed_chain_return_produced(&p_spq->chain); spq_post_fail: /* return to the free pool */ if (b_ret_ent) __qed_spq_return_entry(p_hwfn, p_ent); spin_unlock_bh(&p_spq->lock); return rc; } int qed_spq_completion(struct qed_hwfn *p_hwfn, __le16 echo, u8 fw_return_code, union event_ring_data *p_data) { struct qed_spq *p_spq; struct qed_spq_entry *p_ent = NULL; struct qed_spq_entry *tmp; struct qed_spq_entry *found = NULL; int rc; if (!p_hwfn) return -EINVAL; p_spq = p_hwfn->p_spq; if (!p_spq) return -EINVAL; spin_lock_bh(&p_spq->lock); list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending, list) { if (p_ent->elem.hdr.echo == echo) { u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE; list_del(&p_ent->list); /* Avoid overriding of SPQ entries when getting * out-of-order completions, by marking the completions * in a bitmap and increasing the chain consumer only * for the first successive completed entries. */ __set_bit(pos, p_spq->p_comp_bitmap); while (test_bit(p_spq->comp_bitmap_idx, p_spq->p_comp_bitmap)) { __clear_bit(p_spq->comp_bitmap_idx, p_spq->p_comp_bitmap); p_spq->comp_bitmap_idx++; qed_chain_return_produced(&p_spq->chain); } p_spq->comp_count++; found = p_ent; break; } /* This is relatively uncommon - depends on scenarios * which have mutliple per-PF sent ramrods. */ DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Got completion for echo %04x - doesn't match echo %04x in completion pending list\n", le16_to_cpu(echo), le16_to_cpu(p_ent->elem.hdr.echo)); } /* Release lock before callback, as callback may post * an additional ramrod. */ spin_unlock_bh(&p_spq->lock); if (!found) { DP_NOTICE(p_hwfn, "Failed to find an entry this EQE [echo %04x] completes\n", le16_to_cpu(echo)); return -EEXIST; } DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Complete EQE [echo %04x]: func %p cookie %p)\n", le16_to_cpu(echo), p_ent->comp_cb.function, p_ent->comp_cb.cookie); if (found->comp_cb.function) found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data, fw_return_code); else DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Got a completion without a callback function\n"); if ((found->comp_mode != QED_SPQ_MODE_EBLOCK) || (found->queue == &p_spq->unlimited_pending)) /* EBLOCK is responsible for returning its own entry into the * free list, unless it originally added the entry into the * unlimited pending list. */ qed_spq_return_entry(p_hwfn, found); /* Attempt to post pending requests */ spin_lock_bh(&p_spq->lock); rc = qed_spq_pend_post(p_hwfn); spin_unlock_bh(&p_spq->lock); return rc; } int qed_consq_alloc(struct qed_hwfn *p_hwfn) { struct qed_consq *p_consq; /* Allocate ConsQ struct */ p_consq = kzalloc(sizeof(*p_consq), GFP_KERNEL); if (!p_consq) return -ENOMEM; /* Allocate and initialize EQ chain*/ if (qed_chain_alloc(p_hwfn->cdev, QED_CHAIN_USE_TO_PRODUCE, QED_CHAIN_MODE_PBL, QED_CHAIN_CNT_TYPE_U16, QED_CHAIN_PAGE_SIZE / 0x80, 0x80, &p_consq->chain, NULL)) goto consq_allocate_fail; p_hwfn->p_consq = p_consq; return 0; consq_allocate_fail: kfree(p_consq); return -ENOMEM; } void qed_consq_setup(struct qed_hwfn *p_hwfn) { qed_chain_reset(&p_hwfn->p_consq->chain); } void qed_consq_free(struct qed_hwfn *p_hwfn) { if (!p_hwfn->p_consq) return; qed_chain_free(p_hwfn->cdev, &p_hwfn->p_consq->chain); kfree(p_hwfn->p_consq); p_hwfn->p_consq = NULL; }