ubuntu-linux-kernel/drivers/media/platform/vsp1/vsp1_wpf.c

547 lines
15 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* vsp1_wpf.c -- R-Car VSP1 Write Pixel Formatter
*
* Copyright (C) 2013-2014 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <media/v4l2-subdev.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_video.h"
#define WPF_GEN2_MAX_WIDTH 2048U
#define WPF_GEN2_MAX_HEIGHT 2048U
#define WPF_GEN3_MAX_WIDTH 8190U
#define WPF_GEN3_MAX_HEIGHT 8190U
/* -----------------------------------------------------------------------------
* Device Access
*/
static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
struct vsp1_dl_list *dl, u32 reg, u32 data)
{
vsp1_dl_list_write(dl, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
}
/* -----------------------------------------------------------------------------
* Controls
*/
enum wpf_flip_ctrl {
WPF_CTRL_VFLIP = 0,
WPF_CTRL_HFLIP = 1,
};
static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
{
struct vsp1_video *video = wpf->video;
struct v4l2_mbus_framefmt *sink_format;
struct v4l2_mbus_framefmt *source_format;
bool rotate;
int ret = 0;
/*
* Only consider the 0°/180° from/to 90°/270° modifications, the rest
* is taken care of by the flipping configuration.
*/
rotate = rotation == 90 || rotation == 270;
if (rotate == wpf->flip.rotate)
return 0;
/* Changing rotation isn't allowed when buffers are allocated. */
mutex_lock(&video->lock);
if (vb2_is_busy(&video->queue)) {
ret = -EBUSY;
goto done;
}
sink_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SINK);
source_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SOURCE);
mutex_lock(&wpf->entity.lock);
if (rotate) {
source_format->width = sink_format->height;
source_format->height = sink_format->width;
} else {
source_format->width = sink_format->width;
source_format->height = sink_format->height;
}
wpf->flip.rotate = rotate;
mutex_unlock(&wpf->entity.lock);
done:
mutex_unlock(&video->lock);
return ret;
}
static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct vsp1_rwpf *wpf =
container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
unsigned int rotation;
u32 flip = 0;
int ret;
/* Update the rotation. */
rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
ret = vsp1_wpf_set_rotation(wpf, rotation);
if (ret < 0)
return ret;
/*
* Compute the flip value resulting from all three controls, with
* rotation by 180° flipping the image in both directions. Store the
* result in the pending flip field for the next frame that will be
* processed.
*/
if (wpf->flip.ctrls.vflip->val)
flip |= BIT(WPF_CTRL_VFLIP);
if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
flip |= BIT(WPF_CTRL_HFLIP);
if (rotation == 180 || rotation == 270)
flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
spin_lock_irq(&wpf->flip.lock);
wpf->flip.pending = flip;
spin_unlock_irq(&wpf->flip.lock);
return 0;
}
static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = {
.s_ctrl = vsp1_wpf_s_ctrl,
};
static int wpf_init_controls(struct vsp1_rwpf *wpf)
{
struct vsp1_device *vsp1 = wpf->entity.vsp1;
unsigned int num_flip_ctrls;
spin_lock_init(&wpf->flip.lock);
if (wpf->entity.index != 0) {
/* Only WPF0 supports flipping. */
num_flip_ctrls = 0;
} else if (vsp1->info->features & VSP1_HAS_WPF_HFLIP) {
/*
* When horizontal flip is supported the WPF implements three
* controls (horizontal flip, vertical flip and rotation).
*/
num_flip_ctrls = 3;
} else if (vsp1->info->features & VSP1_HAS_WPF_VFLIP) {
/*
* When only vertical flip is supported the WPF implements a
* single control (vertical flip).
*/
num_flip_ctrls = 1;
} else {
/* Otherwise flipping is not supported. */
num_flip_ctrls = 0;
}
vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
if (num_flip_ctrls >= 1) {
wpf->flip.ctrls.vflip =
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
}
if (num_flip_ctrls == 3) {
wpf->flip.ctrls.hflip =
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
wpf->flip.ctrls.rotate =
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
V4L2_CID_ROTATE, 0, 270, 90, 0);
v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
}
if (wpf->ctrls.error) {
dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
wpf->entity.index);
return wpf->ctrls.error;
}
return 0;
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Core Operations
*/
static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct vsp1_rwpf *wpf = to_rwpf(subdev);
struct vsp1_device *vsp1 = wpf->entity.vsp1;
if (enable)
return 0;
/*
* Write to registers directly when stopping the stream as there will be
* no pipeline run to apply the display list.
*/
vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
VI6_WPF_SRCRPF, 0);
return 0;
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_video_ops wpf_video_ops = {
.s_stream = wpf_s_stream,
};
static const struct v4l2_subdev_ops wpf_ops = {
.video = &wpf_video_ops,
.pad = &vsp1_rwpf_pad_ops,
};
/* -----------------------------------------------------------------------------
* VSP1 Entity Operations
*/
static void vsp1_wpf_destroy(struct vsp1_entity *entity)
{
struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
vsp1_dlm_destroy(wpf->dlm);
}
static void wpf_configure(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
enum vsp1_entity_params params)
{
struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
struct vsp1_device *vsp1 = wpf->entity.vsp1;
const struct v4l2_mbus_framefmt *source_format;
const struct v4l2_mbus_framefmt *sink_format;
unsigned int i;
u32 outfmt = 0;
u32 srcrpf = 0;
if (params == VSP1_ENTITY_PARAMS_RUNTIME) {
const unsigned int mask = BIT(WPF_CTRL_VFLIP)
| BIT(WPF_CTRL_HFLIP);
unsigned long flags;
spin_lock_irqsave(&wpf->flip.lock, flags);
wpf->flip.active = (wpf->flip.active & ~mask)
| (wpf->flip.pending & mask);
spin_unlock_irqrestore(&wpf->flip.lock, flags);
outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt;
if (wpf->flip.active & BIT(WPF_CTRL_VFLIP))
outfmt |= VI6_WPF_OUTFMT_FLP;
if (wpf->flip.active & BIT(WPF_CTRL_HFLIP))
outfmt |= VI6_WPF_OUTFMT_HFLP;
vsp1_wpf_write(wpf, dl, VI6_WPF_OUTFMT, outfmt);
return;
}
sink_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SINK);
source_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SOURCE);
if (params == VSP1_ENTITY_PARAMS_PARTITION) {
const struct v4l2_pix_format_mplane *format = &wpf->format;
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
struct vsp1_rwpf_memory mem = wpf->mem;
unsigned int flip = wpf->flip.active;
unsigned int width = sink_format->width;
unsigned int height = sink_format->height;
unsigned int offset;
/*
* Cropping. The partition algorithm can split the image into
* multiple slices.
*/
if (pipe->partitions > 1)
width = pipe->partition->wpf.width;
vsp1_wpf_write(wpf, dl, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
(0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
(width << VI6_WPF_SZCLIP_SIZE_SHIFT));
vsp1_wpf_write(wpf, dl, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
(0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
(height << VI6_WPF_SZCLIP_SIZE_SHIFT));
if (pipe->lif)
return;
/*
* Update the memory offsets based on flipping configuration.
* The destination addresses point to the locations where the
* VSP starts writing to memory, which can be any corner of the
* image depending on the combination of flipping and rotation.
*/
/*
* First take the partition left coordinate into account.
* Compute the offset to order the partitions correctly on the
* output based on whether flipping is enabled. Consider
* horizontal flipping when rotation is disabled but vertical
* flipping when rotation is enabled, as rotating the image
* switches the horizontal and vertical directions. The offset
* is applied horizontally or vertically accordingly.
*/
if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
offset = format->width - pipe->partition->wpf.left
- pipe->partition->wpf.width;
else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
offset = format->height - pipe->partition->wpf.left
- pipe->partition->wpf.width;
else
offset = pipe->partition->wpf.left;
for (i = 0; i < format->num_planes; ++i) {
unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
if (wpf->flip.rotate)
mem.addr[i] += offset / vsub
* format->plane_fmt[i].bytesperline;
else
mem.addr[i] += offset / hsub
* fmtinfo->bpp[i] / 8;
}
if (flip & BIT(WPF_CTRL_VFLIP)) {
/*
* When rotating the output (after rotation) image
* height is equal to the partition width (before
* rotation). Otherwise it is equal to the output
* image height.
*/
if (wpf->flip.rotate)
height = pipe->partition->wpf.width;
else
height = format->height;
mem.addr[0] += (height - 1)
* format->plane_fmt[0].bytesperline;
if (format->num_planes > 1) {
offset = (height / fmtinfo->vsub - 1)
* format->plane_fmt[1].bytesperline;
mem.addr[1] += offset;
mem.addr[2] += offset;
}
}
if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
unsigned int hoffset = max(0, (int)format->width - 16);
/*
* Compute the output coordinate. The partition
* horizontal (left) offset becomes a vertical offset.
*/
for (i = 0; i < format->num_planes; ++i) {
unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
mem.addr[i] += hoffset / hsub
* fmtinfo->bpp[i] / 8;
}
}
/*
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
* formats. Swap the U and V planes manually in that case.
*/
if (vsp1->info->gen == 3 && format->num_planes == 3 &&
fmtinfo->swap_uv)
swap(mem.addr[1], mem.addr[2]);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]);
return;
}
/* Format */
if (!pipe->lif) {
const struct v4l2_pix_format_mplane *format = &wpf->format;
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
if (wpf->flip.rotate)
outfmt |= VI6_WPF_OUTFMT_ROT;
if (fmtinfo->alpha)
outfmt |= VI6_WPF_OUTFMT_PXA;
if (fmtinfo->swap_yc)
outfmt |= VI6_WPF_OUTFMT_SPYCS;
if (fmtinfo->swap_uv)
outfmt |= VI6_WPF_OUTFMT_SPUVS;
/* Destination stride and byte swapping. */
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_Y,
format->plane_fmt[0].bytesperline);
if (format->num_planes > 1)
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_C,
format->plane_fmt[1].bytesperline);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSWAP, fmtinfo->swap);
if (vsp1->info->features & VSP1_HAS_WPF_HFLIP &&
wpf->entity.index == 0)
vsp1_wpf_write(wpf, dl, VI6_WPF_ROT_CTRL,
VI6_WPF_ROT_CTRL_LN16 |
(256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT));
}
if (sink_format->code != source_format->code)
outfmt |= VI6_WPF_OUTFMT_CSC;
wpf->outfmt = outfmt;
vsp1_dl_list_write(dl, VI6_DPR_WPF_FPORCH(wpf->entity.index),
VI6_DPR_WPF_FPORCH_FP_WPFN);
vsp1_dl_list_write(dl, VI6_WPF_WRBCK_CTRL, 0);
/*
* Sources. If the pipeline has a single input and BRU is not used,
* configure it as the master layer. Otherwise configure all
* inputs as sub-layers and select the virtual RPF as the master
* layer.
*/
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *input = pipe->inputs[i];
if (!input)
continue;
srcrpf |= (!pipe->bru && pipe->num_inputs == 1)
? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
: VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
}
if (pipe->bru || pipe->num_inputs > 1)
srcrpf |= pipe->bru->type == VSP1_ENTITY_BRU
? VI6_WPF_SRCRPF_VIRACT_MST
: VI6_WPF_SRCRPF_VIRACT2_MST;
vsp1_wpf_write(wpf, dl, VI6_WPF_SRCRPF, srcrpf);
/* Enable interrupts */
vsp1_dl_list_write(dl, VI6_WPF_IRQ_STA(wpf->entity.index), 0);
vsp1_dl_list_write(dl, VI6_WPF_IRQ_ENB(wpf->entity.index),
VI6_WFP_IRQ_ENB_DFEE);
}
static unsigned int wpf_max_width(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe)
{
struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
return wpf->flip.rotate ? 256 : wpf->max_width;
}
static void wpf_partition(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_partition *partition,
unsigned int partition_idx,
struct vsp1_partition_window *window)
{
partition->wpf = *window;
}
static const struct vsp1_entity_operations wpf_entity_ops = {
.destroy = vsp1_wpf_destroy,
.configure = wpf_configure,
.max_width = wpf_max_width,
.partition = wpf_partition,
};
/* -----------------------------------------------------------------------------
* Initialization and Cleanup
*/
struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
{
struct vsp1_rwpf *wpf;
char name[6];
int ret;
wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
if (wpf == NULL)
return ERR_PTR(-ENOMEM);
if (vsp1->info->gen == 2) {
wpf->max_width = WPF_GEN2_MAX_WIDTH;
wpf->max_height = WPF_GEN2_MAX_HEIGHT;
} else {
wpf->max_width = WPF_GEN3_MAX_WIDTH;
wpf->max_height = WPF_GEN3_MAX_HEIGHT;
}
wpf->entity.ops = &wpf_entity_ops;
wpf->entity.type = VSP1_ENTITY_WPF;
wpf->entity.index = index;
sprintf(name, "wpf.%u", index);
ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
if (ret < 0)
return ERR_PTR(ret);
/* Initialize the display list manager. */
wpf->dlm = vsp1_dlm_create(vsp1, index, 64);
if (!wpf->dlm) {
ret = -ENOMEM;
goto error;
}
/* Initialize the control handler. */
ret = wpf_init_controls(wpf);
if (ret < 0) {
dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
index);
goto error;
}
v4l2_ctrl_handler_setup(&wpf->ctrls);
return wpf;
error:
vsp1_entity_destroy(&wpf->entity);
return ERR_PTR(ret);
}