ubuntu-linux-kernel/fs/btrfs/compression.c

1534 lines
39 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/bit_spinlock.h>
#include <linux/slab.h>
#include <linux/sched/mm.h>
#include <linux/sort.h>
#include <linux/log2.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
static int btrfs_decompress_bio(struct compressed_bio *cb);
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
unsigned long disk_size)
{
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
return sizeof(struct compressed_bio) +
(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
}
static int check_compressed_csum(struct btrfs_inode *inode,
struct compressed_bio *cb,
u64 disk_start)
{
int ret;
struct page *page;
unsigned long i;
char *kaddr;
u32 csum;
u32 *cb_sum = &cb->sums;
if (inode->flags & BTRFS_INODE_NODATASUM)
return 0;
for (i = 0; i < cb->nr_pages; i++) {
page = cb->compressed_pages[i];
csum = ~(u32)0;
kaddr = kmap_atomic(page);
csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
btrfs_csum_final(csum, (u8 *)&csum);
kunmap_atomic(kaddr);
if (csum != *cb_sum) {
btrfs_print_data_csum_error(inode, disk_start, csum,
*cb_sum, cb->mirror_num);
ret = -EIO;
goto fail;
}
cb_sum++;
}
ret = 0;
fail:
return ret;
}
/* when we finish reading compressed pages from the disk, we
* decompress them and then run the bio end_io routines on the
* decompressed pages (in the inode address space).
*
* This allows the checksumming and other IO error handling routines
* to work normally
*
* The compressed pages are freed here, and it must be run
* in process context
*/
static void end_compressed_bio_read(struct bio *bio)
{
struct compressed_bio *cb = bio->bi_private;
struct inode *inode;
struct page *page;
unsigned long index;
unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
int ret = 0;
if (bio->bi_status)
cb->errors = 1;
/* if there are more bios still pending for this compressed
* extent, just exit
*/
if (!refcount_dec_and_test(&cb->pending_bios))
goto out;
/*
* Record the correct mirror_num in cb->orig_bio so that
* read-repair can work properly.
*/
ASSERT(btrfs_io_bio(cb->orig_bio));
btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
cb->mirror_num = mirror;
/*
* Some IO in this cb have failed, just skip checksum as there
* is no way it could be correct.
*/
if (cb->errors == 1)
goto csum_failed;
inode = cb->inode;
ret = check_compressed_csum(BTRFS_I(inode), cb,
(u64)bio->bi_iter.bi_sector << 9);
if (ret)
goto csum_failed;
/* ok, we're the last bio for this extent, lets start
* the decompression.
*/
ret = btrfs_decompress_bio(cb);
csum_failed:
if (ret)
cb->errors = 1;
/* release the compressed pages */
index = 0;
for (index = 0; index < cb->nr_pages; index++) {
page = cb->compressed_pages[index];
page->mapping = NULL;
put_page(page);
}
/* do io completion on the original bio */
if (cb->errors) {
bio_io_error(cb->orig_bio);
} else {
int i;
struct bio_vec *bvec;
/*
* we have verified the checksum already, set page
* checked so the end_io handlers know about it
*/
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, cb->orig_bio, i)
SetPageChecked(bvec->bv_page);
bio_endio(cb->orig_bio);
}
/* finally free the cb struct */
kfree(cb->compressed_pages);
kfree(cb);
out:
bio_put(bio);
}
/*
* Clear the writeback bits on all of the file
* pages for a compressed write
*/
static noinline void end_compressed_writeback(struct inode *inode,
const struct compressed_bio *cb)
{
unsigned long index = cb->start >> PAGE_SHIFT;
unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
struct page *pages[16];
unsigned long nr_pages = end_index - index + 1;
int i;
int ret;
if (cb->errors)
mapping_set_error(inode->i_mapping, -EIO);
while (nr_pages > 0) {
ret = find_get_pages_contig(inode->i_mapping, index,
min_t(unsigned long,
nr_pages, ARRAY_SIZE(pages)), pages);
if (ret == 0) {
nr_pages -= 1;
index += 1;
continue;
}
for (i = 0; i < ret; i++) {
if (cb->errors)
SetPageError(pages[i]);
end_page_writeback(pages[i]);
put_page(pages[i]);
}
nr_pages -= ret;
index += ret;
}
/* the inode may be gone now */
}
/*
* do the cleanup once all the compressed pages hit the disk.
* This will clear writeback on the file pages and free the compressed
* pages.
*
* This also calls the writeback end hooks for the file pages so that
* metadata and checksums can be updated in the file.
*/
static void end_compressed_bio_write(struct bio *bio)
{
struct extent_io_tree *tree;
struct compressed_bio *cb = bio->bi_private;
struct inode *inode;
struct page *page;
unsigned long index;
if (bio->bi_status)
cb->errors = 1;
/* if there are more bios still pending for this compressed
* extent, just exit
*/
if (!refcount_dec_and_test(&cb->pending_bios))
goto out;
/* ok, we're the last bio for this extent, step one is to
* call back into the FS and do all the end_io operations
*/
inode = cb->inode;
tree = &BTRFS_I(inode)->io_tree;
cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
cb->start,
cb->start + cb->len - 1,
NULL,
bio->bi_status ?
BLK_STS_OK : BLK_STS_NOTSUPP);
cb->compressed_pages[0]->mapping = NULL;
end_compressed_writeback(inode, cb);
/* note, our inode could be gone now */
/*
* release the compressed pages, these came from alloc_page and
* are not attached to the inode at all
*/
index = 0;
for (index = 0; index < cb->nr_pages; index++) {
page = cb->compressed_pages[index];
page->mapping = NULL;
put_page(page);
}
/* finally free the cb struct */
kfree(cb->compressed_pages);
kfree(cb);
out:
bio_put(bio);
}
/*
* worker function to build and submit bios for previously compressed pages.
* The corresponding pages in the inode should be marked for writeback
* and the compressed pages should have a reference on them for dropping
* when the IO is complete.
*
* This also checksums the file bytes and gets things ready for
* the end io hooks.
*/
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
unsigned long len, u64 disk_start,
unsigned long compressed_len,
struct page **compressed_pages,
unsigned long nr_pages,
unsigned int write_flags)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct bio *bio = NULL;
struct compressed_bio *cb;
unsigned long bytes_left;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
int pg_index = 0;
struct page *page;
u64 first_byte = disk_start;
struct block_device *bdev;
blk_status_t ret;
int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
WARN_ON(start & ((u64)PAGE_SIZE - 1));
cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
if (!cb)
return BLK_STS_RESOURCE;
refcount_set(&cb->pending_bios, 0);
cb->errors = 0;
cb->inode = inode;
cb->start = start;
cb->len = len;
cb->mirror_num = 0;
cb->compressed_pages = compressed_pages;
cb->compressed_len = compressed_len;
cb->orig_bio = NULL;
cb->nr_pages = nr_pages;
bdev = fs_info->fs_devices->latest_bdev;
bio = btrfs_bio_alloc(bdev, first_byte);
bio->bi_opf = REQ_OP_WRITE | write_flags;
bio->bi_private = cb;
bio->bi_end_io = end_compressed_bio_write;
refcount_set(&cb->pending_bios, 1);
/* create and submit bios for the compressed pages */
bytes_left = compressed_len;
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
int submit = 0;
page = compressed_pages[pg_index];
page->mapping = inode->i_mapping;
if (bio->bi_iter.bi_size)
submit = io_tree->ops->merge_bio_hook(page, 0,
PAGE_SIZE,
bio, 0);
page->mapping = NULL;
if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
PAGE_SIZE) {
bio_get(bio);
/*
* inc the count before we submit the bio so
* we know the end IO handler won't happen before
* we inc the count. Otherwise, the cb might get
* freed before we're done setting it up
*/
refcount_inc(&cb->pending_bios);
ret = btrfs_bio_wq_end_io(fs_info, bio,
BTRFS_WQ_ENDIO_DATA);
BUG_ON(ret); /* -ENOMEM */
if (!skip_sum) {
ret = btrfs_csum_one_bio(inode, bio, start, 1);
BUG_ON(ret); /* -ENOMEM */
}
ret = btrfs_map_bio(fs_info, bio, 0, 1);
if (ret) {
bio->bi_status = ret;
bio_endio(bio);
}
bio_put(bio);
bio = btrfs_bio_alloc(bdev, first_byte);
bio->bi_opf = REQ_OP_WRITE | write_flags;
bio->bi_private = cb;
bio->bi_end_io = end_compressed_bio_write;
bio_add_page(bio, page, PAGE_SIZE, 0);
}
if (bytes_left < PAGE_SIZE) {
btrfs_info(fs_info,
"bytes left %lu compress len %lu nr %lu",
bytes_left, cb->compressed_len, cb->nr_pages);
}
bytes_left -= PAGE_SIZE;
first_byte += PAGE_SIZE;
cond_resched();
}
bio_get(bio);
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
BUG_ON(ret); /* -ENOMEM */
if (!skip_sum) {
ret = btrfs_csum_one_bio(inode, bio, start, 1);
BUG_ON(ret); /* -ENOMEM */
}
ret = btrfs_map_bio(fs_info, bio, 0, 1);
if (ret) {
bio->bi_status = ret;
bio_endio(bio);
}
bio_put(bio);
return 0;
}
static u64 bio_end_offset(struct bio *bio)
{
struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}
static noinline int add_ra_bio_pages(struct inode *inode,
u64 compressed_end,
struct compressed_bio *cb)
{
unsigned long end_index;
unsigned long pg_index;
u64 last_offset;
u64 isize = i_size_read(inode);
int ret;
struct page *page;
unsigned long nr_pages = 0;
struct extent_map *em;
struct address_space *mapping = inode->i_mapping;
struct extent_map_tree *em_tree;
struct extent_io_tree *tree;
u64 end;
int misses = 0;
last_offset = bio_end_offset(cb->orig_bio);
em_tree = &BTRFS_I(inode)->extent_tree;
tree = &BTRFS_I(inode)->io_tree;
if (isize == 0)
return 0;
end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
while (last_offset < compressed_end) {
pg_index = last_offset >> PAGE_SHIFT;
if (pg_index > end_index)
break;
rcu_read_lock();
page = radix_tree_lookup(&mapping->page_tree, pg_index);
rcu_read_unlock();
if (page && !radix_tree_exceptional_entry(page)) {
misses++;
if (misses > 4)
break;
goto next;
}
page = __page_cache_alloc(mapping_gfp_constraint(mapping,
~__GFP_FS));
if (!page)
break;
if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
put_page(page);
goto next;
}
end = last_offset + PAGE_SIZE - 1;
/*
* at this point, we have a locked page in the page cache
* for these bytes in the file. But, we have to make
* sure they map to this compressed extent on disk.
*/
set_page_extent_mapped(page);
lock_extent(tree, last_offset, end);
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, last_offset,
PAGE_SIZE);
read_unlock(&em_tree->lock);
if (!em || last_offset < em->start ||
(last_offset + PAGE_SIZE > extent_map_end(em)) ||
(em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
free_extent_map(em);
unlock_extent(tree, last_offset, end);
unlock_page(page);
put_page(page);
break;
}
free_extent_map(em);
if (page->index == end_index) {
char *userpage;
size_t zero_offset = isize & (PAGE_SIZE - 1);
if (zero_offset) {
int zeros;
zeros = PAGE_SIZE - zero_offset;
userpage = kmap_atomic(page);
memset(userpage + zero_offset, 0, zeros);
flush_dcache_page(page);
kunmap_atomic(userpage);
}
}
ret = bio_add_page(cb->orig_bio, page,
PAGE_SIZE, 0);
if (ret == PAGE_SIZE) {
nr_pages++;
put_page(page);
} else {
unlock_extent(tree, last_offset, end);
unlock_page(page);
put_page(page);
break;
}
next:
last_offset += PAGE_SIZE;
}
return 0;
}
/*
* for a compressed read, the bio we get passed has all the inode pages
* in it. We don't actually do IO on those pages but allocate new ones
* to hold the compressed pages on disk.
*
* bio->bi_iter.bi_sector points to the compressed extent on disk
* bio->bi_io_vec points to all of the inode pages
*
* After the compressed pages are read, we copy the bytes into the
* bio we were passed and then call the bio end_io calls
*/
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
int mirror_num, unsigned long bio_flags)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct extent_io_tree *tree;
struct extent_map_tree *em_tree;
struct compressed_bio *cb;
unsigned long compressed_len;
unsigned long nr_pages;
unsigned long pg_index;
struct page *page;
struct block_device *bdev;
struct bio *comp_bio;
u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
u64 em_len;
u64 em_start;
struct extent_map *em;
blk_status_t ret = BLK_STS_RESOURCE;
int faili = 0;
u32 *sums;
tree = &BTRFS_I(inode)->io_tree;
em_tree = &BTRFS_I(inode)->extent_tree;
/* we need the actual starting offset of this extent in the file */
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree,
page_offset(bio->bi_io_vec->bv_page),
PAGE_SIZE);
read_unlock(&em_tree->lock);
if (!em)
return BLK_STS_IOERR;
compressed_len = em->block_len;
cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
if (!cb)
goto out;
refcount_set(&cb->pending_bios, 0);
cb->errors = 0;
cb->inode = inode;
cb->mirror_num = mirror_num;
sums = &cb->sums;
cb->start = em->orig_start;
em_len = em->len;
em_start = em->start;
free_extent_map(em);
em = NULL;
cb->len = bio->bi_iter.bi_size;
cb->compressed_len = compressed_len;
cb->compress_type = extent_compress_type(bio_flags);
cb->orig_bio = bio;
nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
GFP_NOFS);
if (!cb->compressed_pages)
goto fail1;
bdev = fs_info->fs_devices->latest_bdev;
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
__GFP_HIGHMEM);
if (!cb->compressed_pages[pg_index]) {
faili = pg_index - 1;
ret = BLK_STS_RESOURCE;
goto fail2;
}
}
faili = nr_pages - 1;
cb->nr_pages = nr_pages;
add_ra_bio_pages(inode, em_start + em_len, cb);
/* include any pages we added in add_ra-bio_pages */
cb->len = bio->bi_iter.bi_size;
comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
comp_bio->bi_private = cb;
comp_bio->bi_end_io = end_compressed_bio_read;
refcount_set(&cb->pending_bios, 1);
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
int submit = 0;
page = cb->compressed_pages[pg_index];
page->mapping = inode->i_mapping;
page->index = em_start >> PAGE_SHIFT;
if (comp_bio->bi_iter.bi_size)
submit = tree->ops->merge_bio_hook(page, 0,
PAGE_SIZE,
comp_bio, 0);
page->mapping = NULL;
if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
PAGE_SIZE) {
bio_get(comp_bio);
ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
BTRFS_WQ_ENDIO_DATA);
BUG_ON(ret); /* -ENOMEM */
/*
* inc the count before we submit the bio so
* we know the end IO handler won't happen before
* we inc the count. Otherwise, the cb might get
* freed before we're done setting it up
*/
refcount_inc(&cb->pending_bios);
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
ret = btrfs_lookup_bio_sums(inode, comp_bio,
sums);
BUG_ON(ret); /* -ENOMEM */
}
sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
fs_info->sectorsize);
ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
if (ret) {
comp_bio->bi_status = ret;
bio_endio(comp_bio);
}
bio_put(comp_bio);
comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
comp_bio->bi_private = cb;
comp_bio->bi_end_io = end_compressed_bio_read;
bio_add_page(comp_bio, page, PAGE_SIZE, 0);
}
cur_disk_byte += PAGE_SIZE;
}
bio_get(comp_bio);
ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
BUG_ON(ret); /* -ENOMEM */
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
BUG_ON(ret); /* -ENOMEM */
}
ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
if (ret) {
comp_bio->bi_status = ret;
bio_endio(comp_bio);
}
bio_put(comp_bio);
return 0;
fail2:
while (faili >= 0) {
__free_page(cb->compressed_pages[faili]);
faili--;
}
kfree(cb->compressed_pages);
fail1:
kfree(cb);
out:
free_extent_map(em);
return ret;
}
/*
* Heuristic uses systematic sampling to collect data from the input data
* range, the logic can be tuned by the following constants:
*
* @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
* @SAMPLING_INTERVAL - range from which the sampled data can be collected
*/
#define SAMPLING_READ_SIZE (16)
#define SAMPLING_INTERVAL (256)
/*
* For statistical analysis of the input data we consider bytes that form a
* Galois Field of 256 objects. Each object has an attribute count, ie. how
* many times the object appeared in the sample.
*/
#define BUCKET_SIZE (256)
/*
* The size of the sample is based on a statistical sampling rule of thumb.
* The common way is to perform sampling tests as long as the number of
* elements in each cell is at least 5.
*
* Instead of 5, we choose 32 to obtain more accurate results.
* If the data contain the maximum number of symbols, which is 256, we obtain a
* sample size bound by 8192.
*
* For a sample of at most 8KB of data per data range: 16 consecutive bytes
* from up to 512 locations.
*/
#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
struct bucket_item {
u32 count;
};
struct heuristic_ws {
/* Partial copy of input data */
u8 *sample;
u32 sample_size;
/* Buckets store counters for each byte value */
struct bucket_item *bucket;
struct list_head list;
};
static void free_heuristic_ws(struct list_head *ws)
{
struct heuristic_ws *workspace;
workspace = list_entry(ws, struct heuristic_ws, list);
kvfree(workspace->sample);
kfree(workspace->bucket);
kfree(workspace);
}
static struct list_head *alloc_heuristic_ws(void)
{
struct heuristic_ws *ws;
ws = kzalloc(sizeof(*ws), GFP_KERNEL);
if (!ws)
return ERR_PTR(-ENOMEM);
ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
if (!ws->sample)
goto fail;
ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
if (!ws->bucket)
goto fail;
INIT_LIST_HEAD(&ws->list);
return &ws->list;
fail:
free_heuristic_ws(&ws->list);
return ERR_PTR(-ENOMEM);
}
struct workspaces_list {
struct list_head idle_ws;
spinlock_t ws_lock;
/* Number of free workspaces */
int free_ws;
/* Total number of allocated workspaces */
atomic_t total_ws;
/* Waiters for a free workspace */
wait_queue_head_t ws_wait;
};
static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
static struct workspaces_list btrfs_heuristic_ws;
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
&btrfs_zlib_compress,
&btrfs_lzo_compress,
&btrfs_zstd_compress,
};
void __init btrfs_init_compress(void)
{
struct list_head *workspace;
int i;
INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
spin_lock_init(&btrfs_heuristic_ws.ws_lock);
atomic_set(&btrfs_heuristic_ws.total_ws, 0);
init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
workspace = alloc_heuristic_ws();
if (IS_ERR(workspace)) {
pr_warn(
"BTRFS: cannot preallocate heuristic workspace, will try later\n");
} else {
atomic_set(&btrfs_heuristic_ws.total_ws, 1);
btrfs_heuristic_ws.free_ws = 1;
list_add(workspace, &btrfs_heuristic_ws.idle_ws);
}
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
spin_lock_init(&btrfs_comp_ws[i].ws_lock);
atomic_set(&btrfs_comp_ws[i].total_ws, 0);
init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
/*
* Preallocate one workspace for each compression type so
* we can guarantee forward progress in the worst case
*/
workspace = btrfs_compress_op[i]->alloc_workspace();
if (IS_ERR(workspace)) {
pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
} else {
atomic_set(&btrfs_comp_ws[i].total_ws, 1);
btrfs_comp_ws[i].free_ws = 1;
list_add(workspace, &btrfs_comp_ws[i].idle_ws);
}
}
}
/*
* This finds an available workspace or allocates a new one.
* If it's not possible to allocate a new one, waits until there's one.
* Preallocation makes a forward progress guarantees and we do not return
* errors.
*/
static struct list_head *__find_workspace(int type, bool heuristic)
{
struct list_head *workspace;
int cpus = num_online_cpus();
int idx = type - 1;
unsigned nofs_flag;
struct list_head *idle_ws;
spinlock_t *ws_lock;
atomic_t *total_ws;
wait_queue_head_t *ws_wait;
int *free_ws;
if (heuristic) {
idle_ws = &btrfs_heuristic_ws.idle_ws;
ws_lock = &btrfs_heuristic_ws.ws_lock;
total_ws = &btrfs_heuristic_ws.total_ws;
ws_wait = &btrfs_heuristic_ws.ws_wait;
free_ws = &btrfs_heuristic_ws.free_ws;
} else {
idle_ws = &btrfs_comp_ws[idx].idle_ws;
ws_lock = &btrfs_comp_ws[idx].ws_lock;
total_ws = &btrfs_comp_ws[idx].total_ws;
ws_wait = &btrfs_comp_ws[idx].ws_wait;
free_ws = &btrfs_comp_ws[idx].free_ws;
}
again:
spin_lock(ws_lock);
if (!list_empty(idle_ws)) {
workspace = idle_ws->next;
list_del(workspace);
(*free_ws)--;
spin_unlock(ws_lock);
return workspace;
}
if (atomic_read(total_ws) > cpus) {
DEFINE_WAIT(wait);
spin_unlock(ws_lock);
prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
if (atomic_read(total_ws) > cpus && !*free_ws)
schedule();
finish_wait(ws_wait, &wait);
goto again;
}
atomic_inc(total_ws);
spin_unlock(ws_lock);
/*
* Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
* to turn it off here because we might get called from the restricted
* context of btrfs_compress_bio/btrfs_compress_pages
*/
nofs_flag = memalloc_nofs_save();
if (heuristic)
workspace = alloc_heuristic_ws();
else
workspace = btrfs_compress_op[idx]->alloc_workspace();
memalloc_nofs_restore(nofs_flag);
if (IS_ERR(workspace)) {
atomic_dec(total_ws);
wake_up(ws_wait);
/*
* Do not return the error but go back to waiting. There's a
* workspace preallocated for each type and the compression
* time is bounded so we get to a workspace eventually. This
* makes our caller's life easier.
*
* To prevent silent and low-probability deadlocks (when the
* initial preallocation fails), check if there are any
* workspaces at all.
*/
if (atomic_read(total_ws) == 0) {
static DEFINE_RATELIMIT_STATE(_rs,
/* once per minute */ 60 * HZ,
/* no burst */ 1);
if (__ratelimit(&_rs)) {
pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
}
}
goto again;
}
return workspace;
}
static struct list_head *find_workspace(int type)
{
return __find_workspace(type, false);
}
/*
* put a workspace struct back on the list or free it if we have enough
* idle ones sitting around
*/
static void __free_workspace(int type, struct list_head *workspace,
bool heuristic)
{
int idx = type - 1;
struct list_head *idle_ws;
spinlock_t *ws_lock;
atomic_t *total_ws;
wait_queue_head_t *ws_wait;
int *free_ws;
if (heuristic) {
idle_ws = &btrfs_heuristic_ws.idle_ws;
ws_lock = &btrfs_heuristic_ws.ws_lock;
total_ws = &btrfs_heuristic_ws.total_ws;
ws_wait = &btrfs_heuristic_ws.ws_wait;
free_ws = &btrfs_heuristic_ws.free_ws;
} else {
idle_ws = &btrfs_comp_ws[idx].idle_ws;
ws_lock = &btrfs_comp_ws[idx].ws_lock;
total_ws = &btrfs_comp_ws[idx].total_ws;
ws_wait = &btrfs_comp_ws[idx].ws_wait;
free_ws = &btrfs_comp_ws[idx].free_ws;
}
spin_lock(ws_lock);
if (*free_ws <= num_online_cpus()) {
list_add(workspace, idle_ws);
(*free_ws)++;
spin_unlock(ws_lock);
goto wake;
}
spin_unlock(ws_lock);
if (heuristic)
free_heuristic_ws(workspace);
else
btrfs_compress_op[idx]->free_workspace(workspace);
atomic_dec(total_ws);
wake:
/*
* Make sure counter is updated before we wake up waiters.
*/
smp_mb();
if (waitqueue_active(ws_wait))
wake_up(ws_wait);
}
static void free_workspace(int type, struct list_head *ws)
{
return __free_workspace(type, ws, false);
}
/*
* cleanup function for module exit
*/
static void free_workspaces(void)
{
struct list_head *workspace;
int i;
while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
workspace = btrfs_heuristic_ws.idle_ws.next;
list_del(workspace);
free_heuristic_ws(workspace);
atomic_dec(&btrfs_heuristic_ws.total_ws);
}
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
workspace = btrfs_comp_ws[i].idle_ws.next;
list_del(workspace);
btrfs_compress_op[i]->free_workspace(workspace);
atomic_dec(&btrfs_comp_ws[i].total_ws);
}
}
}
/*
* Given an address space and start and length, compress the bytes into @pages
* that are allocated on demand.
*
* @type_level is encoded algorithm and level, where level 0 means whatever
* default the algorithm chooses and is opaque here;
* - compression algo are 0-3
* - the level are bits 4-7
*
* @out_pages is an in/out parameter, holds maximum number of pages to allocate
* and returns number of actually allocated pages
*
* @total_in is used to return the number of bytes actually read. It
* may be smaller than the input length if we had to exit early because we
* ran out of room in the pages array or because we cross the
* max_out threshold.
*
* @total_out is an in/out parameter, must be set to the input length and will
* be also used to return the total number of compressed bytes
*
* @max_out tells us the max number of bytes that we're allowed to
* stuff into pages
*/
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
u64 start, struct page **pages,
unsigned long *out_pages,
unsigned long *total_in,
unsigned long *total_out)
{
struct list_head *workspace;
int ret;
int type = type_level & 0xF;
workspace = find_workspace(type);
btrfs_compress_op[type - 1]->set_level(workspace, type_level);
ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
start, pages,
out_pages,
total_in, total_out);
free_workspace(type, workspace);
return ret;
}
/*
* pages_in is an array of pages with compressed data.
*
* disk_start is the starting logical offset of this array in the file
*
* orig_bio contains the pages from the file that we want to decompress into
*
* srclen is the number of bytes in pages_in
*
* The basic idea is that we have a bio that was created by readpages.
* The pages in the bio are for the uncompressed data, and they may not
* be contiguous. They all correspond to the range of bytes covered by
* the compressed extent.
*/
static int btrfs_decompress_bio(struct compressed_bio *cb)
{
struct list_head *workspace;
int ret;
int type = cb->compress_type;
workspace = find_workspace(type);
ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
free_workspace(type, workspace);
return ret;
}
/*
* a less complex decompression routine. Our compressed data fits in a
* single page, and we want to read a single page out of it.
* start_byte tells us the offset into the compressed data we're interested in
*/
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
unsigned long start_byte, size_t srclen, size_t destlen)
{
struct list_head *workspace;
int ret;
workspace = find_workspace(type);
ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
dest_page, start_byte,
srclen, destlen);
free_workspace(type, workspace);
return ret;
}
void btrfs_exit_compress(void)
{
free_workspaces();
}
/*
* Copy uncompressed data from working buffer to pages.
*
* buf_start is the byte offset we're of the start of our workspace buffer.
*
* total_out is the last byte of the buffer
*/
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
unsigned long total_out, u64 disk_start,
struct bio *bio)
{
unsigned long buf_offset;
unsigned long current_buf_start;
unsigned long start_byte;
unsigned long prev_start_byte;
unsigned long working_bytes = total_out - buf_start;
unsigned long bytes;
char *kaddr;
struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
/*
* start byte is the first byte of the page we're currently
* copying into relative to the start of the compressed data.
*/
start_byte = page_offset(bvec.bv_page) - disk_start;
/* we haven't yet hit data corresponding to this page */
if (total_out <= start_byte)
return 1;
/*
* the start of the data we care about is offset into
* the middle of our working buffer
*/
if (total_out > start_byte && buf_start < start_byte) {
buf_offset = start_byte - buf_start;
working_bytes -= buf_offset;
} else {
buf_offset = 0;
}
current_buf_start = buf_start;
/* copy bytes from the working buffer into the pages */
while (working_bytes > 0) {
bytes = min_t(unsigned long, bvec.bv_len,
PAGE_SIZE - buf_offset);
bytes = min(bytes, working_bytes);
kaddr = kmap_atomic(bvec.bv_page);
memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
kunmap_atomic(kaddr);
flush_dcache_page(bvec.bv_page);
buf_offset += bytes;
working_bytes -= bytes;
current_buf_start += bytes;
/* check if we need to pick another page */
bio_advance(bio, bytes);
if (!bio->bi_iter.bi_size)
return 0;
bvec = bio_iter_iovec(bio, bio->bi_iter);
prev_start_byte = start_byte;
start_byte = page_offset(bvec.bv_page) - disk_start;
/*
* We need to make sure we're only adjusting
* our offset into compression working buffer when
* we're switching pages. Otherwise we can incorrectly
* keep copying when we were actually done.
*/
if (start_byte != prev_start_byte) {
/*
* make sure our new page is covered by this
* working buffer
*/
if (total_out <= start_byte)
return 1;
/*
* the next page in the biovec might not be adjacent
* to the last page, but it might still be found
* inside this working buffer. bump our offset pointer
*/
if (total_out > start_byte &&
current_buf_start < start_byte) {
buf_offset = start_byte - buf_start;
working_bytes = total_out - start_byte;
current_buf_start = buf_start + buf_offset;
}
}
}
return 1;
}
/*
* Shannon Entropy calculation
*
* Pure byte distribution analysis fails to determine compressiability of data.
* Try calculating entropy to estimate the average minimum number of bits
* needed to encode the sampled data.
*
* For convenience, return the percentage of needed bits, instead of amount of
* bits directly.
*
* @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
* and can be compressible with high probability
*
* @ENTROPY_LVL_HIGH - data are not compressible with high probability
*
* Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
*/
#define ENTROPY_LVL_ACEPTABLE (65)
#define ENTROPY_LVL_HIGH (80)
/*
* For increasead precision in shannon_entropy calculation,
* let's do pow(n, M) to save more digits after comma:
*
* - maximum int bit length is 64
* - ilog2(MAX_SAMPLE_SIZE) -> 13
* - 13 * 4 = 52 < 64 -> M = 4
*
* So use pow(n, 4).
*/
static inline u32 ilog2_w(u64 n)
{
return ilog2(n * n * n * n);
}
static u32 shannon_entropy(struct heuristic_ws *ws)
{
const u32 entropy_max = 8 * ilog2_w(2);
u32 entropy_sum = 0;
u32 p, p_base, sz_base;
u32 i;
sz_base = ilog2_w(ws->sample_size);
for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
p = ws->bucket[i].count;
p_base = ilog2_w(p);
entropy_sum += p * (sz_base - p_base);
}
entropy_sum /= ws->sample_size;
return entropy_sum * 100 / entropy_max;
}
/* Compare buckets by size, ascending */
static int bucket_comp_rev(const void *lv, const void *rv)
{
const struct bucket_item *l = (const struct bucket_item *)lv;
const struct bucket_item *r = (const struct bucket_item *)rv;
return r->count - l->count;
}
/*
* Size of the core byte set - how many bytes cover 90% of the sample
*
* There are several types of structured binary data that use nearly all byte
* values. The distribution can be uniform and counts in all buckets will be
* nearly the same (eg. encrypted data). Unlikely to be compressible.
*
* Other possibility is normal (Gaussian) distribution, where the data could
* be potentially compressible, but we have to take a few more steps to decide
* how much.
*
* @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
* compression algo can easy fix that
* @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
* probability is not compressible
*/
#define BYTE_CORE_SET_LOW (64)
#define BYTE_CORE_SET_HIGH (200)
static int byte_core_set_size(struct heuristic_ws *ws)
{
u32 i;
u32 coreset_sum = 0;
const u32 core_set_threshold = ws->sample_size * 90 / 100;
struct bucket_item *bucket = ws->bucket;
/* Sort in reverse order */
sort(bucket, BUCKET_SIZE, sizeof(*bucket), &bucket_comp_rev, NULL);
for (i = 0; i < BYTE_CORE_SET_LOW; i++)
coreset_sum += bucket[i].count;
if (coreset_sum > core_set_threshold)
return i;
for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
coreset_sum += bucket[i].count;
if (coreset_sum > core_set_threshold)
break;
}
return i;
}
/*
* Count byte values in buckets.
* This heuristic can detect textual data (configs, xml, json, html, etc).
* Because in most text-like data byte set is restricted to limited number of
* possible characters, and that restriction in most cases makes data easy to
* compress.
*
* @BYTE_SET_THRESHOLD - consider all data within this byte set size:
* less - compressible
* more - need additional analysis
*/
#define BYTE_SET_THRESHOLD (64)
static u32 byte_set_size(const struct heuristic_ws *ws)
{
u32 i;
u32 byte_set_size = 0;
for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
if (ws->bucket[i].count > 0)
byte_set_size++;
}
/*
* Continue collecting count of byte values in buckets. If the byte
* set size is bigger then the threshold, it's pointless to continue,
* the detection technique would fail for this type of data.
*/
for (; i < BUCKET_SIZE; i++) {
if (ws->bucket[i].count > 0) {
byte_set_size++;
if (byte_set_size > BYTE_SET_THRESHOLD)
return byte_set_size;
}
}
return byte_set_size;
}
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
const u32 half_of_sample = ws->sample_size / 2;
const u8 *data = ws->sample;
return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
struct heuristic_ws *ws)
{
struct page *page;
u64 index, index_end;
u32 i, curr_sample_pos;
u8 *in_data;
/*
* Compression handles the input data by chunks of 128KiB
* (defined by BTRFS_MAX_UNCOMPRESSED)
*
* We do the same for the heuristic and loop over the whole range.
*
* MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
* process no more than BTRFS_MAX_UNCOMPRESSED at a time.
*/
if (end - start > BTRFS_MAX_UNCOMPRESSED)
end = start + BTRFS_MAX_UNCOMPRESSED;
index = start >> PAGE_SHIFT;
index_end = end >> PAGE_SHIFT;
/* Don't miss unaligned end */
if (!IS_ALIGNED(end, PAGE_SIZE))
index_end++;
curr_sample_pos = 0;
while (index < index_end) {
page = find_get_page(inode->i_mapping, index);
in_data = kmap(page);
/* Handle case where the start is not aligned to PAGE_SIZE */
i = start % PAGE_SIZE;
while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
/* Don't sample any garbage from the last page */
if (start > end - SAMPLING_READ_SIZE)
break;
memcpy(&ws->sample[curr_sample_pos], &in_data[i],
SAMPLING_READ_SIZE);
i += SAMPLING_INTERVAL;
start += SAMPLING_INTERVAL;
curr_sample_pos += SAMPLING_READ_SIZE;
}
kunmap(page);
put_page(page);
index++;
}
ws->sample_size = curr_sample_pos;
}
/*
* Compression heuristic.
*
* For now is's a naive and optimistic 'return true', we'll extend the logic to
* quickly (compared to direct compression) detect data characteristics
* (compressible/uncompressible) to avoid wasting CPU time on uncompressible
* data.
*
* The following types of analysis can be performed:
* - detect mostly zero data
* - detect data with low "byte set" size (text, etc)
* - detect data with low/high "core byte" set
*
* Return non-zero if the compression should be done, 0 otherwise.
*/
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
struct list_head *ws_list = __find_workspace(0, true);
struct heuristic_ws *ws;
u32 i;
u8 byte;
int ret = 0;
ws = list_entry(ws_list, struct heuristic_ws, list);
heuristic_collect_sample(inode, start, end, ws);
if (sample_repeated_patterns(ws)) {
ret = 1;
goto out;
}
memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
for (i = 0; i < ws->sample_size; i++) {
byte = ws->sample[i];
ws->bucket[byte].count++;
}
i = byte_set_size(ws);
if (i < BYTE_SET_THRESHOLD) {
ret = 2;
goto out;
}
i = byte_core_set_size(ws);
if (i <= BYTE_CORE_SET_LOW) {
ret = 3;
goto out;
}
if (i >= BYTE_CORE_SET_HIGH) {
ret = 0;
goto out;
}
i = shannon_entropy(ws);
if (i <= ENTROPY_LVL_ACEPTABLE) {
ret = 4;
goto out;
}
/*
* For the levels below ENTROPY_LVL_HIGH, additional analysis would be
* needed to give green light to compression.
*
* For now just assume that compression at that level is not worth the
* resources because:
*
* 1. it is possible to defrag the data later
*
* 2. the data would turn out to be hardly compressible, eg. 150 byte
* values, every bucket has counter at level ~54. The heuristic would
* be confused. This can happen when data have some internal repeated
* patterns like "abbacbbc...". This can be detected by analyzing
* pairs of bytes, which is too costly.
*/
if (i < ENTROPY_LVL_HIGH) {
ret = 5;
goto out;
} else {
ret = 0;
goto out;
}
out:
__free_workspace(0, ws_list, true);
return ret;
}
unsigned int btrfs_compress_str2level(const char *str)
{
if (strncmp(str, "zlib", 4) != 0)
return 0;
/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
return str[5] - '0';
return BTRFS_ZLIB_DEFAULT_LEVEL;
}