/* * DesignWare High-Definition Multimedia Interface (HDMI) driver * * Copyright (C) 2013-2015 Mentor Graphics Inc. * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. * Copyright (C) 2010, Guennadi Liakhovetski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dw-hdmi.h" #include "dw-hdmi-audio.h" #include "dw-hdmi-cec.h" #include #define DDC_SEGMENT_ADDR 0x30 #define HDMI_EDID_LEN 512 enum hdmi_datamap { RGB444_8B = 0x01, RGB444_10B = 0x03, RGB444_12B = 0x05, RGB444_16B = 0x07, YCbCr444_8B = 0x09, YCbCr444_10B = 0x0B, YCbCr444_12B = 0x0D, YCbCr444_16B = 0x0F, YCbCr422_8B = 0x16, YCbCr422_10B = 0x14, YCbCr422_12B = 0x12, }; static const u16 csc_coeff_default[3][4] = { { 0x2000, 0x0000, 0x0000, 0x0000 }, { 0x0000, 0x2000, 0x0000, 0x0000 }, { 0x0000, 0x0000, 0x2000, 0x0000 } }; static const u16 csc_coeff_rgb_out_eitu601[3][4] = { { 0x2000, 0x6926, 0x74fd, 0x010e }, { 0x2000, 0x2cdd, 0x0000, 0x7e9a }, { 0x2000, 0x0000, 0x38b4, 0x7e3b } }; static const u16 csc_coeff_rgb_out_eitu709[3][4] = { { 0x2000, 0x7106, 0x7a02, 0x00a7 }, { 0x2000, 0x3264, 0x0000, 0x7e6d }, { 0x2000, 0x0000, 0x3b61, 0x7e25 } }; static const u16 csc_coeff_rgb_in_eitu601[3][4] = { { 0x2591, 0x1322, 0x074b, 0x0000 }, { 0x6535, 0x2000, 0x7acc, 0x0200 }, { 0x6acd, 0x7534, 0x2000, 0x0200 } }; static const u16 csc_coeff_rgb_in_eitu709[3][4] = { { 0x2dc5, 0x0d9b, 0x049e, 0x0000 }, { 0x62f0, 0x2000, 0x7d11, 0x0200 }, { 0x6756, 0x78ab, 0x2000, 0x0200 } }; struct hdmi_vmode { bool mdataenablepolarity; unsigned int mpixelclock; unsigned int mpixelrepetitioninput; unsigned int mpixelrepetitionoutput; }; struct hdmi_data_info { unsigned int enc_in_bus_format; unsigned int enc_out_bus_format; unsigned int enc_in_encoding; unsigned int enc_out_encoding; unsigned int pix_repet_factor; unsigned int hdcp_enable; struct hdmi_vmode video_mode; }; struct dw_hdmi_i2c { struct i2c_adapter adap; struct mutex lock; /* used to serialize data transfers */ struct completion cmp; u8 stat; u8 slave_reg; bool is_regaddr; bool is_segment; }; struct dw_hdmi_phy_data { enum dw_hdmi_phy_type type; const char *name; unsigned int gen; bool has_svsret; int (*configure)(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock); }; struct dw_hdmi { struct drm_connector connector; struct drm_bridge bridge; unsigned int version; struct platform_device *audio; struct platform_device *cec; struct device *dev; struct clk *isfr_clk; struct clk *iahb_clk; struct clk *cec_clk; struct dw_hdmi_i2c *i2c; struct hdmi_data_info hdmi_data; const struct dw_hdmi_plat_data *plat_data; int vic; u8 edid[HDMI_EDID_LEN]; bool cable_plugin; struct { const struct dw_hdmi_phy_ops *ops; const char *name; void *data; bool enabled; } phy; struct drm_display_mode previous_mode; struct i2c_adapter *ddc; void __iomem *regs; bool sink_is_hdmi; bool sink_has_audio; struct mutex mutex; /* for state below and previous_mode */ enum drm_connector_force force; /* mutex-protected force state */ bool disabled; /* DRM has disabled our bridge */ bool bridge_is_on; /* indicates the bridge is on */ bool rxsense; /* rxsense state */ u8 phy_mask; /* desired phy int mask settings */ u8 mc_clkdis; /* clock disable register */ spinlock_t audio_lock; struct mutex audio_mutex; unsigned int sample_rate; unsigned int audio_cts; unsigned int audio_n; bool audio_enable; unsigned int reg_shift; struct regmap *regm; void (*enable_audio)(struct dw_hdmi *hdmi); void (*disable_audio)(struct dw_hdmi *hdmi); struct cec_notifier *cec_notifier; }; #define HDMI_IH_PHY_STAT0_RX_SENSE \ (HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \ HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3) #define HDMI_PHY_RX_SENSE \ (HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \ HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3) static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { regmap_write(hdmi->regm, offset << hdmi->reg_shift, val); } static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset) { unsigned int val = 0; regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val); return val; } static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg) { regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data); } static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg, u8 shift, u8 mask) { hdmi_modb(hdmi, data << shift, mask, reg); } static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi) { /* Software reset */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ); /* Set Standard Mode speed (determined to be 100KHz on iMX6) */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV); /* Set done, not acknowledged and arbitration interrupt polarities */ hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT); hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL, HDMI_I2CM_CTLINT); /* Clear DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_I2CM_STAT0); /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); } static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int stat; if (!i2c->is_regaddr) { dev_dbg(hdmi->dev, "set read register address to 0\n"); i2c->slave_reg = 0x00; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); if (i2c->is_segment) hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT, HDMI_I2CM_OPERATION); else hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ, HDMI_I2CM_OPERATION); stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) return -EAGAIN; /* Check for error condition on the bus */ if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR) return -EIO; *buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI); } i2c->is_segment = false; return 0; } static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int stat; if (!i2c->is_regaddr) { /* Use the first write byte as register address */ i2c->slave_reg = buf[0]; length--; buf++; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE, HDMI_I2CM_OPERATION); stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) return -EAGAIN; /* Check for error condition on the bus */ if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR) return -EIO; } return 0; } static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct dw_hdmi *hdmi = i2c_get_adapdata(adap); struct dw_hdmi_i2c *i2c = hdmi->i2c; u8 addr = msgs[0].addr; int i, ret = 0; dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr); for (i = 0; i < num; i++) { if (msgs[i].len == 0) { dev_dbg(hdmi->dev, "unsupported transfer %d/%d, no data\n", i + 1, num); return -EOPNOTSUPP; } } mutex_lock(&i2c->lock); /* Unmute DONE and ERROR interrupts */ hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0); /* Set slave device address taken from the first I2C message */ hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE); /* Set slave device register address on transfer */ i2c->is_regaddr = false; /* Set segment pointer for I2C extended read mode operation */ i2c->is_segment = false; for (i = 0; i < num; i++) { dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) { i2c->is_segment = true; hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR); hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR); } else { if (msgs[i].flags & I2C_M_RD) ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf, msgs[i].len); else ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf, msgs[i].len); } if (ret < 0) break; } if (!ret) ret = num; /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); mutex_unlock(&i2c->lock); return ret; } static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm dw_hdmi_algorithm = { .master_xfer = dw_hdmi_i2c_xfer, .functionality = dw_hdmi_i2c_func, }; static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi) { struct i2c_adapter *adap; struct dw_hdmi_i2c *i2c; int ret; i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return ERR_PTR(-ENOMEM); mutex_init(&i2c->lock); init_completion(&i2c->cmp); adap = &i2c->adap; adap->class = I2C_CLASS_DDC; adap->owner = THIS_MODULE; adap->dev.parent = hdmi->dev; adap->algo = &dw_hdmi_algorithm; strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name)); i2c_set_adapdata(adap, hdmi); ret = i2c_add_adapter(adap); if (ret) { dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name); devm_kfree(hdmi->dev, i2c); return ERR_PTR(ret); } hdmi->i2c = i2c; dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name); return adap; } static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts, unsigned int n) { /* Must be set/cleared first */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); /* nshift factor = 0 */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3); hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) | HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2); hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1); hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3); hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2); hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1); } static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk) { unsigned int n = (128 * freq) / 1000; unsigned int mult = 1; while (freq > 48000) { mult *= 2; freq /= 2; } switch (freq) { case 32000: if (pixel_clk == 25175000) n = 4576; else if (pixel_clk == 27027000) n = 4096; else if (pixel_clk == 74176000 || pixel_clk == 148352000) n = 11648; else n = 4096; n *= mult; break; case 44100: if (pixel_clk == 25175000) n = 7007; else if (pixel_clk == 74176000) n = 17836; else if (pixel_clk == 148352000) n = 8918; else n = 6272; n *= mult; break; case 48000: if (pixel_clk == 25175000) n = 6864; else if (pixel_clk == 27027000) n = 6144; else if (pixel_clk == 74176000) n = 11648; else if (pixel_clk == 148352000) n = 5824; else n = 6144; n *= mult; break; default: break; } return n; } static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned int sample_rate) { unsigned long ftdms = pixel_clk; unsigned int n, cts; u64 tmp; n = hdmi_compute_n(sample_rate, pixel_clk); /* * Compute the CTS value from the N value. Note that CTS and N * can be up to 20 bits in total, so we need 64-bit math. Also * note that our TDMS clock is not fully accurate; it is accurate * to kHz. This can introduce an unnecessary remainder in the * calculation below, so we don't try to warn about that. */ tmp = (u64)ftdms * n; do_div(tmp, 128 * sample_rate); cts = tmp; dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n", __func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000, n, cts); spin_lock_irq(&hdmi->audio_lock); hdmi->audio_n = n; hdmi->audio_cts = cts; hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0); spin_unlock_irq(&hdmi->audio_lock); } static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate) { mutex_lock(&hdmi->audio_mutex); hdmi->sample_rate = rate; hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate); static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable) { if (enable) hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE; else hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); } static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); } static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0); } static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); hdmi_enable_audio_clk(hdmi, true); } static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi) { hdmi_enable_audio_clk(hdmi, false); } void dw_hdmi_audio_enable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = true; if (hdmi->enable_audio) hdmi->enable_audio(hdmi); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable); void dw_hdmi_audio_disable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = false; if (hdmi->disable_audio) hdmi->disable_audio(hdmi); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable); static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_RGB161616_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_YUV16_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYVY12_1X24: return true; default: return false; } } static int hdmi_bus_fmt_color_depth(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: return 8; case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: return 10; case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYVY12_1X24: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: return 12; case MEDIA_BUS_FMT_RGB161616_1X48: case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: return 16; default: return 0; } } /* * this submodule is responsible for the video data synchronization. * for example, for RGB 4:4:4 input, the data map is defined as * pin{47~40} <==> R[7:0] * pin{31~24} <==> G[7:0] * pin{15~8} <==> B[7:0] */ static void hdmi_video_sample(struct dw_hdmi *hdmi) { int color_format = 0; u8 val; switch (hdmi->hdmi_data.enc_in_bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: color_format = 0x01; break; case MEDIA_BUS_FMT_RGB101010_1X30: color_format = 0x03; break; case MEDIA_BUS_FMT_RGB121212_1X36: color_format = 0x05; break; case MEDIA_BUS_FMT_RGB161616_1X48: color_format = 0x07; break; case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: color_format = 0x09; break; case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: color_format = 0x0B; break; case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: color_format = 0x0D; break; case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: color_format = 0x0F; break; case MEDIA_BUS_FMT_UYVY8_1X16: color_format = 0x16; break; case MEDIA_BUS_FMT_UYVY10_1X20: color_format = 0x14; break; case MEDIA_BUS_FMT_UYVY12_1X24: color_format = 0x12; break; default: return; } val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE | ((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) & HDMI_TX_INVID0_VIDEO_MAPPING_MASK); hdmi_writeb(hdmi, val, HDMI_TX_INVID0); /* Enable TX stuffing: When DE is inactive, fix the output data to 0 */ val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE; hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1); } static int is_color_space_conversion(struct dw_hdmi *hdmi) { return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format; } static int is_color_space_decimation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format)) return 1; return 0; } static int is_color_space_interpolation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) return 1; return 0; } static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi) { const u16 (*csc_coeff)[3][4] = &csc_coeff_default; unsigned i; u32 csc_scale = 1; if (is_color_space_conversion(hdmi)) { if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_out_eitu601; else csc_coeff = &csc_coeff_rgb_out_eitu709; } else if (hdmi_bus_fmt_is_rgb( hdmi->hdmi_data.enc_in_bus_format)) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_in_eitu601; else csc_coeff = &csc_coeff_rgb_in_eitu709; csc_scale = 0; } } /* The CSC registers are sequential, alternating MSB then LSB */ for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) { u16 coeff_a = (*csc_coeff)[0][i]; u16 coeff_b = (*csc_coeff)[1][i]; u16 coeff_c = (*csc_coeff)[2][i]; hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2); hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2); hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2); hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2); hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2); hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2); } hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK, HDMI_CSC_SCALE); } static void hdmi_video_csc(struct dw_hdmi *hdmi) { int color_depth = 0; int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE; int decimation = 0; /* YCC422 interpolation to 444 mode */ if (is_color_space_interpolation(hdmi)) interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1; else if (is_color_space_decimation(hdmi)) decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3; switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP; break; case 10: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP; break; case 12: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP; break; case 16: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP; break; default: return; } /* Configure the CSC registers */ hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG); hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, HDMI_CSC_SCALE); dw_hdmi_update_csc_coeffs(hdmi); } /* * HDMI video packetizer is used to packetize the data. * for example, if input is YCC422 mode or repeater is used, * data should be repacked this module can be bypassed. */ static void hdmi_video_packetize(struct dw_hdmi *hdmi) { unsigned int color_depth = 0; unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit; unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP; struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data; u8 val, vp_conf; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = 4; output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; break; case 10: color_depth = 5; break; case 12: color_depth = 6; break; case 16: color_depth = 7; break; default: output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; } } else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 0: case 8: remap_size = HDMI_VP_REMAP_YCC422_16bit; break; case 10: remap_size = HDMI_VP_REMAP_YCC422_20bit; break; case 12: remap_size = HDMI_VP_REMAP_YCC422_24bit; break; default: return; } output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422; } else { return; } /* set the packetizer registers */ val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) & HDMI_VP_PR_CD_COLOR_DEPTH_MASK) | ((hdmi_data->pix_repet_factor << HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) & HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_VP_PR_CD); hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF); /* Data from pixel repeater block */ if (hdmi_data->pix_repet_factor > 1) { vp_conf = HDMI_VP_CONF_PR_EN_ENABLE | HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER; } else { /* data from packetizer block */ vp_conf = HDMI_VP_CONF_PR_EN_DISABLE | HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_PR_EN_MASK | HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF); hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP); if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_ENABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_ENABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) { vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else { return; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE | HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PP_STUFFING_MASK | HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF); hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK, HDMI_VP_CONF); } /* ----------------------------------------------------------------------------- * Synopsys PHY Handling */ static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET, HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0); } static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec) { u32 val; while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) { if (msec-- == 0) return false; udelay(1000); } hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0); return true; } void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data, unsigned char addr) { hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0); hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 8), HDMI_PHY_I2CM_DATAO_1_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 0), HDMI_PHY_I2CM_DATAO_0_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE, HDMI_PHY_I2CM_OPERATION_ADDR); hdmi_phy_wait_i2c_done(hdmi, 1000); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write); static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable) { hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_PDZ_OFFSET, HDMI_PHY_CONF0_PDZ_MASK); } static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_ENTMDS_OFFSET, HDMI_PHY_CONF0_ENTMDS_MASK); } static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SVSRET_OFFSET, HDMI_PHY_CONF0_SVSRET_MASK); } static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET, HDMI_PHY_CONF0_GEN2_PDDQ_MASK); } static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET, HDMI_PHY_CONF0_GEN2_TXPWRON_MASK); } static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDATAENPOL_OFFSET, HDMI_PHY_CONF0_SELDATAENPOL_MASK); } static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDIPIF_OFFSET, HDMI_PHY_CONF0_SELDIPIF_MASK); } static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u16 val; if (phy->gen == 1) { dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_powerdown(hdmi, true); return; } dw_hdmi_phy_gen2_txpwron(hdmi, 0); /* * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went * to low power mode. */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0); if (!(val & HDMI_PHY_TX_PHY_LOCK)) break; usleep_range(1000, 2000); } if (val & HDMI_PHY_TX_PHY_LOCK) dev_warn(hdmi->dev, "PHY failed to power down\n"); else dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i); dw_hdmi_phy_gen2_pddq(hdmi, 1); } static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u8 val; if (phy->gen == 1) { dw_hdmi_phy_enable_powerdown(hdmi, false); /* Toggle TMDS enable. */ dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_tmds(hdmi, 1); return 0; } dw_hdmi_phy_gen2_txpwron(hdmi, 1); dw_hdmi_phy_gen2_pddq(hdmi, 0); /* Wait for PHY PLL lock */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK; if (val) break; usleep_range(1000, 2000); } if (!val) { dev_err(hdmi->dev, "PHY PLL failed to lock\n"); return -ETIMEDOUT; } dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i); return 0; } /* * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available * information the DWC MHL PHY has the same register layout and is thus also * supported by this function. */ static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock) { const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg; const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr; const struct dw_hdmi_phy_config *phy_config = pdata->phy_config; /* PLL/MPLL Cfg - always match on final entry */ for (; mpll_config->mpixelclock != ~0UL; mpll_config++) if (mpixelclock <= mpll_config->mpixelclock) break; for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++) if (mpixelclock <= curr_ctrl->mpixelclock) break; for (; phy_config->mpixelclock != ~0UL; phy_config++) if (mpixelclock <= phy_config->mpixelclock) break; if (mpll_config->mpixelclock == ~0UL || curr_ctrl->mpixelclock == ~0UL || phy_config->mpixelclock == ~0UL) return -EINVAL; dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce, HDMI_3D_TX_PHY_CPCE_CTRL); dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp, HDMI_3D_TX_PHY_GMPCTRL); dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0], HDMI_3D_TX_PHY_CURRCTRL); dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL); dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK, HDMI_3D_TX_PHY_MSM_CTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM); dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr, HDMI_3D_TX_PHY_CKSYMTXCTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr, HDMI_3D_TX_PHY_VLEVCTRL); /* Override and disable clock termination. */ dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE, HDMI_3D_TX_PHY_CKCALCTRL); return 0; } static int hdmi_phy_configure(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock; int ret; dw_hdmi_phy_power_off(hdmi); /* Leave low power consumption mode by asserting SVSRET. */ if (phy->has_svsret) dw_hdmi_phy_enable_svsret(hdmi, 1); /* PHY reset. The reset signal is active high on Gen2 PHYs. */ hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST); hdmi_phy_test_clear(hdmi, 1); hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2, HDMI_PHY_I2CM_SLAVE_ADDR); hdmi_phy_test_clear(hdmi, 0); /* Write to the PHY as configured by the platform */ if (pdata->configure_phy) ret = pdata->configure_phy(hdmi, pdata, mpixelclock); else ret = phy->configure(hdmi, pdata, mpixelclock); if (ret) { dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n", mpixelclock); return ret; } return dw_hdmi_phy_power_on(hdmi); } static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data, struct drm_display_mode *mode) { int i, ret; /* HDMI Phy spec says to do the phy initialization sequence twice */ for (i = 0; i < 2; i++) { dw_hdmi_phy_sel_data_en_pol(hdmi, 1); dw_hdmi_phy_sel_interface_control(hdmi, 0); ret = hdmi_phy_configure(hdmi); if (ret) return ret; } return 0; } static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data) { dw_hdmi_phy_power_off(hdmi); } static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data) { return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ? connector_status_connected : connector_status_disconnected; } static void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data, bool force, bool disabled, bool rxsense) { u8 old_mask = hdmi->phy_mask; if (force || disabled || !rxsense) hdmi->phy_mask |= HDMI_PHY_RX_SENSE; else hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE; if (old_mask != hdmi->phy_mask) hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); } static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data) { /* * Configure the PHY RX SENSE and HPD interrupts polarities and clear * any pending interrupt. */ hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0); hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); /* Enable cable hot plug irq. */ hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); /* Clear and unmute interrupts. */ hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); } static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = { .init = dw_hdmi_phy_init, .disable = dw_hdmi_phy_disable, .read_hpd = dw_hdmi_phy_read_hpd, .update_hpd = dw_hdmi_phy_update_hpd, .setup_hpd = dw_hdmi_phy_setup_hpd, }; /* ----------------------------------------------------------------------------- * HDMI TX Setup */ static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi) { u8 de; if (hdmi->hdmi_data.video_mode.mdataenablepolarity) de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH; else de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW; /* disable rx detect */ hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE, HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0); hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG); hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1); } static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { struct hdmi_avi_infoframe frame; u8 val; /* Initialise info frame from DRM mode */ drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false); if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV444; else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV422; else frame.colorspace = HDMI_COLORSPACE_RGB; /* Set up colorimetry */ switch (hdmi->hdmi_data.enc_out_encoding) { case V4L2_YCBCR_ENC_601: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; case V4L2_YCBCR_ENC_709: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_709; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_709; break; default: /* Carries no data */ frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; } frame.scan_mode = HDMI_SCAN_MODE_NONE; /* * The Designware IP uses a different byte format from standard * AVI info frames, though generally the bits are in the correct * bytes. */ /* * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6, * scan info in bits 4,5 rather than 0,1 and active aspect present in * bit 6 rather than 4. */ val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3); if (frame.active_aspect & 15) val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT; if (frame.top_bar || frame.bottom_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR; if (frame.left_bar || frame.right_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0); /* AVI data byte 2 differences: none */ val = ((frame.colorimetry & 0x3) << 6) | ((frame.picture_aspect & 0x3) << 4) | (frame.active_aspect & 0xf); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1); /* AVI data byte 3 differences: none */ val = ((frame.extended_colorimetry & 0x7) << 4) | ((frame.quantization_range & 0x3) << 2) | (frame.nups & 0x3); if (frame.itc) val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2); /* AVI data byte 4 differences: none */ val = frame.video_code & 0x7f; hdmi_writeb(hdmi, val, HDMI_FC_AVIVID); /* AVI Data Byte 5- set up input and output pixel repetition */ val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) << HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) | ((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput << HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_FC_PRCONF); /* * AVI data byte 5 differences: content type in 0,1 rather than 4,5, * ycc range in bits 2,3 rather than 6,7 */ val = ((frame.ycc_quantization_range & 0x3) << 2) | (frame.content_type & 0x3); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3); /* AVI Data Bytes 6-13 */ hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0); hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1); hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0); hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1); hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0); hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1); hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0); hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1); } static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { struct hdmi_vendor_infoframe frame; u8 buffer[10]; ssize_t err; err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode); if (err < 0) /* * Going into that statement does not means vendor infoframe * fails. It just informed us that vendor infoframe is not * needed for the selected mode. Only 4k or stereoscopic 3D * mode requires vendor infoframe. So just simply return. */ return; err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n", err); return; } hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); /* Set the length of HDMI vendor specific InfoFrame payload */ hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE); /* Set 24bit IEEE Registration Identifier */ hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0); hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1); hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2); /* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */ hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0); hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1); if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2); /* Packet frame interpolation */ hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1); /* Auto packets per frame and line spacing */ hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2); /* Configures the Frame Composer On RDRB mode */ hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); } static void hdmi_av_composer(struct dw_hdmi *hdmi, const struct drm_display_mode *mode) { u8 inv_val; struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode; int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len; unsigned int vdisplay; vmode->mpixelclock = mode->clock * 1000; dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock); /* Set up HDMI_FC_INVIDCONF */ inv_val = (hdmi->hdmi_data.hdcp_enable ? HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE : HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE); inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ? HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ? HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= (vmode->mdataenablepolarity ? HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW); if (hdmi->vic == 39) inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH; else inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH : HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_IN_I_P_INTERLACED : HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE; inv_val |= hdmi->sink_is_hdmi ? HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE : HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE; hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF); vdisplay = mode->vdisplay; vblank = mode->vtotal - mode->vdisplay; v_de_vs = mode->vsync_start - mode->vdisplay; vsync_len = mode->vsync_end - mode->vsync_start; /* * When we're setting an interlaced mode, we need * to adjust the vertical timing to suit. */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vdisplay /= 2; vblank /= 2; v_de_vs /= 2; vsync_len /= 2; } /* Set up horizontal active pixel width */ hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1); hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0); /* Set up vertical active lines */ hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1); hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0); /* Set up horizontal blanking pixel region width */ hblank = mode->htotal - mode->hdisplay; hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1); hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0); /* Set up vertical blanking pixel region width */ hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK); /* Set up HSYNC active edge delay width (in pixel clks) */ h_de_hs = mode->hsync_start - mode->hdisplay; hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1); hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY); /* Set up HSYNC active pulse width (in pixel clks) */ hsync_len = mode->hsync_end - mode->hsync_start; hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1); hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH); } /* HDMI Initialization Step B.4 */ static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi) { /* control period minimum duration */ hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR); hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR); hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC); /* Set to fill TMDS data channels */ hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM); hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM); hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM); /* Enable pixel clock and tmds data path */ hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE | HDMI_MC_CLKDIS_CSCCLK_DISABLE | HDMI_MC_CLKDIS_AUDCLK_DISABLE | HDMI_MC_CLKDIS_PREPCLK_DISABLE | HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); /* Enable csc path */ if (is_color_space_conversion(hdmi)) { hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); } /* Enable color space conversion if needed */ if (is_color_space_conversion(hdmi)) hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH, HDMI_MC_FLOWCTRL); else hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS, HDMI_MC_FLOWCTRL); } /* Workaround to clear the overflow condition */ static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi) { unsigned int count; unsigned int i; u8 val; /* * Under some circumstances the Frame Composer arithmetic unit can miss * an FC register write due to being busy processing the previous one. * The issue can be worked around by issuing a TMDS software reset and * then write one of the FC registers several times. * * The number of iterations matters and depends on the HDMI TX revision * (and possibly on the platform). So far only i.MX6Q (v1.30a) and * i.MX6DL (v1.31a) have been identified as needing the workaround, with * 4 and 1 iterations respectively. */ switch (hdmi->version) { case 0x130a: count = 4; break; case 0x131a: count = 1; break; default: return; } /* TMDS software reset */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF); for (i = 0; i < count; i++) hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF); } static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, 0, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2); } static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK, HDMI_IH_MUTE_FC_STAT2); } static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { int ret; hdmi_disable_overflow_interrupts(hdmi); hdmi->vic = drm_match_cea_mode(mode); if (!hdmi->vic) { dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n"); } else { dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic); } if ((hdmi->vic == 6) || (hdmi->vic == 7) || (hdmi->vic == 21) || (hdmi->vic == 22) || (hdmi->vic == 2) || (hdmi->vic == 3) || (hdmi->vic == 17) || (hdmi->vic == 18)) hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601; else hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709; hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0; hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0; /* TOFIX: Get input format from plat data or fallback to RGB888 */ if (hdmi->plat_data->input_bus_format) hdmi->hdmi_data.enc_in_bus_format = hdmi->plat_data->input_bus_format; else hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24; /* TOFIX: Get input encoding from plat data or fallback to none */ if (hdmi->plat_data->input_bus_encoding) hdmi->hdmi_data.enc_in_encoding = hdmi->plat_data->input_bus_encoding; else hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT; /* TOFIX: Default to RGB888 output format */ hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24; hdmi->hdmi_data.pix_repet_factor = 0; hdmi->hdmi_data.hdcp_enable = 0; hdmi->hdmi_data.video_mode.mdataenablepolarity = true; /* HDMI Initialization Step B.1 */ hdmi_av_composer(hdmi, mode); /* HDMI Initializateion Step B.2 */ ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode); if (ret) return ret; hdmi->phy.enabled = true; /* HDMI Initialization Step B.3 */ dw_hdmi_enable_video_path(hdmi); if (hdmi->sink_has_audio) { dev_dbg(hdmi->dev, "sink has audio support\n"); /* HDMI Initialization Step E - Configure audio */ hdmi_clk_regenerator_update_pixel_clock(hdmi); hdmi_enable_audio_clk(hdmi, true); } /* not for DVI mode */ if (hdmi->sink_is_hdmi) { dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__); /* HDMI Initialization Step F - Configure AVI InfoFrame */ hdmi_config_AVI(hdmi, mode); hdmi_config_vendor_specific_infoframe(hdmi, mode); } else { dev_dbg(hdmi->dev, "%s DVI mode\n", __func__); } hdmi_video_packetize(hdmi); hdmi_video_csc(hdmi); hdmi_video_sample(hdmi); hdmi_tx_hdcp_config(hdmi); dw_hdmi_clear_overflow(hdmi); if (hdmi->cable_plugin && hdmi->sink_is_hdmi) hdmi_enable_overflow_interrupts(hdmi); return 0; } static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL | HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL, HDMI_PHY_I2CM_CTLINT_ADDR); } static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi) { u8 ih_mute; /* * Boot up defaults are: * HDMI_IH_MUTE = 0x03 (disabled) * HDMI_IH_MUTE_* = 0x00 (enabled) * * Disable top level interrupt bits in HDMI block */ ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) | HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT; hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); /* by default mask all interrupts */ hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK); hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT); /* Disable interrupts in the IH_MUTE_* registers */ hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0); /* Enable top level interrupt bits in HDMI block */ ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT); hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); } static void dw_hdmi_poweron(struct dw_hdmi *hdmi) { hdmi->bridge_is_on = true; dw_hdmi_setup(hdmi, &hdmi->previous_mode); } static void dw_hdmi_poweroff(struct dw_hdmi *hdmi) { if (hdmi->phy.enabled) { hdmi->phy.ops->disable(hdmi, hdmi->phy.data); hdmi->phy.enabled = false; } hdmi->bridge_is_on = false; } static void dw_hdmi_update_power(struct dw_hdmi *hdmi) { int force = hdmi->force; if (hdmi->disabled) { force = DRM_FORCE_OFF; } else if (force == DRM_FORCE_UNSPECIFIED) { if (hdmi->rxsense) force = DRM_FORCE_ON; else force = DRM_FORCE_OFF; } if (force == DRM_FORCE_OFF) { if (hdmi->bridge_is_on) dw_hdmi_poweroff(hdmi); } else { if (!hdmi->bridge_is_on) dw_hdmi_poweron(hdmi); } } /* * Adjust the detection of RXSENSE according to whether we have a forced * connection mode enabled, or whether we have been disabled. There is * no point processing RXSENSE interrupts if we have a forced connection * state, or DRM has us disabled. * * We also disable rxsense interrupts when we think we're disconnected * to avoid floating TDMS signals giving false rxsense interrupts. * * Note: we still need to listen for HPD interrupts even when DRM has us * disabled so that we can detect a connect event. */ static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi) { if (hdmi->phy.ops->update_hpd) hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data, hdmi->force, hdmi->disabled, hdmi->rxsense); } static enum drm_connector_status dw_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); mutex_lock(&hdmi->mutex); hdmi->force = DRM_FORCE_UNSPECIFIED; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data); } static int dw_hdmi_connector_get_modes(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); struct edid *edid; int ret = 0; if (!hdmi->ddc) return 0; edid = drm_get_edid(connector, hdmi->ddc); if (edid) { dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n", edid->width_cm, edid->height_cm); hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid); hdmi->sink_has_audio = drm_detect_monitor_audio(edid); drm_mode_connector_update_edid_property(connector, edid); cec_notifier_set_phys_addr_from_edid(hdmi->cec_notifier, edid); ret = drm_add_edid_modes(connector, edid); /* Store the ELD */ drm_edid_to_eld(connector, edid); kfree(edid); } else { dev_dbg(hdmi->dev, "failed to get edid\n"); } return ret; } static void dw_hdmi_connector_force(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); mutex_lock(&hdmi->mutex); hdmi->force = connector->force; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static const struct drm_connector_funcs dw_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = dw_hdmi_connector_detect, .destroy = drm_connector_cleanup, .force = dw_hdmi_connector_force, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = { .get_modes = dw_hdmi_connector_get_modes, .best_encoder = drm_atomic_helper_best_encoder, }; static int dw_hdmi_bridge_attach(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; struct drm_encoder *encoder = bridge->encoder; struct drm_connector *connector = &hdmi->connector; connector->interlace_allowed = 1; connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs); drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_mode_connector_attach_encoder(connector, encoder); return 0; } static enum drm_mode_status dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_mode *mode) { struct dw_hdmi *hdmi = bridge->driver_private; struct drm_connector *connector = &hdmi->connector; enum drm_mode_status mode_status = MODE_OK; /* We don't support double-clocked modes */ if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_BAD; if (hdmi->plat_data->mode_valid) mode_status = hdmi->plat_data->mode_valid(connector, mode); return mode_status; } static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge, struct drm_display_mode *orig_mode, struct drm_display_mode *mode) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); /* Store the display mode for plugin/DKMS poweron events */ memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode)); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_disable(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); hdmi->disabled = true; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_enable(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); hdmi->disabled = false; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = { .attach = dw_hdmi_bridge_attach, .enable = dw_hdmi_bridge_enable, .disable = dw_hdmi_bridge_disable, .mode_set = dw_hdmi_bridge_mode_set, .mode_valid = dw_hdmi_bridge_mode_valid, }; static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi) { struct dw_hdmi_i2c *i2c = hdmi->i2c; unsigned int stat; stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0); if (!stat) return IRQ_NONE; hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0); i2c->stat = stat; complete(&i2c->cmp); return IRQ_HANDLED; } static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat; irqreturn_t ret = IRQ_NONE; if (hdmi->i2c) ret = dw_hdmi_i2c_irq(hdmi); intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); if (intr_stat) { hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); return IRQ_WAKE_THREAD; } return ret; } void __dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense) { mutex_lock(&hdmi->mutex); if (!hdmi->force) { /* * If the RX sense status indicates we're disconnected, * clear the software rxsense status. */ if (!rx_sense) hdmi->rxsense = false; /* * Only set the software rxsense status when both * rxsense and hpd indicates we're connected. * This avoids what seems to be bad behaviour in * at least iMX6S versions of the phy. */ if (hpd) hdmi->rxsense = true; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); } mutex_unlock(&hdmi->mutex); } void dw_hdmi_setup_rx_sense(struct device *dev, bool hpd, bool rx_sense) { struct dw_hdmi *hdmi = dev_get_drvdata(dev); __dw_hdmi_setup_rx_sense(hdmi, hpd, rx_sense); } EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense); static irqreturn_t dw_hdmi_irq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat; intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0); phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0); phy_pol_mask = 0; if (intr_stat & HDMI_IH_PHY_STAT0_HPD) phy_pol_mask |= HDMI_PHY_HPD; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0) phy_pol_mask |= HDMI_PHY_RX_SENSE0; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1) phy_pol_mask |= HDMI_PHY_RX_SENSE1; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2) phy_pol_mask |= HDMI_PHY_RX_SENSE2; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3) phy_pol_mask |= HDMI_PHY_RX_SENSE3; if (phy_pol_mask) hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0); /* * RX sense tells us whether the TDMS transmitters are detecting * load - in other words, there's something listening on the * other end of the link. Use this to decide whether we should * power on the phy as HPD may be toggled by the sink to merely * ask the source to re-read the EDID. */ if (intr_stat & (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) { __dw_hdmi_setup_rx_sense(hdmi, phy_stat & HDMI_PHY_HPD, phy_stat & HDMI_PHY_RX_SENSE); if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0) cec_notifier_set_phys_addr(hdmi->cec_notifier, CEC_PHYS_ADDR_INVALID); } if (intr_stat & HDMI_IH_PHY_STAT0_HPD) { dev_dbg(hdmi->dev, "EVENT=%s\n", phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout"); if (hdmi->bridge.dev) drm_helper_hpd_irq_event(hdmi->bridge.dev); } hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0); hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); return IRQ_HANDLED; } static const struct dw_hdmi_phy_data dw_hdmi_phys[] = { { .type = DW_HDMI_PHY_DWC_HDMI_TX_PHY, .name = "DWC HDMI TX PHY", .gen = 1, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC, .name = "DWC MHL PHY + HEAC PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY, .name = "DWC MHL PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC, .name = "DWC HDMI 3D TX PHY + HEAC PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY, .name = "DWC HDMI 3D TX PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY, .name = "DWC HDMI 2.0 TX PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_VENDOR_PHY, .name = "Vendor PHY", } }; static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi) { unsigned int i; u8 phy_type; phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID); if (phy_type == DW_HDMI_PHY_VENDOR_PHY) { /* Vendor PHYs require support from the glue layer. */ if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) { dev_err(hdmi->dev, "Vendor HDMI PHY not supported by glue layer\n"); return -ENODEV; } hdmi->phy.ops = hdmi->plat_data->phy_ops; hdmi->phy.data = hdmi->plat_data->phy_data; hdmi->phy.name = hdmi->plat_data->phy_name; return 0; } /* Synopsys PHYs are handled internally. */ for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) { if (dw_hdmi_phys[i].type == phy_type) { hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops; hdmi->phy.name = dw_hdmi_phys[i].name; hdmi->phy.data = (void *)&dw_hdmi_phys[i]; if (!dw_hdmi_phys[i].configure && !hdmi->plat_data->configure_phy) { dev_err(hdmi->dev, "%s requires platform support\n", hdmi->phy.name); return -ENODEV; } return 0; } } dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type); return -ENODEV; } static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->mutex); hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->mutex); hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); mutex_unlock(&hdmi->mutex); } static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = { .write = hdmi_writeb, .read = hdmi_readb, .enable = dw_hdmi_cec_enable, .disable = dw_hdmi_cec_disable, }; static const struct regmap_config hdmi_regmap_8bit_config = { .reg_bits = 32, .val_bits = 8, .reg_stride = 1, .max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR, }; static const struct regmap_config hdmi_regmap_32bit_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2, }; static struct dw_hdmi * __dw_hdmi_probe(struct platform_device *pdev, const struct dw_hdmi_plat_data *plat_data) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct platform_device_info pdevinfo; struct device_node *ddc_node; struct dw_hdmi_cec_data cec; struct dw_hdmi *hdmi; struct resource *iores = NULL; int irq; int ret; u32 val = 1; u8 prod_id0; u8 prod_id1; u8 config0; u8 config3; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return ERR_PTR(-ENOMEM); hdmi->plat_data = plat_data; hdmi->dev = dev; hdmi->sample_rate = 48000; hdmi->disabled = true; hdmi->rxsense = true; hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE); hdmi->mc_clkdis = 0x7f; mutex_init(&hdmi->mutex); mutex_init(&hdmi->audio_mutex); spin_lock_init(&hdmi->audio_lock); ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0); if (ddc_node) { hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!hdmi->ddc) { dev_dbg(hdmi->dev, "failed to read ddc node\n"); return ERR_PTR(-EPROBE_DEFER); } } else { dev_dbg(hdmi->dev, "no ddc property found\n"); } if (!plat_data->regm) { const struct regmap_config *reg_config; of_property_read_u32(np, "reg-io-width", &val); switch (val) { case 4: reg_config = &hdmi_regmap_32bit_config; hdmi->reg_shift = 2; break; case 1: reg_config = &hdmi_regmap_8bit_config; break; default: dev_err(dev, "reg-io-width must be 1 or 4\n"); return ERR_PTR(-EINVAL); } iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); hdmi->regs = devm_ioremap_resource(dev, iores); if (IS_ERR(hdmi->regs)) { ret = PTR_ERR(hdmi->regs); goto err_res; } hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config); if (IS_ERR(hdmi->regm)) { dev_err(dev, "Failed to configure regmap\n"); ret = PTR_ERR(hdmi->regm); goto err_res; } } else { hdmi->regm = plat_data->regm; } hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr"); if (IS_ERR(hdmi->isfr_clk)) { ret = PTR_ERR(hdmi->isfr_clk); dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret); goto err_res; } ret = clk_prepare_enable(hdmi->isfr_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret); goto err_res; } hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb"); if (IS_ERR(hdmi->iahb_clk)) { ret = PTR_ERR(hdmi->iahb_clk); dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret); goto err_isfr; } ret = clk_prepare_enable(hdmi->iahb_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret); goto err_isfr; } hdmi->cec_clk = devm_clk_get(hdmi->dev, "cec"); if (PTR_ERR(hdmi->cec_clk) == -ENOENT) { hdmi->cec_clk = NULL; } else if (IS_ERR(hdmi->cec_clk)) { ret = PTR_ERR(hdmi->cec_clk); if (ret != -EPROBE_DEFER) dev_err(hdmi->dev, "Cannot get HDMI cec clock: %d\n", ret); hdmi->cec_clk = NULL; goto err_iahb; } else { ret = clk_prepare_enable(hdmi->cec_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI cec clock: %d\n", ret); goto err_iahb; } } /* Product and revision IDs */ hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8) | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0); prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0); prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1); if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX || (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) { dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n", hdmi->version, prod_id0, prod_id1); ret = -ENODEV; goto err_iahb; } ret = dw_hdmi_detect_phy(hdmi); if (ret < 0) goto err_iahb; dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n", hdmi->version >> 12, hdmi->version & 0xfff, prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without", hdmi->phy.name); initialize_hdmi_ih_mutes(hdmi); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto err_iahb; } ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq, dw_hdmi_irq, IRQF_SHARED, dev_name(dev), hdmi); if (ret) goto err_iahb; hdmi->cec_notifier = cec_notifier_get(dev); if (!hdmi->cec_notifier) { ret = -ENOMEM; goto err_iahb; } /* * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator * N and cts values before enabling phy */ hdmi_init_clk_regenerator(hdmi); /* If DDC bus is not specified, try to register HDMI I2C bus */ if (!hdmi->ddc) { hdmi->ddc = dw_hdmi_i2c_adapter(hdmi); if (IS_ERR(hdmi->ddc)) hdmi->ddc = NULL; } hdmi->bridge.driver_private = hdmi; hdmi->bridge.funcs = &dw_hdmi_bridge_funcs; #ifdef CONFIG_OF hdmi->bridge.of_node = pdev->dev.of_node; #endif dw_hdmi_setup_i2c(hdmi); if (hdmi->phy.ops->setup_hpd) hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data); memset(&pdevinfo, 0, sizeof(pdevinfo)); pdevinfo.parent = dev; pdevinfo.id = PLATFORM_DEVID_AUTO; config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID); config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID); if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) { struct dw_hdmi_audio_data audio; audio.phys = iores->start; audio.base = hdmi->regs; audio.irq = irq; audio.hdmi = hdmi; audio.eld = hdmi->connector.eld; hdmi->enable_audio = dw_hdmi_ahb_audio_enable; hdmi->disable_audio = dw_hdmi_ahb_audio_disable; pdevinfo.name = "dw-hdmi-ahb-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } else if (config0 & HDMI_CONFIG0_I2S) { struct dw_hdmi_i2s_audio_data audio; audio.hdmi = hdmi; audio.write = hdmi_writeb; audio.read = hdmi_readb; hdmi->enable_audio = dw_hdmi_i2s_audio_enable; hdmi->disable_audio = dw_hdmi_i2s_audio_disable; pdevinfo.name = "dw-hdmi-i2s-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } if (config0 & HDMI_CONFIG0_CEC) { cec.hdmi = hdmi; cec.ops = &dw_hdmi_cec_ops; cec.irq = irq; pdevinfo.name = "dw-hdmi-cec"; pdevinfo.data = &cec; pdevinfo.size_data = sizeof(cec); pdevinfo.dma_mask = 0; hdmi->cec = platform_device_register_full(&pdevinfo); } /* Reset HDMI DDC I2C master controller and mute I2CM interrupts */ if (hdmi->i2c) dw_hdmi_i2c_init(hdmi); platform_set_drvdata(pdev, hdmi); return hdmi; err_iahb: if (hdmi->i2c) { i2c_del_adapter(&hdmi->i2c->adap); hdmi->ddc = NULL; } if (hdmi->cec_notifier) cec_notifier_put(hdmi->cec_notifier); clk_disable_unprepare(hdmi->iahb_clk); if (hdmi->cec_clk) clk_disable_unprepare(hdmi->cec_clk); err_isfr: clk_disable_unprepare(hdmi->isfr_clk); err_res: i2c_put_adapter(hdmi->ddc); return ERR_PTR(ret); } static void __dw_hdmi_remove(struct dw_hdmi *hdmi) { if (hdmi->audio && !IS_ERR(hdmi->audio)) platform_device_unregister(hdmi->audio); if (!IS_ERR(hdmi->cec)) platform_device_unregister(hdmi->cec); /* Disable all interrupts */ hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); if (hdmi->cec_notifier) cec_notifier_put(hdmi->cec_notifier); clk_disable_unprepare(hdmi->iahb_clk); clk_disable_unprepare(hdmi->isfr_clk); if (hdmi->cec_clk) clk_disable_unprepare(hdmi->cec_clk); if (hdmi->i2c) i2c_del_adapter(&hdmi->i2c->adap); else i2c_put_adapter(hdmi->ddc); } /* ----------------------------------------------------------------------------- * Probe/remove API, used from platforms based on the DRM bridge API. */ int dw_hdmi_probe(struct platform_device *pdev, const struct dw_hdmi_plat_data *plat_data) { struct dw_hdmi *hdmi; hdmi = __dw_hdmi_probe(pdev, plat_data); if (IS_ERR(hdmi)) return PTR_ERR(hdmi); drm_bridge_add(&hdmi->bridge); return 0; } EXPORT_SYMBOL_GPL(dw_hdmi_probe); void dw_hdmi_remove(struct platform_device *pdev) { struct dw_hdmi *hdmi = platform_get_drvdata(pdev); drm_bridge_remove(&hdmi->bridge); __dw_hdmi_remove(hdmi); } EXPORT_SYMBOL_GPL(dw_hdmi_remove); /* ----------------------------------------------------------------------------- * Bind/unbind API, used from platforms based on the component framework. */ int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder, const struct dw_hdmi_plat_data *plat_data) { struct dw_hdmi *hdmi; int ret; hdmi = __dw_hdmi_probe(pdev, plat_data); if (IS_ERR(hdmi)) return PTR_ERR(hdmi); ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL); if (ret) { dw_hdmi_remove(pdev); DRM_ERROR("Failed to initialize bridge with drm\n"); return ret; } return 0; } EXPORT_SYMBOL_GPL(dw_hdmi_bind); void dw_hdmi_unbind(struct device *dev) { struct dw_hdmi *hdmi = dev_get_drvdata(dev); __dw_hdmi_remove(hdmi); } EXPORT_SYMBOL_GPL(dw_hdmi_unbind); MODULE_AUTHOR("Sascha Hauer "); MODULE_AUTHOR("Andy Yan "); MODULE_AUTHOR("Yakir Yang "); MODULE_AUTHOR("Vladimir Zapolskiy "); MODULE_DESCRIPTION("DW HDMI transmitter driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dw-hdmi");