ubuntu-linux-kernel/drivers/net/fddi/skfp/cfm.c

626 lines
16 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/******************************************************************************
*
* (C)Copyright 1998,1999 SysKonnect,
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
*
* See the file "skfddi.c" for further information.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/*
SMT CFM
Configuration Management
DAS with single MAC
*/
/*
* Hardware independent state machine implemantation
* The following external SMT functions are referenced :
*
* queue_event()
*
* The following external HW dependent functions are referenced :
* config_mux()
*
* The following HW dependent events are required :
* NONE
*/
#include "h/types.h"
#include "h/fddi.h"
#include "h/smc.h"
#define KERNEL
#include "h/smtstate.h"
#ifndef lint
static const char ID_sccs[] = "@(#)cfm.c 2.18 98/10/06 (C) SK " ;
#endif
/*
* FSM Macros
*/
#define AFLAG 0x10
#define GO_STATE(x) (smc->mib.fddiSMTCF_State = (x)|AFLAG)
#define ACTIONS_DONE() (smc->mib.fddiSMTCF_State &= ~AFLAG)
#define ACTIONS(x) (x|AFLAG)
/*
* symbolic state names
*/
static const char * const cfm_states[] = {
"SC0_ISOLATED","CF1","CF2","CF3","CF4",
"SC1_WRAP_A","SC2_WRAP_B","SC5_TRHU_B","SC7_WRAP_S",
"SC9_C_WRAP_A","SC10_C_WRAP_B","SC11_C_WRAP_S","SC4_THRU_A"
} ;
/*
* symbolic event names
*/
static const char * const cfm_events[] = {
"NONE","CF_LOOP_A","CF_LOOP_B","CF_JOIN_A","CF_JOIN_B"
} ;
/*
* map from state to downstream port type
*/
static const unsigned char cf_to_ptype[] = {
TNONE,TNONE,TNONE,TNONE,TNONE,
TNONE,TB,TB,TS,
TA,TB,TS,TB
} ;
/*
* CEM port states
*/
#define CEM_PST_DOWN 0
#define CEM_PST_UP 1
#define CEM_PST_HOLD 2
/* define portstate array only for A and B port */
/* Do this within the smc structure (use in multiple cards) */
/*
* all Globals are defined in smc.h
* struct s_cfm
*/
/*
* function declarations
*/
static void cfm_fsm(struct s_smc *smc, int cmd);
/*
init CFM state machine
clear all CFM vars and flags
*/
void cfm_init(struct s_smc *smc)
{
smc->mib.fddiSMTCF_State = ACTIONS(SC0_ISOLATED) ;
smc->r.rm_join = 0 ;
smc->r.rm_loop = 0 ;
smc->y[PA].scrub = 0 ;
smc->y[PB].scrub = 0 ;
smc->y[PA].cem_pst = CEM_PST_DOWN ;
smc->y[PB].cem_pst = CEM_PST_DOWN ;
}
/* Some terms conditions used by the selection criteria */
#define THRU_ENABLED(smc) (smc->y[PA].pc_mode != PM_TREE && \
smc->y[PB].pc_mode != PM_TREE)
/* Selection criteria for the ports */
static void selection_criteria (struct s_smc *smc, struct s_phy *phy)
{
switch (phy->mib->fddiPORTMy_Type) {
case TA:
if ( !THRU_ENABLED(smc) && smc->y[PB].cf_join ) {
phy->wc_flag = TRUE ;
} else {
phy->wc_flag = FALSE ;
}
break;
case TB:
/* take precedence over PA */
phy->wc_flag = FALSE ;
break;
case TS:
phy->wc_flag = FALSE ;
break;
case TM:
phy->wc_flag = FALSE ;
break;
}
}
void all_selection_criteria(struct s_smc *smc)
{
struct s_phy *phy ;
int p ;
for ( p = 0,phy = smc->y ; p < NUMPHYS; p++, phy++ ) {
/* Do the selection criteria */
selection_criteria (smc,phy);
}
}
static void cem_priv_state(struct s_smc *smc, int event)
/* State machine for private PORT states: used to optimize dual homing */
{
int np; /* Number of the port */
int i;
/* Do this only in a DAS */
if (smc->s.sas != SMT_DAS )
return ;
np = event - CF_JOIN;
if (np != PA && np != PB) {
return ;
}
/* Change the port state according to the event (portnumber) */
if (smc->y[np].cf_join) {
smc->y[np].cem_pst = CEM_PST_UP ;
} else if (!smc->y[np].wc_flag) {
/* set the port to done only if it is not withheld */
smc->y[np].cem_pst = CEM_PST_DOWN ;
}
/* Don't set an hold port to down */
/* Check all ports of restart conditions */
for (i = 0 ; i < 2 ; i ++ ) {
/* Check all port for PORT is on hold and no withhold is done */
if ( smc->y[i].cem_pst == CEM_PST_HOLD && !smc->y[i].wc_flag ) {
smc->y[i].cem_pst = CEM_PST_DOWN;
queue_event(smc,(int)(EVENT_PCM+i),PC_START) ;
}
if ( smc->y[i].cem_pst == CEM_PST_UP && smc->y[i].wc_flag ) {
smc->y[i].cem_pst = CEM_PST_HOLD;
queue_event(smc,(int)(EVENT_PCM+i),PC_START) ;
}
if ( smc->y[i].cem_pst == CEM_PST_DOWN && smc->y[i].wc_flag ) {
/*
* The port must be restarted when the wc_flag
* will be reset. So set the port on hold.
*/
smc->y[i].cem_pst = CEM_PST_HOLD;
}
}
return ;
}
/*
CFM state machine
called by dispatcher
do
display state change
process event
until SM is stable
*/
void cfm(struct s_smc *smc, int event)
{
int state ; /* remember last state */
int cond ;
int oldstate ;
/* We will do the following: */
/* - compute the variable WC_Flag for every port (This is where */
/* we can extend the requested path checking !!) */
/* - do the old (SMT 6.2 like) state machine */
/* - do the resulting station states */
all_selection_criteria (smc);
/* We will check now whether a state transition is allowed or not */
/* - change the portstates */
cem_priv_state (smc, event);
oldstate = smc->mib.fddiSMTCF_State ;
do {
DB_CFM("CFM : state %s%s event %s",
smc->mib.fddiSMTCF_State & AFLAG ? "ACTIONS " : "",
cfm_states[smc->mib.fddiSMTCF_State & ~AFLAG],
cfm_events[event]);
state = smc->mib.fddiSMTCF_State ;
cfm_fsm(smc,event) ;
event = 0 ;
} while (state != smc->mib.fddiSMTCF_State) ;
#ifndef SLIM_SMT
/*
* check peer wrap condition
*/
cond = FALSE ;
if ( (smc->mib.fddiSMTCF_State == SC9_C_WRAP_A &&
smc->y[PA].pc_mode == PM_PEER) ||
(smc->mib.fddiSMTCF_State == SC10_C_WRAP_B &&
smc->y[PB].pc_mode == PM_PEER) ||
(smc->mib.fddiSMTCF_State == SC11_C_WRAP_S &&
smc->y[PS].pc_mode == PM_PEER &&
smc->y[PS].mib->fddiPORTNeighborType != TS ) ) {
cond = TRUE ;
}
if (cond != smc->mib.fddiSMTPeerWrapFlag)
smt_srf_event(smc,SMT_COND_SMT_PEER_WRAP,0,cond) ;
#if 0
/*
* Don't send ever MAC_PATH_CHANGE events. Our MAC is hard-wired
* to the primary path.
*/
/*
* path change
*/
if (smc->mib.fddiSMTCF_State != oldstate) {
smt_srf_event(smc,SMT_EVENT_MAC_PATH_CHANGE,INDEX_MAC,0) ;
}
#endif
#endif /* no SLIM_SMT */
/*
* set MAC port type
*/
smc->mib.m[MAC0].fddiMACDownstreamPORTType =
cf_to_ptype[smc->mib.fddiSMTCF_State] ;
cfm_state_change(smc,(int)smc->mib.fddiSMTCF_State) ;
}
/*
process CFM event
*/
/*ARGSUSED1*/
static void cfm_fsm(struct s_smc *smc, int cmd)
{
switch(smc->mib.fddiSMTCF_State) {
case ACTIONS(SC0_ISOLATED) :
smc->mib.p[PA].fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
smc->mib.p[PB].fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
smc->mib.p[PA].fddiPORTMACPlacement = 0 ;
smc->mib.p[PB].fddiPORTMACPlacement = 0 ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_SEPA ;
config_mux(smc,MUX_ISOLATE) ; /* configure PHY Mux */
smc->r.rm_loop = FALSE ;
smc->r.rm_join = FALSE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
/* Don't do the WC-Flag changing here */
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break;
case SC0_ISOLATED :
/*SC07*/
/*SAS port can be PA or PB ! */
if (smc->s.sas && (smc->y[PA].cf_join || smc->y[PA].cf_loop ||
smc->y[PB].cf_join || smc->y[PB].cf_loop)) {
GO_STATE(SC11_C_WRAP_S) ;
break ;
}
/*SC01*/
if ((smc->y[PA].cem_pst == CEM_PST_UP && smc->y[PA].cf_join &&
!smc->y[PA].wc_flag) || smc->y[PA].cf_loop) {
GO_STATE(SC9_C_WRAP_A) ;
break ;
}
/*SC02*/
if ((smc->y[PB].cem_pst == CEM_PST_UP && smc->y[PB].cf_join &&
!smc->y[PB].wc_flag) || smc->y[PB].cf_loop) {
GO_STATE(SC10_C_WRAP_B) ;
break ;
}
break ;
case ACTIONS(SC9_C_WRAP_A) :
smc->mib.p[PA].fddiPORTCurrentPath = MIB_PATH_CONCATENATED ;
smc->mib.p[PB].fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
smc->mib.p[PA].fddiPORTMACPlacement = INDEX_MAC ;
smc->mib.p[PB].fddiPORTMACPlacement = 0 ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_CON ;
config_mux(smc,MUX_WRAPA) ; /* configure PHY mux */
if (smc->y[PA].cf_loop) {
smc->r.rm_join = FALSE ;
smc->r.rm_loop = TRUE ;
queue_event(smc,EVENT_RMT,RM_LOOP) ;/* signal RMT */
}
if (smc->y[PA].cf_join) {
smc->r.rm_loop = FALSE ;
smc->r.rm_join = TRUE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
}
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break ;
case SC9_C_WRAP_A :
/*SC10*/
if ( (smc->y[PA].wc_flag || !smc->y[PA].cf_join) &&
!smc->y[PA].cf_loop ) {
GO_STATE(SC0_ISOLATED) ;
break ;
}
/*SC12*/
else if ( (smc->y[PB].cf_loop && smc->y[PA].cf_join &&
smc->y[PA].cem_pst == CEM_PST_UP) ||
((smc->y[PB].cf_loop ||
(smc->y[PB].cf_join &&
smc->y[PB].cem_pst == CEM_PST_UP)) &&
(smc->y[PA].pc_mode == PM_TREE ||
smc->y[PB].pc_mode == PM_TREE))) {
smc->y[PA].scrub = TRUE ;
GO_STATE(SC10_C_WRAP_B) ;
break ;
}
/*SC14*/
else if (!smc->s.attach_s &&
smc->y[PA].cf_join &&
smc->y[PA].cem_pst == CEM_PST_UP &&
smc->y[PA].pc_mode == PM_PEER && smc->y[PB].cf_join &&
smc->y[PB].cem_pst == CEM_PST_UP &&
smc->y[PB].pc_mode == PM_PEER) {
smc->y[PA].scrub = TRUE ;
smc->y[PB].scrub = TRUE ;
GO_STATE(SC4_THRU_A) ;
break ;
}
/*SC15*/
else if ( smc->s.attach_s &&
smc->y[PA].cf_join &&
smc->y[PA].cem_pst == CEM_PST_UP &&
smc->y[PA].pc_mode == PM_PEER &&
smc->y[PB].cf_join &&
smc->y[PB].cem_pst == CEM_PST_UP &&
smc->y[PB].pc_mode == PM_PEER) {
smc->y[PA].scrub = TRUE ;
smc->y[PB].scrub = TRUE ;
GO_STATE(SC5_THRU_B) ;
break ;
}
break ;
case ACTIONS(SC10_C_WRAP_B) :
smc->mib.p[PA].fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
smc->mib.p[PB].fddiPORTCurrentPath = MIB_PATH_CONCATENATED ;
smc->mib.p[PA].fddiPORTMACPlacement = 0 ;
smc->mib.p[PB].fddiPORTMACPlacement = INDEX_MAC ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_CON ;
config_mux(smc,MUX_WRAPB) ; /* configure PHY mux */
if (smc->y[PB].cf_loop) {
smc->r.rm_join = FALSE ;
smc->r.rm_loop = TRUE ;
queue_event(smc,EVENT_RMT,RM_LOOP) ;/* signal RMT */
}
if (smc->y[PB].cf_join) {
smc->r.rm_loop = FALSE ;
smc->r.rm_join = TRUE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
}
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break ;
case SC10_C_WRAP_B :
/*SC20*/
if ( !smc->y[PB].cf_join && !smc->y[PB].cf_loop ) {
GO_STATE(SC0_ISOLATED) ;
break ;
}
/*SC21*/
else if ( smc->y[PA].cf_loop && smc->y[PA].pc_mode == PM_PEER &&
smc->y[PB].cf_join && smc->y[PB].pc_mode == PM_PEER) {
smc->y[PB].scrub = TRUE ;
GO_STATE(SC9_C_WRAP_A) ;
break ;
}
/*SC24*/
else if (!smc->s.attach_s &&
smc->y[PA].cf_join && smc->y[PA].pc_mode == PM_PEER &&
smc->y[PB].cf_join && smc->y[PB].pc_mode == PM_PEER) {
smc->y[PA].scrub = TRUE ;
smc->y[PB].scrub = TRUE ;
GO_STATE(SC4_THRU_A) ;
break ;
}
/*SC25*/
else if ( smc->s.attach_s &&
smc->y[PA].cf_join && smc->y[PA].pc_mode == PM_PEER &&
smc->y[PB].cf_join && smc->y[PB].pc_mode == PM_PEER) {
smc->y[PA].scrub = TRUE ;
smc->y[PB].scrub = TRUE ;
GO_STATE(SC5_THRU_B) ;
break ;
}
break ;
case ACTIONS(SC4_THRU_A) :
smc->mib.p[PA].fddiPORTCurrentPath = MIB_PATH_THRU ;
smc->mib.p[PB].fddiPORTCurrentPath = MIB_PATH_THRU ;
smc->mib.p[PA].fddiPORTMACPlacement = 0 ;
smc->mib.p[PB].fddiPORTMACPlacement = INDEX_MAC ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_THRU ;
config_mux(smc,MUX_THRUA) ; /* configure PHY mux */
smc->r.rm_loop = FALSE ;
smc->r.rm_join = TRUE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break ;
case SC4_THRU_A :
/*SC41*/
if (smc->y[PB].wc_flag || !smc->y[PB].cf_join) {
smc->y[PA].scrub = TRUE ;
GO_STATE(SC9_C_WRAP_A) ;
break ;
}
/*SC42*/
else if (!smc->y[PA].cf_join || smc->y[PA].wc_flag) {
smc->y[PB].scrub = TRUE ;
GO_STATE(SC10_C_WRAP_B) ;
break ;
}
/*SC45*/
else if (smc->s.attach_s) {
smc->y[PB].scrub = TRUE ;
GO_STATE(SC5_THRU_B) ;
break ;
}
break ;
case ACTIONS(SC5_THRU_B) :
smc->mib.p[PA].fddiPORTCurrentPath = MIB_PATH_THRU ;
smc->mib.p[PB].fddiPORTCurrentPath = MIB_PATH_THRU ;
smc->mib.p[PA].fddiPORTMACPlacement = INDEX_MAC ;
smc->mib.p[PB].fddiPORTMACPlacement = 0 ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_THRU ;
config_mux(smc,MUX_THRUB) ; /* configure PHY mux */
smc->r.rm_loop = FALSE ;
smc->r.rm_join = TRUE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break ;
case SC5_THRU_B :
/*SC51*/
if (!smc->y[PB].cf_join || smc->y[PB].wc_flag) {
smc->y[PA].scrub = TRUE ;
GO_STATE(SC9_C_WRAP_A) ;
break ;
}
/*SC52*/
else if (!smc->y[PA].cf_join || smc->y[PA].wc_flag) {
smc->y[PB].scrub = TRUE ;
GO_STATE(SC10_C_WRAP_B) ;
break ;
}
/*SC54*/
else if (!smc->s.attach_s) {
smc->y[PA].scrub = TRUE ;
GO_STATE(SC4_THRU_A) ;
break ;
}
break ;
case ACTIONS(SC11_C_WRAP_S) :
smc->mib.p[PS].fddiPORTCurrentPath = MIB_PATH_CONCATENATED ;
smc->mib.p[PS].fddiPORTMACPlacement = INDEX_MAC ;
smc->mib.fddiSMTStationStatus = MIB_SMT_STASTA_CON ;
config_mux(smc,MUX_WRAPS) ; /* configure PHY mux */
if (smc->y[PA].cf_loop || smc->y[PB].cf_loop) {
smc->r.rm_join = FALSE ;
smc->r.rm_loop = TRUE ;
queue_event(smc,EVENT_RMT,RM_LOOP) ;/* signal RMT */
}
if (smc->y[PA].cf_join || smc->y[PB].cf_join) {
smc->r.rm_loop = FALSE ;
smc->r.rm_join = TRUE ;
queue_event(smc,EVENT_RMT,RM_JOIN) ;/* signal RMT */
}
ACTIONS_DONE() ;
DB_CFMN(1, "CFM : %s", cfm_states[smc->mib.fddiSMTCF_State]);
break ;
case SC11_C_WRAP_S :
/*SC70*/
if ( !smc->y[PA].cf_join && !smc->y[PA].cf_loop &&
!smc->y[PB].cf_join && !smc->y[PB].cf_loop) {
GO_STATE(SC0_ISOLATED) ;
break ;
}
break ;
default:
SMT_PANIC(smc,SMT_E0106, SMT_E0106_MSG) ;
break;
}
}
/*
* get MAC's input Port
* return :
* PA or PB
*/
int cfm_get_mac_input(struct s_smc *smc)
{
return (smc->mib.fddiSMTCF_State == SC10_C_WRAP_B ||
smc->mib.fddiSMTCF_State == SC5_THRU_B) ? PB : PA;
}
/*
* get MAC's output Port
* return :
* PA or PB
*/
int cfm_get_mac_output(struct s_smc *smc)
{
return (smc->mib.fddiSMTCF_State == SC10_C_WRAP_B ||
smc->mib.fddiSMTCF_State == SC4_THRU_A) ? PB : PA;
}
static char path_iso[] = {
0,0, 0,RES_PORT, 0,PA + INDEX_PORT, 0,PATH_ISO,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_ISO,
0,0, 0,RES_PORT, 0,PB + INDEX_PORT, 0,PATH_ISO
} ;
static char path_wrap_a[] = {
0,0, 0,RES_PORT, 0,PA + INDEX_PORT, 0,PATH_PRIM,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_PRIM,
0,0, 0,RES_PORT, 0,PB + INDEX_PORT, 0,PATH_ISO
} ;
static char path_wrap_b[] = {
0,0, 0,RES_PORT, 0,PB + INDEX_PORT, 0,PATH_PRIM,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_PRIM,
0,0, 0,RES_PORT, 0,PA + INDEX_PORT, 0,PATH_ISO
} ;
static char path_thru[] = {
0,0, 0,RES_PORT, 0,PA + INDEX_PORT, 0,PATH_PRIM,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_PRIM,
0,0, 0,RES_PORT, 0,PB + INDEX_PORT, 0,PATH_PRIM
} ;
static char path_wrap_s[] = {
0,0, 0,RES_PORT, 0,PS + INDEX_PORT, 0,PATH_PRIM,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_PRIM,
} ;
static char path_iso_s[] = {
0,0, 0,RES_PORT, 0,PS + INDEX_PORT, 0,PATH_ISO,
0,0, 0,RES_MAC, 0,INDEX_MAC, 0,PATH_ISO,
} ;
int cem_build_path(struct s_smc *smc, char *to, int path_index)
{
char *path ;
int len ;
switch (smc->mib.fddiSMTCF_State) {
default :
case SC0_ISOLATED :
path = smc->s.sas ? path_iso_s : path_iso ;
len = smc->s.sas ? sizeof(path_iso_s) : sizeof(path_iso) ;
break ;
case SC9_C_WRAP_A :
path = path_wrap_a ;
len = sizeof(path_wrap_a) ;
break ;
case SC10_C_WRAP_B :
path = path_wrap_b ;
len = sizeof(path_wrap_b) ;
break ;
case SC4_THRU_A :
path = path_thru ;
len = sizeof(path_thru) ;
break ;
case SC11_C_WRAP_S :
path = path_wrap_s ;
len = sizeof(path_wrap_s) ;
break ;
}
memcpy(to,path,len) ;
LINT_USE(path_index);
return len;
}