ubuntu-linux-kernel/drivers/vme/bridges/vme_fake.c

1304 lines
29 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* Fake VME bridge support.
*
* This drive provides a fake VME bridge chip, this enables debugging of the
* VME framework in the absence of a VME system.
*
* This driver has to do a number of things in software that would be driven
* by hardware if it was available, it will also result in extra overhead at
* times when compared with driving actual hardware.
*
* Author: Martyn Welch <martyn@welches.me.uk>
* Copyright (c) 2014 Martyn Welch
*
* Based on vme_tsi148.c:
*
* Author: Martyn Welch <martyn.welch@ge.com>
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* Based on work by Tom Armistead and Ajit Prem
* Copyright 2004 Motorola Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/vme.h>
#include "../vme_bridge.h"
/*
* Define the number of each that the fake driver supports.
*/
#define FAKE_MAX_MASTER 8 /* Max Master Windows */
#define FAKE_MAX_SLAVE 8 /* Max Slave Windows */
/* Structures to hold information normally held in device registers */
struct fake_slave_window {
int enabled;
unsigned long long vme_base;
unsigned long long size;
void *buf_base;
u32 aspace;
u32 cycle;
};
struct fake_master_window {
int enabled;
unsigned long long vme_base;
unsigned long long size;
u32 aspace;
u32 cycle;
u32 dwidth;
};
/* Structure used to hold driver specific information */
struct fake_driver {
struct vme_bridge *parent;
struct fake_slave_window slaves[FAKE_MAX_SLAVE];
struct fake_master_window masters[FAKE_MAX_MASTER];
u32 lm_enabled;
unsigned long long lm_base;
u32 lm_aspace;
u32 lm_cycle;
void (*lm_callback[4])(void *);
void *lm_data[4];
struct tasklet_struct int_tasklet;
int int_level;
int int_statid;
void *crcsr_kernel;
dma_addr_t crcsr_bus;
/* Only one VME interrupt can be generated at a time, provide locking */
struct mutex vme_int;
};
/* Module parameter */
static int geoid;
static const char driver_name[] = "vme_fake";
static struct vme_bridge *exit_pointer;
static struct device *vme_root;
/*
* Calling VME bus interrupt callback if provided.
*/
static void fake_VIRQ_tasklet(unsigned long data)
{
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = (struct vme_bridge *) data;
bridge = fake_bridge->driver_priv;
vme_irq_handler(fake_bridge, bridge->int_level, bridge->int_statid);
}
/*
* Configure VME interrupt
*/
static void fake_irq_set(struct vme_bridge *fake_bridge, int level,
int state, int sync)
{
/* Nothing to do */
}
static void *fake_pci_to_ptr(dma_addr_t addr)
{
return (void *)(uintptr_t)addr;
}
static dma_addr_t fake_ptr_to_pci(void *addr)
{
return (dma_addr_t)(uintptr_t)addr;
}
/*
* Generate a VME bus interrupt at the requested level & vector. Wait for
* interrupt to be acked.
*/
static int fake_irq_generate(struct vme_bridge *fake_bridge, int level,
int statid)
{
struct fake_driver *bridge;
bridge = fake_bridge->driver_priv;
mutex_lock(&bridge->vme_int);
bridge->int_level = level;
bridge->int_statid = statid;
/*
* Schedule tasklet to run VME handler to emulate normal VME interrupt
* handler behaviour.
*/
tasklet_schedule(&bridge->int_tasklet);
mutex_unlock(&bridge->vme_int);
return 0;
}
/*
* Initialize a slave window with the requested attributes.
*/
static int fake_slave_set(struct vme_slave_resource *image, int enabled,
unsigned long long vme_base, unsigned long long size,
dma_addr_t buf_base, u32 aspace, u32 cycle)
{
unsigned int i, granularity = 0;
unsigned long long vme_bound;
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = image->parent;
bridge = fake_bridge->driver_priv;
i = image->number;
switch (aspace) {
case VME_A16:
granularity = 0x10;
break;
case VME_A24:
granularity = 0x1000;
break;
case VME_A32:
granularity = 0x10000;
break;
case VME_A64:
granularity = 0x10000;
break;
case VME_CRCSR:
case VME_USER1:
case VME_USER2:
case VME_USER3:
case VME_USER4:
default:
pr_err("Invalid address space\n");
return -EINVAL;
}
/*
* Bound address is a valid address for the window, adjust
* accordingly
*/
vme_bound = vme_base + size - granularity;
if (vme_base & (granularity - 1)) {
pr_err("Invalid VME base alignment\n");
return -EINVAL;
}
if (vme_bound & (granularity - 1)) {
pr_err("Invalid VME bound alignment\n");
return -EINVAL;
}
mutex_lock(&image->mtx);
bridge->slaves[i].enabled = enabled;
bridge->slaves[i].vme_base = vme_base;
bridge->slaves[i].size = size;
bridge->slaves[i].buf_base = fake_pci_to_ptr(buf_base);
bridge->slaves[i].aspace = aspace;
bridge->slaves[i].cycle = cycle;
mutex_unlock(&image->mtx);
return 0;
}
/*
* Get slave window configuration.
*/
static int fake_slave_get(struct vme_slave_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
{
unsigned int i;
struct fake_driver *bridge;
bridge = image->parent->driver_priv;
i = image->number;
mutex_lock(&image->mtx);
*enabled = bridge->slaves[i].enabled;
*vme_base = bridge->slaves[i].vme_base;
*size = bridge->slaves[i].size;
*buf_base = fake_ptr_to_pci(bridge->slaves[i].buf_base);
*aspace = bridge->slaves[i].aspace;
*cycle = bridge->slaves[i].cycle;
mutex_unlock(&image->mtx);
return 0;
}
/*
* Set the attributes of an outbound window.
*/
static int fake_master_set(struct vme_master_resource *image, int enabled,
unsigned long long vme_base, unsigned long long size,
u32 aspace, u32 cycle, u32 dwidth)
{
int retval = 0;
unsigned int i;
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = image->parent;
bridge = fake_bridge->driver_priv;
/* Verify input data */
if (vme_base & 0xFFFF) {
pr_err("Invalid VME Window alignment\n");
retval = -EINVAL;
goto err_window;
}
if (size & 0xFFFF) {
pr_err("Invalid size alignment\n");
retval = -EINVAL;
goto err_window;
}
if ((size == 0) && (enabled != 0)) {
pr_err("Size must be non-zero for enabled windows\n");
retval = -EINVAL;
goto err_window;
}
/* Setup data width */
switch (dwidth) {
case VME_D8:
case VME_D16:
case VME_D32:
break;
default:
pr_err("Invalid data width\n");
retval = -EINVAL;
goto err_dwidth;
}
/* Setup address space */
switch (aspace) {
case VME_A16:
case VME_A24:
case VME_A32:
case VME_A64:
case VME_CRCSR:
case VME_USER1:
case VME_USER2:
case VME_USER3:
case VME_USER4:
break;
default:
pr_err("Invalid address space\n");
retval = -EINVAL;
goto err_aspace;
}
spin_lock(&image->lock);
i = image->number;
bridge->masters[i].enabled = enabled;
bridge->masters[i].vme_base = vme_base;
bridge->masters[i].size = size;
bridge->masters[i].aspace = aspace;
bridge->masters[i].cycle = cycle;
bridge->masters[i].dwidth = dwidth;
spin_unlock(&image->lock);
return 0;
err_aspace:
err_dwidth:
err_window:
return retval;
}
/*
* Set the attributes of an outbound window.
*/
static int __fake_master_get(struct vme_master_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
u32 *aspace, u32 *cycle, u32 *dwidth)
{
unsigned int i;
struct fake_driver *bridge;
bridge = image->parent->driver_priv;
i = image->number;
*enabled = bridge->masters[i].enabled;
*vme_base = bridge->masters[i].vme_base;
*size = bridge->masters[i].size;
*aspace = bridge->masters[i].aspace;
*cycle = bridge->masters[i].cycle;
*dwidth = bridge->masters[i].dwidth;
return 0;
}
static int fake_master_get(struct vme_master_resource *image, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
u32 *aspace, u32 *cycle, u32 *dwidth)
{
int retval;
spin_lock(&image->lock);
retval = __fake_master_get(image, enabled, vme_base, size, aspace,
cycle, dwidth);
spin_unlock(&image->lock);
return retval;
}
static void fake_lm_check(struct fake_driver *bridge, unsigned long long addr,
u32 aspace, u32 cycle)
{
struct vme_bridge *fake_bridge;
unsigned long long lm_base;
u32 lm_aspace, lm_cycle;
int i;
struct vme_lm_resource *lm;
struct list_head *pos = NULL, *n;
/* Get vme_bridge */
fake_bridge = bridge->parent;
/* Loop through each location monitor resource */
list_for_each_safe(pos, n, &fake_bridge->lm_resources) {
lm = list_entry(pos, struct vme_lm_resource, list);
/* If disabled, we're done */
if (bridge->lm_enabled == 0)
return;
lm_base = bridge->lm_base;
lm_aspace = bridge->lm_aspace;
lm_cycle = bridge->lm_cycle;
/* First make sure that the cycle and address space match */
if ((lm_aspace == aspace) && (lm_cycle == cycle)) {
for (i = 0; i < lm->monitors; i++) {
/* Each location monitor covers 8 bytes */
if (((lm_base + (8 * i)) <= addr) &&
((lm_base + (8 * i) + 8) > addr)) {
if (bridge->lm_callback[i])
bridge->lm_callback[i](
bridge->lm_data[i]);
}
}
}
}
}
static u8 fake_vmeread8(struct fake_driver *bridge, unsigned long long addr,
u32 aspace, u32 cycle)
{
u8 retval = 0xff;
int i;
unsigned long long start, end, offset;
u8 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
if ((addr >= start) && (addr < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u8 *)(bridge->slaves[i].buf_base + offset);
retval = *loc;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
return retval;
}
static u16 fake_vmeread16(struct fake_driver *bridge, unsigned long long addr,
u32 aspace, u32 cycle)
{
u16 retval = 0xffff;
int i;
unsigned long long start, end, offset;
u16 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if ((addr >= start) && ((addr + 1) < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u16 *)(bridge->slaves[i].buf_base + offset);
retval = *loc;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
return retval;
}
static u32 fake_vmeread32(struct fake_driver *bridge, unsigned long long addr,
u32 aspace, u32 cycle)
{
u32 retval = 0xffffffff;
int i;
unsigned long long start, end, offset;
u32 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if ((addr >= start) && ((addr + 3) < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u32 *)(bridge->slaves[i].buf_base + offset);
retval = *loc;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
return retval;
}
static ssize_t fake_master_read(struct vme_master_resource *image, void *buf,
size_t count, loff_t offset)
{
int retval;
u32 aspace, cycle, dwidth;
struct vme_bridge *fake_bridge;
struct fake_driver *priv;
int i;
unsigned long long addr;
unsigned int done = 0;
unsigned int count32;
fake_bridge = image->parent;
priv = fake_bridge->driver_priv;
i = image->number;
addr = (unsigned long long)priv->masters[i].vme_base + offset;
aspace = priv->masters[i].aspace;
cycle = priv->masters[i].cycle;
dwidth = priv->masters[i].dwidth;
spin_lock(&image->lock);
/* The following code handles VME address alignment. We cannot use
* memcpy_xxx here because it may cut data transfers in to 8-bit
* cycles when D16 or D32 cycles are required on the VME bus.
* On the other hand, the bridge itself assures that the maximum data
* cycle configured for the transfer is used and splits it
* automatically for non-aligned addresses, so we don't want the
* overhead of needlessly forcing small transfers for the entire cycle.
*/
if (addr & 0x1) {
*(u8 *)buf = fake_vmeread8(priv, addr, aspace, cycle);
done += 1;
if (done == count)
goto out;
}
if ((dwidth == VME_D16) || (dwidth == VME_D32)) {
if ((addr + done) & 0x2) {
if ((count - done) < 2) {
*(u8 *)(buf + done) = fake_vmeread8(priv,
addr + done, aspace, cycle);
done += 1;
goto out;
} else {
*(u16 *)(buf + done) = fake_vmeread16(priv,
addr + done, aspace, cycle);
done += 2;
}
}
}
if (dwidth == VME_D32) {
count32 = (count - done) & ~0x3;
while (done < count32) {
*(u32 *)(buf + done) = fake_vmeread32(priv, addr + done,
aspace, cycle);
done += 4;
}
} else if (dwidth == VME_D16) {
count32 = (count - done) & ~0x3;
while (done < count32) {
*(u16 *)(buf + done) = fake_vmeread16(priv, addr + done,
aspace, cycle);
done += 2;
}
} else if (dwidth == VME_D8) {
count32 = (count - done);
while (done < count32) {
*(u8 *)(buf + done) = fake_vmeread8(priv, addr + done,
aspace, cycle);
done += 1;
}
}
if ((dwidth == VME_D16) || (dwidth == VME_D32)) {
if ((count - done) & 0x2) {
*(u16 *)(buf + done) = fake_vmeread16(priv, addr + done,
aspace, cycle);
done += 2;
}
}
if ((count - done) & 0x1) {
*(u8 *)(buf + done) = fake_vmeread8(priv, addr + done, aspace,
cycle);
done += 1;
}
out:
retval = count;
spin_unlock(&image->lock);
return retval;
}
static void fake_vmewrite8(struct fake_driver *bridge, u8 *buf,
unsigned long long addr, u32 aspace, u32 cycle)
{
int i;
unsigned long long start, end, offset;
u8 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if ((addr >= start) && (addr < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u8 *)((void *)bridge->slaves[i].buf_base + offset);
*loc = *buf;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
}
static void fake_vmewrite16(struct fake_driver *bridge, u16 *buf,
unsigned long long addr, u32 aspace, u32 cycle)
{
int i;
unsigned long long start, end, offset;
u16 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if ((addr >= start) && ((addr + 1) < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u16 *)((void *)bridge->slaves[i].buf_base + offset);
*loc = *buf;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
}
static void fake_vmewrite32(struct fake_driver *bridge, u32 *buf,
unsigned long long addr, u32 aspace, u32 cycle)
{
int i;
unsigned long long start, end, offset;
u32 *loc;
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
if (aspace != bridge->slaves[i].aspace)
continue;
if (cycle != bridge->slaves[i].cycle)
continue;
start = bridge->slaves[i].vme_base;
end = bridge->slaves[i].vme_base + bridge->slaves[i].size;
if ((addr >= start) && ((addr + 3) < end)) {
offset = addr - bridge->slaves[i].vme_base;
loc = (u32 *)((void *)bridge->slaves[i].buf_base + offset);
*loc = *buf;
break;
}
}
fake_lm_check(bridge, addr, aspace, cycle);
}
static ssize_t fake_master_write(struct vme_master_resource *image, void *buf,
size_t count, loff_t offset)
{
int retval = 0;
u32 aspace, cycle, dwidth;
unsigned long long addr;
int i;
unsigned int done = 0;
unsigned int count32;
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = image->parent;
bridge = fake_bridge->driver_priv;
i = image->number;
addr = bridge->masters[i].vme_base + offset;
aspace = bridge->masters[i].aspace;
cycle = bridge->masters[i].cycle;
dwidth = bridge->masters[i].dwidth;
spin_lock(&image->lock);
/* Here we apply for the same strategy we do in master_read
* function in order to assure the correct cycles.
*/
if (addr & 0x1) {
fake_vmewrite8(bridge, (u8 *)buf, addr, aspace, cycle);
done += 1;
if (done == count)
goto out;
}
if ((dwidth == VME_D16) || (dwidth == VME_D32)) {
if ((addr + done) & 0x2) {
if ((count - done) < 2) {
fake_vmewrite8(bridge, (u8 *)(buf + done),
addr + done, aspace, cycle);
done += 1;
goto out;
} else {
fake_vmewrite16(bridge, (u16 *)(buf + done),
addr + done, aspace, cycle);
done += 2;
}
}
}
if (dwidth == VME_D32) {
count32 = (count - done) & ~0x3;
while (done < count32) {
fake_vmewrite32(bridge, (u32 *)(buf + done),
addr + done, aspace, cycle);
done += 4;
}
} else if (dwidth == VME_D16) {
count32 = (count - done) & ~0x3;
while (done < count32) {
fake_vmewrite16(bridge, (u16 *)(buf + done),
addr + done, aspace, cycle);
done += 2;
}
} else if (dwidth == VME_D8) {
count32 = (count - done);
while (done < count32) {
fake_vmewrite8(bridge, (u8 *)(buf + done), addr + done,
aspace, cycle);
done += 1;
}
}
if ((dwidth == VME_D16) || (dwidth == VME_D32)) {
if ((count - done) & 0x2) {
fake_vmewrite16(bridge, (u16 *)(buf + done),
addr + done, aspace, cycle);
done += 2;
}
}
if ((count - done) & 0x1) {
fake_vmewrite8(bridge, (u8 *)(buf + done), addr + done, aspace,
cycle);
done += 1;
}
out:
retval = count;
spin_unlock(&image->lock);
return retval;
}
/*
* Perform an RMW cycle on the VME bus.
*
* Requires a previously configured master window, returns final value.
*/
static unsigned int fake_master_rmw(struct vme_master_resource *image,
unsigned int mask, unsigned int compare, unsigned int swap,
loff_t offset)
{
u32 tmp, base;
u32 aspace, cycle;
int i;
struct fake_driver *bridge;
bridge = image->parent->driver_priv;
/* Find the PCI address that maps to the desired VME address */
i = image->number;
base = bridge->masters[i].vme_base;
aspace = bridge->masters[i].aspace;
cycle = bridge->masters[i].cycle;
/* Lock image */
spin_lock(&image->lock);
/* Read existing value */
tmp = fake_vmeread32(bridge, base + offset, aspace, cycle);
/* Perform check */
if ((tmp && mask) == (compare && mask)) {
tmp = tmp | (mask | swap);
tmp = tmp & (~mask | swap);
/* Write back */
fake_vmewrite32(bridge, &tmp, base + offset, aspace, cycle);
}
/* Unlock image */
spin_unlock(&image->lock);
return tmp;
}
/*
* All 4 location monitors reside at the same base - this is therefore a
* system wide configuration.
*
* This does not enable the LM monitor - that should be done when the first
* callback is attached and disabled when the last callback is removed.
*/
static int fake_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base,
u32 aspace, u32 cycle)
{
int i;
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = lm->parent;
bridge = fake_bridge->driver_priv;
mutex_lock(&lm->mtx);
/* If we already have a callback attached, we can't move it! */
for (i = 0; i < lm->monitors; i++) {
if (bridge->lm_callback[i]) {
mutex_unlock(&lm->mtx);
pr_err("Location monitor callback attached, can't reset\n");
return -EBUSY;
}
}
switch (aspace) {
case VME_A16:
case VME_A24:
case VME_A32:
case VME_A64:
break;
default:
mutex_unlock(&lm->mtx);
pr_err("Invalid address space\n");
return -EINVAL;
}
bridge->lm_base = lm_base;
bridge->lm_aspace = aspace;
bridge->lm_cycle = cycle;
mutex_unlock(&lm->mtx);
return 0;
}
/* Get configuration of the callback monitor and return whether it is enabled
* or disabled.
*/
static int fake_lm_get(struct vme_lm_resource *lm,
unsigned long long *lm_base, u32 *aspace, u32 *cycle)
{
struct fake_driver *bridge;
bridge = lm->parent->driver_priv;
mutex_lock(&lm->mtx);
*lm_base = bridge->lm_base;
*aspace = bridge->lm_aspace;
*cycle = bridge->lm_cycle;
mutex_unlock(&lm->mtx);
return bridge->lm_enabled;
}
/*
* Attach a callback to a specific location monitor.
*
* Callback will be passed the monitor triggered.
*/
static int fake_lm_attach(struct vme_lm_resource *lm, int monitor,
void (*callback)(void *), void *data)
{
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = lm->parent;
bridge = fake_bridge->driver_priv;
mutex_lock(&lm->mtx);
/* Ensure that the location monitor is configured - need PGM or DATA */
if (bridge->lm_cycle == 0) {
mutex_unlock(&lm->mtx);
pr_err("Location monitor not properly configured\n");
return -EINVAL;
}
/* Check that a callback isn't already attached */
if (bridge->lm_callback[monitor]) {
mutex_unlock(&lm->mtx);
pr_err("Existing callback attached\n");
return -EBUSY;
}
/* Attach callback */
bridge->lm_callback[monitor] = callback;
bridge->lm_data[monitor] = data;
/* Ensure that global Location Monitor Enable set */
bridge->lm_enabled = 1;
mutex_unlock(&lm->mtx);
return 0;
}
/*
* Detach a callback function forn a specific location monitor.
*/
static int fake_lm_detach(struct vme_lm_resource *lm, int monitor)
{
u32 tmp;
int i;
struct fake_driver *bridge;
bridge = lm->parent->driver_priv;
mutex_lock(&lm->mtx);
/* Detach callback */
bridge->lm_callback[monitor] = NULL;
bridge->lm_data[monitor] = NULL;
/* If all location monitors disabled, disable global Location Monitor */
tmp = 0;
for (i = 0; i < lm->monitors; i++) {
if (bridge->lm_callback[i])
tmp = 1;
}
if (tmp == 0)
bridge->lm_enabled = 0;
mutex_unlock(&lm->mtx);
return 0;
}
/*
* Determine Geographical Addressing
*/
static int fake_slot_get(struct vme_bridge *fake_bridge)
{
return geoid;
}
static void *fake_alloc_consistent(struct device *parent, size_t size,
dma_addr_t *dma)
{
void *alloc = kmalloc(size, GFP_KERNEL);
if (alloc)
*dma = fake_ptr_to_pci(alloc);
return alloc;
}
static void fake_free_consistent(struct device *parent, size_t size,
void *vaddr, dma_addr_t dma)
{
kfree(vaddr);
/*
dma_free_coherent(parent, size, vaddr, dma);
*/
}
/*
* Configure CR/CSR space
*
* Access to the CR/CSR can be configured at power-up. The location of the
* CR/CSR registers in the CR/CSR address space is determined by the boards
* Geographic address.
*
* Each board has a 512kB window, with the highest 4kB being used for the
* boards registers, this means there is a fix length 508kB window which must
* be mapped onto PCI memory.
*/
static int fake_crcsr_init(struct vme_bridge *fake_bridge)
{
u32 vstat;
struct fake_driver *bridge;
bridge = fake_bridge->driver_priv;
/* Allocate mem for CR/CSR image */
bridge->crcsr_kernel = kzalloc(VME_CRCSR_BUF_SIZE, GFP_KERNEL);
bridge->crcsr_bus = fake_ptr_to_pci(bridge->crcsr_kernel);
if (!bridge->crcsr_kernel)
return -ENOMEM;
vstat = fake_slot_get(fake_bridge);
pr_info("CR/CSR Offset: %d\n", vstat);
return 0;
}
static void fake_crcsr_exit(struct vme_bridge *fake_bridge)
{
struct fake_driver *bridge;
bridge = fake_bridge->driver_priv;
kfree(bridge->crcsr_kernel);
}
static int __init fake_init(void)
{
int retval, i;
struct list_head *pos = NULL, *n;
struct vme_bridge *fake_bridge;
struct fake_driver *fake_device;
struct vme_master_resource *master_image;
struct vme_slave_resource *slave_image;
struct vme_lm_resource *lm;
/* We need a fake parent device */
vme_root = __root_device_register("vme", THIS_MODULE);
/* If we want to support more than one bridge at some point, we need to
* dynamically allocate this so we get one per device.
*/
fake_bridge = kzalloc(sizeof(*fake_bridge), GFP_KERNEL);
if (!fake_bridge) {
retval = -ENOMEM;
goto err_struct;
}
fake_device = kzalloc(sizeof(*fake_device), GFP_KERNEL);
if (!fake_device) {
retval = -ENOMEM;
goto err_driver;
}
fake_bridge->driver_priv = fake_device;
fake_bridge->parent = vme_root;
fake_device->parent = fake_bridge;
/* Initialize wait queues & mutual exclusion flags */
mutex_init(&fake_device->vme_int);
mutex_init(&fake_bridge->irq_mtx);
tasklet_init(&fake_device->int_tasklet, fake_VIRQ_tasklet,
(unsigned long) fake_bridge);
strcpy(fake_bridge->name, driver_name);
/* Add master windows to list */
INIT_LIST_HEAD(&fake_bridge->master_resources);
for (i = 0; i < FAKE_MAX_MASTER; i++) {
master_image = kmalloc(sizeof(*master_image), GFP_KERNEL);
if (!master_image) {
retval = -ENOMEM;
goto err_master;
}
master_image->parent = fake_bridge;
spin_lock_init(&master_image->lock);
master_image->locked = 0;
master_image->number = i;
master_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
VME_A64;
master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
VME_PROG | VME_DATA;
master_image->width_attr = VME_D16 | VME_D32;
memset(&master_image->bus_resource, 0,
sizeof(struct resource));
master_image->kern_base = NULL;
list_add_tail(&master_image->list,
&fake_bridge->master_resources);
}
/* Add slave windows to list */
INIT_LIST_HEAD(&fake_bridge->slave_resources);
for (i = 0; i < FAKE_MAX_SLAVE; i++) {
slave_image = kmalloc(sizeof(*slave_image), GFP_KERNEL);
if (!slave_image) {
retval = -ENOMEM;
goto err_slave;
}
slave_image->parent = fake_bridge;
mutex_init(&slave_image->mtx);
slave_image->locked = 0;
slave_image->number = i;
slave_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
VME_A64 | VME_CRCSR | VME_USER1 | VME_USER2 |
VME_USER3 | VME_USER4;
slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
VME_PROG | VME_DATA;
list_add_tail(&slave_image->list,
&fake_bridge->slave_resources);
}
/* Add location monitor to list */
INIT_LIST_HEAD(&fake_bridge->lm_resources);
lm = kmalloc(sizeof(*lm), GFP_KERNEL);
if (!lm) {
retval = -ENOMEM;
goto err_lm;
}
lm->parent = fake_bridge;
mutex_init(&lm->mtx);
lm->locked = 0;
lm->number = 1;
lm->monitors = 4;
list_add_tail(&lm->list, &fake_bridge->lm_resources);
fake_bridge->slave_get = fake_slave_get;
fake_bridge->slave_set = fake_slave_set;
fake_bridge->master_get = fake_master_get;
fake_bridge->master_set = fake_master_set;
fake_bridge->master_read = fake_master_read;
fake_bridge->master_write = fake_master_write;
fake_bridge->master_rmw = fake_master_rmw;
fake_bridge->irq_set = fake_irq_set;
fake_bridge->irq_generate = fake_irq_generate;
fake_bridge->lm_set = fake_lm_set;
fake_bridge->lm_get = fake_lm_get;
fake_bridge->lm_attach = fake_lm_attach;
fake_bridge->lm_detach = fake_lm_detach;
fake_bridge->slot_get = fake_slot_get;
fake_bridge->alloc_consistent = fake_alloc_consistent;
fake_bridge->free_consistent = fake_free_consistent;
pr_info("Board is%s the VME system controller\n",
(geoid == 1) ? "" : " not");
pr_info("VME geographical address is set to %d\n", geoid);
retval = fake_crcsr_init(fake_bridge);
if (retval) {
pr_err("CR/CSR configuration failed.\n");
goto err_crcsr;
}
retval = vme_register_bridge(fake_bridge);
if (retval != 0) {
pr_err("Chip Registration failed.\n");
goto err_reg;
}
exit_pointer = fake_bridge;
return 0;
err_reg:
fake_crcsr_exit(fake_bridge);
err_crcsr:
err_lm:
/* resources are stored in link list */
list_for_each_safe(pos, n, &fake_bridge->lm_resources) {
lm = list_entry(pos, struct vme_lm_resource, list);
list_del(pos);
kfree(lm);
}
err_slave:
/* resources are stored in link list */
list_for_each_safe(pos, n, &fake_bridge->slave_resources) {
slave_image = list_entry(pos, struct vme_slave_resource, list);
list_del(pos);
kfree(slave_image);
}
err_master:
/* resources are stored in link list */
list_for_each_safe(pos, n, &fake_bridge->master_resources) {
master_image = list_entry(pos, struct vme_master_resource,
list);
list_del(pos);
kfree(master_image);
}
kfree(fake_device);
err_driver:
kfree(fake_bridge);
err_struct:
return retval;
}
static void __exit fake_exit(void)
{
struct list_head *pos = NULL;
struct list_head *tmplist;
struct vme_master_resource *master_image;
struct vme_slave_resource *slave_image;
int i;
struct vme_bridge *fake_bridge;
struct fake_driver *bridge;
fake_bridge = exit_pointer;
bridge = fake_bridge->driver_priv;
pr_debug("Driver is being unloaded.\n");
/*
* Shutdown all inbound and outbound windows.
*/
for (i = 0; i < FAKE_MAX_MASTER; i++)
bridge->masters[i].enabled = 0;
for (i = 0; i < FAKE_MAX_SLAVE; i++)
bridge->slaves[i].enabled = 0;
/*
* Shutdown Location monitor.
*/
bridge->lm_enabled = 0;
vme_unregister_bridge(fake_bridge);
fake_crcsr_exit(fake_bridge);
/* resources are stored in link list */
list_for_each_safe(pos, tmplist, &fake_bridge->slave_resources) {
slave_image = list_entry(pos, struct vme_slave_resource, list);
list_del(pos);
kfree(slave_image);
}
/* resources are stored in link list */
list_for_each_safe(pos, tmplist, &fake_bridge->master_resources) {
master_image = list_entry(pos, struct vme_master_resource,
list);
list_del(pos);
kfree(master_image);
}
kfree(fake_bridge->driver_priv);
kfree(fake_bridge);
root_device_unregister(vme_root);
}
MODULE_PARM_DESC(geoid, "Set geographical addressing");
module_param(geoid, int, 0);
MODULE_DESCRIPTION("Fake VME bridge driver");
MODULE_LICENSE("GPL");
module_init(fake_init);
module_exit(fake_exit);