ubuntu-linux-kernel/drivers/misc/sgi-gru/grumain.c

977 lines
26 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* SN Platform GRU Driver
*
* DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD
*
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/err.h>
#include <linux/prefetch.h>
#include <asm/uv/uv_hub.h>
#include "gru.h"
#include "grutables.h"
#include "gruhandles.h"
unsigned long gru_options __read_mostly;
static struct device_driver gru_driver = {
.name = "gru"
};
static struct device gru_device = {
.init_name = "",
.driver = &gru_driver,
};
struct device *grudev = &gru_device;
/*
* Select a gru fault map to be used by the current cpu. Note that
* multiple cpus may be using the same map.
* ZZZ should be inline but did not work on emulator
*/
int gru_cpu_fault_map_id(void)
{
#ifdef CONFIG_IA64
return uv_blade_processor_id() % GRU_NUM_TFM;
#else
int cpu = smp_processor_id();
int id, core;
core = uv_cpu_core_number(cpu);
id = core + UV_MAX_INT_CORES * uv_cpu_socket_number(cpu);
return id;
#endif
}
/*--------- ASID Management -------------------------------------------
*
* Initially, assign asids sequentially from MIN_ASID .. MAX_ASID.
* Once MAX is reached, flush the TLB & start over. However,
* some asids may still be in use. There won't be many (percentage wise) still
* in use. Search active contexts & determine the value of the first
* asid in use ("x"s below). Set "limit" to this value.
* This defines a block of assignable asids.
*
* When "limit" is reached, search forward from limit+1 and determine the
* next block of assignable asids.
*
* Repeat until MAX_ASID is reached, then start over again.
*
* Each time MAX_ASID is reached, increment the asid generation. Since
* the search for in-use asids only checks contexts with GRUs currently
* assigned, asids in some contexts will be missed. Prior to loading
* a context, the asid generation of the GTS asid is rechecked. If it
* doesn't match the current generation, a new asid will be assigned.
*
* 0---------------x------------x---------------------x----|
* ^-next ^-limit ^-MAX_ASID
*
* All asid manipulation & context loading/unloading is protected by the
* gs_lock.
*/
/* Hit the asid limit. Start over */
static int gru_wrap_asid(struct gru_state *gru)
{
gru_dbg(grudev, "gid %d\n", gru->gs_gid);
STAT(asid_wrap);
gru->gs_asid_gen++;
return MIN_ASID;
}
/* Find the next chunk of unused asids */
static int gru_reset_asid_limit(struct gru_state *gru, int asid)
{
int i, gid, inuse_asid, limit;
gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
STAT(asid_next);
limit = MAX_ASID;
if (asid >= limit)
asid = gru_wrap_asid(gru);
gru_flush_all_tlb(gru);
gid = gru->gs_gid;
again:
for (i = 0; i < GRU_NUM_CCH; i++) {
if (!gru->gs_gts[i] || is_kernel_context(gru->gs_gts[i]))
continue;
inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid;
gru_dbg(grudev, "gid %d, gts %p, gms %p, inuse 0x%x, cxt %d\n",
gru->gs_gid, gru->gs_gts[i], gru->gs_gts[i]->ts_gms,
inuse_asid, i);
if (inuse_asid == asid) {
asid += ASID_INC;
if (asid >= limit) {
/*
* empty range: reset the range limit and
* start over
*/
limit = MAX_ASID;
if (asid >= MAX_ASID)
asid = gru_wrap_asid(gru);
goto again;
}
}
if ((inuse_asid > asid) && (inuse_asid < limit))
limit = inuse_asid;
}
gru->gs_asid_limit = limit;
gru->gs_asid = asid;
gru_dbg(grudev, "gid %d, new asid 0x%x, new_limit 0x%x\n", gru->gs_gid,
asid, limit);
return asid;
}
/* Assign a new ASID to a thread context. */
static int gru_assign_asid(struct gru_state *gru)
{
int asid;
gru->gs_asid += ASID_INC;
asid = gru->gs_asid;
if (asid >= gru->gs_asid_limit)
asid = gru_reset_asid_limit(gru, asid);
gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
return asid;
}
/*
* Clear n bits in a word. Return a word indicating the bits that were cleared.
* Optionally, build an array of chars that contain the bit numbers allocated.
*/
static unsigned long reserve_resources(unsigned long *p, int n, int mmax,
char *idx)
{
unsigned long bits = 0;
int i;
while (n--) {
i = find_first_bit(p, mmax);
if (i == mmax)
BUG();
__clear_bit(i, p);
__set_bit(i, &bits);
if (idx)
*idx++ = i;
}
return bits;
}
unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count,
char *cbmap)
{
return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
cbmap);
}
unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count,
char *dsmap)
{
return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
dsmap);
}
static void reserve_gru_resources(struct gru_state *gru,
struct gru_thread_state *gts)
{
gru->gs_active_contexts++;
gts->ts_cbr_map =
gru_reserve_cb_resources(gru, gts->ts_cbr_au_count,
gts->ts_cbr_idx);
gts->ts_dsr_map =
gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL);
}
static void free_gru_resources(struct gru_state *gru,
struct gru_thread_state *gts)
{
gru->gs_active_contexts--;
gru->gs_cbr_map |= gts->ts_cbr_map;
gru->gs_dsr_map |= gts->ts_dsr_map;
}
/*
* Check if a GRU has sufficient free resources to satisfy an allocation
* request. Note: GRU locks may or may not be held when this is called. If
* not held, recheck after acquiring the appropriate locks.
*
* Returns 1 if sufficient resources, 0 if not
*/
static int check_gru_resources(struct gru_state *gru, int cbr_au_count,
int dsr_au_count, int max_active_contexts)
{
return hweight64(gru->gs_cbr_map) >= cbr_au_count
&& hweight64(gru->gs_dsr_map) >= dsr_au_count
&& gru->gs_active_contexts < max_active_contexts;
}
/*
* TLB manangment requires tracking all GRU chiplets that have loaded a GSEG
* context.
*/
static int gru_load_mm_tracker(struct gru_state *gru,
struct gru_thread_state *gts)
{
struct gru_mm_struct *gms = gts->ts_gms;
struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid];
unsigned short ctxbitmap = (1 << gts->ts_ctxnum);
int asid;
spin_lock(&gms->ms_asid_lock);
asid = asids->mt_asid;
spin_lock(&gru->gs_asid_lock);
if (asid == 0 || (asids->mt_ctxbitmap == 0 && asids->mt_asid_gen !=
gru->gs_asid_gen)) {
asid = gru_assign_asid(gru);
asids->mt_asid = asid;
asids->mt_asid_gen = gru->gs_asid_gen;
STAT(asid_new);
} else {
STAT(asid_reuse);
}
spin_unlock(&gru->gs_asid_lock);
BUG_ON(asids->mt_ctxbitmap & ctxbitmap);
asids->mt_ctxbitmap |= ctxbitmap;
if (!test_bit(gru->gs_gid, gms->ms_asidmap))
__set_bit(gru->gs_gid, gms->ms_asidmap);
spin_unlock(&gms->ms_asid_lock);
gru_dbg(grudev,
"gid %d, gts %p, gms %p, ctxnum %d, asid 0x%x, asidmap 0x%lx\n",
gru->gs_gid, gts, gms, gts->ts_ctxnum, asid,
gms->ms_asidmap[0]);
return asid;
}
static void gru_unload_mm_tracker(struct gru_state *gru,
struct gru_thread_state *gts)
{
struct gru_mm_struct *gms = gts->ts_gms;
struct gru_mm_tracker *asids;
unsigned short ctxbitmap;
asids = &gms->ms_asids[gru->gs_gid];
ctxbitmap = (1 << gts->ts_ctxnum);
spin_lock(&gms->ms_asid_lock);
spin_lock(&gru->gs_asid_lock);
BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap);
asids->mt_ctxbitmap ^= ctxbitmap;
gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum %d, asidmap 0x%lx\n",
gru->gs_gid, gts, gms, gts->ts_ctxnum, gms->ms_asidmap[0]);
spin_unlock(&gru->gs_asid_lock);
spin_unlock(&gms->ms_asid_lock);
}
/*
* Decrement the reference count on a GTS structure. Free the structure
* if the reference count goes to zero.
*/
void gts_drop(struct gru_thread_state *gts)
{
if (gts && atomic_dec_return(&gts->ts_refcnt) == 0) {
if (gts->ts_gms)
gru_drop_mmu_notifier(gts->ts_gms);
kfree(gts);
STAT(gts_free);
}
}
/*
* Locate the GTS structure for the current thread.
*/
static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data
*vdata, int tsid)
{
struct gru_thread_state *gts;
list_for_each_entry(gts, &vdata->vd_head, ts_next)
if (gts->ts_tsid == tsid)
return gts;
return NULL;
}
/*
* Allocate a thread state structure.
*/
struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
int cbr_au_count, int dsr_au_count,
unsigned char tlb_preload_count, int options, int tsid)
{
struct gru_thread_state *gts;
struct gru_mm_struct *gms;
int bytes;
bytes = DSR_BYTES(dsr_au_count) + CBR_BYTES(cbr_au_count);
bytes += sizeof(struct gru_thread_state);
gts = kmalloc(bytes, GFP_KERNEL);
if (!gts)
return ERR_PTR(-ENOMEM);
STAT(gts_alloc);
memset(gts, 0, sizeof(struct gru_thread_state)); /* zero out header */
atomic_set(&gts->ts_refcnt, 1);
mutex_init(&gts->ts_ctxlock);
gts->ts_cbr_au_count = cbr_au_count;
gts->ts_dsr_au_count = dsr_au_count;
gts->ts_tlb_preload_count = tlb_preload_count;
gts->ts_user_options = options;
gts->ts_user_blade_id = -1;
gts->ts_user_chiplet_id = -1;
gts->ts_tsid = tsid;
gts->ts_ctxnum = NULLCTX;
gts->ts_tlb_int_select = -1;
gts->ts_cch_req_slice = -1;
gts->ts_sizeavail = GRU_SIZEAVAIL(PAGE_SHIFT);
if (vma) {
gts->ts_mm = current->mm;
gts->ts_vma = vma;
gms = gru_register_mmu_notifier();
if (IS_ERR(gms))
goto err;
gts->ts_gms = gms;
}
gru_dbg(grudev, "alloc gts %p\n", gts);
return gts;
err:
gts_drop(gts);
return ERR_CAST(gms);
}
/*
* Allocate a vma private data structure.
*/
struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid)
{
struct gru_vma_data *vdata = NULL;
vdata = kmalloc(sizeof(*vdata), GFP_KERNEL);
if (!vdata)
return NULL;
STAT(vdata_alloc);
INIT_LIST_HEAD(&vdata->vd_head);
spin_lock_init(&vdata->vd_lock);
gru_dbg(grudev, "alloc vdata %p\n", vdata);
return vdata;
}
/*
* Find the thread state structure for the current thread.
*/
struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma,
int tsid)
{
struct gru_vma_data *vdata = vma->vm_private_data;
struct gru_thread_state *gts;
spin_lock(&vdata->vd_lock);
gts = gru_find_current_gts_nolock(vdata, tsid);
spin_unlock(&vdata->vd_lock);
gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
return gts;
}
/*
* Allocate a new thread state for a GSEG. Note that races may allow
* another thread to race to create a gts.
*/
struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma,
int tsid)
{
struct gru_vma_data *vdata = vma->vm_private_data;
struct gru_thread_state *gts, *ngts;
gts = gru_alloc_gts(vma, vdata->vd_cbr_au_count,
vdata->vd_dsr_au_count,
vdata->vd_tlb_preload_count,
vdata->vd_user_options, tsid);
if (IS_ERR(gts))
return gts;
spin_lock(&vdata->vd_lock);
ngts = gru_find_current_gts_nolock(vdata, tsid);
if (ngts) {
gts_drop(gts);
gts = ngts;
STAT(gts_double_allocate);
} else {
list_add(&gts->ts_next, &vdata->vd_head);
}
spin_unlock(&vdata->vd_lock);
gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
return gts;
}
/*
* Free the GRU context assigned to the thread state.
*/
static void gru_free_gru_context(struct gru_thread_state *gts)
{
struct gru_state *gru;
gru = gts->ts_gru;
gru_dbg(grudev, "gts %p, gid %d\n", gts, gru->gs_gid);
spin_lock(&gru->gs_lock);
gru->gs_gts[gts->ts_ctxnum] = NULL;
free_gru_resources(gru, gts);
BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0);
__clear_bit(gts->ts_ctxnum, &gru->gs_context_map);
gts->ts_ctxnum = NULLCTX;
gts->ts_gru = NULL;
gts->ts_blade = -1;
spin_unlock(&gru->gs_lock);
gts_drop(gts);
STAT(free_context);
}
/*
* Prefetching cachelines help hardware performance.
* (Strictly a performance enhancement. Not functionally required).
*/
static void prefetch_data(void *p, int num, int stride)
{
while (num-- > 0) {
prefetchw(p);
p += stride;
}
}
static inline long gru_copy_handle(void *d, void *s)
{
memcpy(d, s, GRU_HANDLE_BYTES);
return GRU_HANDLE_BYTES;
}
static void gru_prefetch_context(void *gseg, void *cb, void *cbe,
unsigned long cbrmap, unsigned long length)
{
int i, scr;
prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES,
GRU_CACHE_LINE_BYTES);
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES);
prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1,
GRU_CACHE_LINE_BYTES);
cb += GRU_HANDLE_STRIDE;
}
}
static void gru_load_context_data(void *save, void *grubase, int ctxnum,
unsigned long cbrmap, unsigned long dsrmap,
int data_valid)
{
void *gseg, *cb, *cbe;
unsigned long length;
int i, scr;
gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
cb = gseg + GRU_CB_BASE;
cbe = grubase + GRU_CBE_BASE;
length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
if (data_valid) {
save += gru_copy_handle(cb, save);
save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE,
save);
} else {
memset(cb, 0, GRU_CACHE_LINE_BYTES);
memset(cbe + i * GRU_HANDLE_STRIDE, 0,
GRU_CACHE_LINE_BYTES);
}
/* Flush CBE to hide race in context restart */
mb();
gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
cb += GRU_HANDLE_STRIDE;
}
if (data_valid)
memcpy(gseg + GRU_DS_BASE, save, length);
else
memset(gseg + GRU_DS_BASE, 0, length);
}
static void gru_unload_context_data(void *save, void *grubase, int ctxnum,
unsigned long cbrmap, unsigned long dsrmap)
{
void *gseg, *cb, *cbe;
unsigned long length;
int i, scr;
gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
cb = gseg + GRU_CB_BASE;
cbe = grubase + GRU_CBE_BASE;
length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
/* CBEs may not be coherent. Flush them from cache */
for_each_cbr_in_allocation_map(i, &cbrmap, scr)
gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE);
mb(); /* Let the CL flush complete */
gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
save += gru_copy_handle(save, cb);
save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE);
cb += GRU_HANDLE_STRIDE;
}
memcpy(save, gseg + GRU_DS_BASE, length);
}
void gru_unload_context(struct gru_thread_state *gts, int savestate)
{
struct gru_state *gru = gts->ts_gru;
struct gru_context_configuration_handle *cch;
int ctxnum = gts->ts_ctxnum;
if (!is_kernel_context(gts))
zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE);
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
gru_dbg(grudev, "gts %p, cbrmap 0x%lx, dsrmap 0x%lx\n",
gts, gts->ts_cbr_map, gts->ts_dsr_map);
lock_cch_handle(cch);
if (cch_interrupt_sync(cch))
BUG();
if (!is_kernel_context(gts))
gru_unload_mm_tracker(gru, gts);
if (savestate) {
gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr,
ctxnum, gts->ts_cbr_map,
gts->ts_dsr_map);
gts->ts_data_valid = 1;
}
if (cch_deallocate(cch))
BUG();
unlock_cch_handle(cch);
gru_free_gru_context(gts);
}
/*
* Load a GRU context by copying it from the thread data structure in memory
* to the GRU.
*/
void gru_load_context(struct gru_thread_state *gts)
{
struct gru_state *gru = gts->ts_gru;
struct gru_context_configuration_handle *cch;
int i, err, asid, ctxnum = gts->ts_ctxnum;
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
lock_cch_handle(cch);
cch->tfm_fault_bit_enable =
(gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
|| gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
if (cch->tlb_int_enable) {
gts->ts_tlb_int_select = gru_cpu_fault_map_id();
cch->tlb_int_select = gts->ts_tlb_int_select;
}
if (gts->ts_cch_req_slice >= 0) {
cch->req_slice_set_enable = 1;
cch->req_slice = gts->ts_cch_req_slice;
} else {
cch->req_slice_set_enable =0;
}
cch->tfm_done_bit_enable = 0;
cch->dsr_allocation_map = gts->ts_dsr_map;
cch->cbr_allocation_map = gts->ts_cbr_map;
if (is_kernel_context(gts)) {
cch->unmap_enable = 1;
cch->tfm_done_bit_enable = 1;
cch->cb_int_enable = 1;
cch->tlb_int_select = 0; /* For now, ints go to cpu 0 */
} else {
cch->unmap_enable = 0;
cch->tfm_done_bit_enable = 0;
cch->cb_int_enable = 0;
asid = gru_load_mm_tracker(gru, gts);
for (i = 0; i < 8; i++) {
cch->asid[i] = asid + i;
cch->sizeavail[i] = gts->ts_sizeavail;
}
}
err = cch_allocate(cch);
if (err) {
gru_dbg(grudev,
"err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n",
err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map);
BUG();
}
gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum,
gts->ts_cbr_map, gts->ts_dsr_map, gts->ts_data_valid);
if (cch_start(cch))
BUG();
unlock_cch_handle(cch);
gru_dbg(grudev, "gid %d, gts %p, cbrmap 0x%lx, dsrmap 0x%lx, tie %d, tis %d\n",
gts->ts_gru->gs_gid, gts, gts->ts_cbr_map, gts->ts_dsr_map,
(gts->ts_user_options == GRU_OPT_MISS_FMM_INTR), gts->ts_tlb_int_select);
}
/*
* Update fields in an active CCH:
* - retarget interrupts on local blade
* - update sizeavail mask
*/
int gru_update_cch(struct gru_thread_state *gts)
{
struct gru_context_configuration_handle *cch;
struct gru_state *gru = gts->ts_gru;
int i, ctxnum = gts->ts_ctxnum, ret = 0;
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
lock_cch_handle(cch);
if (cch->state == CCHSTATE_ACTIVE) {
if (gru->gs_gts[gts->ts_ctxnum] != gts)
goto exit;
if (cch_interrupt(cch))
BUG();
for (i = 0; i < 8; i++)
cch->sizeavail[i] = gts->ts_sizeavail;
gts->ts_tlb_int_select = gru_cpu_fault_map_id();
cch->tlb_int_select = gru_cpu_fault_map_id();
cch->tfm_fault_bit_enable =
(gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
|| gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
if (cch_start(cch))
BUG();
ret = 1;
}
exit:
unlock_cch_handle(cch);
return ret;
}
/*
* Update CCH tlb interrupt select. Required when all the following is true:
* - task's GRU context is loaded into a GRU
* - task is using interrupt notification for TLB faults
* - task has migrated to a different cpu on the same blade where
* it was previously running.
*/
static int gru_retarget_intr(struct gru_thread_state *gts)
{
if (gts->ts_tlb_int_select < 0
|| gts->ts_tlb_int_select == gru_cpu_fault_map_id())
return 0;
gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select,
gru_cpu_fault_map_id());
return gru_update_cch(gts);
}
/*
* Check if a GRU context is allowed to use a specific chiplet. By default
* a context is assigned to any blade-local chiplet. However, users can
* override this.
* Returns 1 if assignment allowed, 0 otherwise
*/
static int gru_check_chiplet_assignment(struct gru_state *gru,
struct gru_thread_state *gts)
{
int blade_id;
int chiplet_id;
blade_id = gts->ts_user_blade_id;
if (blade_id < 0)
blade_id = uv_numa_blade_id();
chiplet_id = gts->ts_user_chiplet_id;
return gru->gs_blade_id == blade_id &&
(chiplet_id < 0 || chiplet_id == gru->gs_chiplet_id);
}
/*
* Unload the gru context if it is not assigned to the correct blade or
* chiplet. Misassignment can occur if the process migrates to a different
* blade or if the user changes the selected blade/chiplet.
*/
void gru_check_context_placement(struct gru_thread_state *gts)
{
struct gru_state *gru;
/*
* If the current task is the context owner, verify that the
* context is correctly placed. This test is skipped for non-owner
* references. Pthread apps use non-owner references to the CBRs.
*/
gru = gts->ts_gru;
if (!gru || gts->ts_tgid_owner != current->tgid)
return;
if (!gru_check_chiplet_assignment(gru, gts)) {
STAT(check_context_unload);
gru_unload_context(gts, 1);
} else if (gru_retarget_intr(gts)) {
STAT(check_context_retarget_intr);
}
}
/*
* Insufficient GRU resources available on the local blade. Steal a context from
* a process. This is a hack until a _real_ resource scheduler is written....
*/
#define next_ctxnum(n) ((n) < GRU_NUM_CCH - 2 ? (n) + 1 : 0)
#define next_gru(b, g) (((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ? \
((g)+1) : &(b)->bs_grus[0])
static int is_gts_stealable(struct gru_thread_state *gts,
struct gru_blade_state *bs)
{
if (is_kernel_context(gts))
return down_write_trylock(&bs->bs_kgts_sema);
else
return mutex_trylock(&gts->ts_ctxlock);
}
static void gts_stolen(struct gru_thread_state *gts,
struct gru_blade_state *bs)
{
if (is_kernel_context(gts)) {
up_write(&bs->bs_kgts_sema);
STAT(steal_kernel_context);
} else {
mutex_unlock(&gts->ts_ctxlock);
STAT(steal_user_context);
}
}
void gru_steal_context(struct gru_thread_state *gts)
{
struct gru_blade_state *blade;
struct gru_state *gru, *gru0;
struct gru_thread_state *ngts = NULL;
int ctxnum, ctxnum0, flag = 0, cbr, dsr;
int blade_id;
blade_id = gts->ts_user_blade_id;
if (blade_id < 0)
blade_id = uv_numa_blade_id();
cbr = gts->ts_cbr_au_count;
dsr = gts->ts_dsr_au_count;
blade = gru_base[blade_id];
spin_lock(&blade->bs_lock);
ctxnum = next_ctxnum(blade->bs_lru_ctxnum);
gru = blade->bs_lru_gru;
if (ctxnum == 0)
gru = next_gru(blade, gru);
blade->bs_lru_gru = gru;
blade->bs_lru_ctxnum = ctxnum;
ctxnum0 = ctxnum;
gru0 = gru;
while (1) {
if (gru_check_chiplet_assignment(gru, gts)) {
if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH))
break;
spin_lock(&gru->gs_lock);
for (; ctxnum < GRU_NUM_CCH; ctxnum++) {
if (flag && gru == gru0 && ctxnum == ctxnum0)
break;
ngts = gru->gs_gts[ctxnum];
/*
* We are grabbing locks out of order, so trylock is
* needed. GTSs are usually not locked, so the odds of
* success are high. If trylock fails, try to steal a
* different GSEG.
*/
if (ngts && is_gts_stealable(ngts, blade))
break;
ngts = NULL;
}
spin_unlock(&gru->gs_lock);
if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0))
break;
}
if (flag && gru == gru0)
break;
flag = 1;
ctxnum = 0;
gru = next_gru(blade, gru);
}
spin_unlock(&blade->bs_lock);
if (ngts) {
gts->ustats.context_stolen++;
ngts->ts_steal_jiffies = jiffies;
gru_unload_context(ngts, is_kernel_context(ngts) ? 0 : 1);
gts_stolen(ngts, blade);
} else {
STAT(steal_context_failed);
}
gru_dbg(grudev,
"stole gid %d, ctxnum %d from gts %p. Need cb %d, ds %d;"
" avail cb %ld, ds %ld\n",
gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map),
hweight64(gru->gs_dsr_map));
}
/*
* Assign a gru context.
*/
static int gru_assign_context_number(struct gru_state *gru)
{
int ctxnum;
ctxnum = find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH);
__set_bit(ctxnum, &gru->gs_context_map);
return ctxnum;
}
/*
* Scan the GRUs on the local blade & assign a GRU context.
*/
struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts)
{
struct gru_state *gru, *grux;
int i, max_active_contexts;
int blade_id = gts->ts_user_blade_id;
if (blade_id < 0)
blade_id = uv_numa_blade_id();
again:
gru = NULL;
max_active_contexts = GRU_NUM_CCH;
for_each_gru_on_blade(grux, blade_id, i) {
if (!gru_check_chiplet_assignment(grux, gts))
continue;
if (check_gru_resources(grux, gts->ts_cbr_au_count,
gts->ts_dsr_au_count,
max_active_contexts)) {
gru = grux;
max_active_contexts = grux->gs_active_contexts;
if (max_active_contexts == 0)
break;
}
}
if (gru) {
spin_lock(&gru->gs_lock);
if (!check_gru_resources(gru, gts->ts_cbr_au_count,
gts->ts_dsr_au_count, GRU_NUM_CCH)) {
spin_unlock(&gru->gs_lock);
goto again;
}
reserve_gru_resources(gru, gts);
gts->ts_gru = gru;
gts->ts_blade = gru->gs_blade_id;
gts->ts_ctxnum = gru_assign_context_number(gru);
atomic_inc(&gts->ts_refcnt);
gru->gs_gts[gts->ts_ctxnum] = gts;
spin_unlock(&gru->gs_lock);
STAT(assign_context);
gru_dbg(grudev,
"gseg %p, gts %p, gid %d, ctx %d, cbr %d, dsr %d\n",
gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts,
gts->ts_gru->gs_gid, gts->ts_ctxnum,
gts->ts_cbr_au_count, gts->ts_dsr_au_count);
} else {
gru_dbg(grudev, "failed to allocate a GTS %s\n", "");
STAT(assign_context_failed);
}
return gru;
}
/*
* gru_nopage
*
* Map the user's GRU segment
*
* Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries.
*/
int gru_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct gru_thread_state *gts;
unsigned long paddr, vaddr;
unsigned long expires;
vaddr = vmf->address;
gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n",
vma, vaddr, GSEG_BASE(vaddr));
STAT(nopfn);
/* The following check ensures vaddr is a valid address in the VMA */
gts = gru_find_thread_state(vma, TSID(vaddr, vma));
if (!gts)
return VM_FAULT_SIGBUS;
again:
mutex_lock(&gts->ts_ctxlock);
preempt_disable();
gru_check_context_placement(gts);
if (!gts->ts_gru) {
STAT(load_user_context);
if (!gru_assign_gru_context(gts)) {
preempt_enable();
mutex_unlock(&gts->ts_ctxlock);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */
expires = gts->ts_steal_jiffies + GRU_STEAL_DELAY;
if (time_before(expires, jiffies))
gru_steal_context(gts);
goto again;
}
gru_load_context(gts);
paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum);
remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1),
paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE,
vma->vm_page_prot);
}
preempt_enable();
mutex_unlock(&gts->ts_ctxlock);
return VM_FAULT_NOPAGE;
}