ubuntu-linux-kernel/drivers/media/pci/cx25821/cx25821-audio-upstream.c

680 lines
18 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "cx25821-video.h"
#include "cx25821-audio-upstream.h"
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
MODULE_DESCRIPTION("v4l2 driver module for cx25821 based TV cards");
MODULE_AUTHOR("Hiep Huynh <hiep.huynh@conexant.com>");
MODULE_LICENSE("GPL");
static int _intr_msk = FLD_AUD_SRC_RISCI1 | FLD_AUD_SRC_OF |
FLD_AUD_SRC_SYNC | FLD_AUD_SRC_OPC_ERR;
static int cx25821_sram_channel_setup_upstream_audio(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc)
{
unsigned int i, lines;
u32 cdt;
if (ch->cmds_start == 0) {
cx_write(ch->ptr1_reg, 0);
cx_write(ch->ptr2_reg, 0);
cx_write(ch->cnt2_reg, 0);
cx_write(ch->cnt1_reg, 0);
return 0;
}
bpl = (bpl + 7) & ~7; /* alignment */
cdt = ch->cdt;
lines = ch->fifo_size / bpl;
if (lines > 3)
lines = 3;
BUG_ON(lines < 2);
/* write CDT */
for (i = 0; i < lines; i++) {
cx_write(cdt + 16 * i, ch->fifo_start + bpl * i);
cx_write(cdt + 16 * i + 4, 0);
cx_write(cdt + 16 * i + 8, 0);
cx_write(cdt + 16 * i + 12, 0);
}
/* write CMDS */
cx_write(ch->cmds_start + 0, risc);
cx_write(ch->cmds_start + 4, 0);
cx_write(ch->cmds_start + 8, cdt);
cx_write(ch->cmds_start + 12, AUDIO_CDT_SIZE_QW);
cx_write(ch->cmds_start + 16, ch->ctrl_start);
/* IQ size */
cx_write(ch->cmds_start + 20, AUDIO_IQ_SIZE_DW);
for (i = 24; i < 80; i += 4)
cx_write(ch->cmds_start + i, 0);
/* fill registers */
cx_write(ch->ptr1_reg, ch->fifo_start);
cx_write(ch->ptr2_reg, cdt);
cx_write(ch->cnt2_reg, AUDIO_CDT_SIZE_QW);
cx_write(ch->cnt1_reg, AUDIO_CLUSTER_SIZE_QW - 1);
return 0;
}
static __le32 *cx25821_risc_field_upstream_audio(struct cx25821_dev *dev,
__le32 *rp,
dma_addr_t databuf_phys_addr,
unsigned int bpl,
int fifo_enable)
{
unsigned int line;
const struct sram_channel *sram_ch =
dev->channels[dev->_audio_upstream_channel].sram_channels;
int offset = 0;
/* scan lines */
for (line = 0; line < LINES_PER_AUDIO_BUFFER; line++) {
*(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl);
*(rp++) = cpu_to_le32(databuf_phys_addr + offset);
*(rp++) = cpu_to_le32(0); /* bits 63-32 */
/* Check if we need to enable the FIFO
* after the first 3 lines.
* For the upstream audio channel,
* the risc engine will enable the FIFO */
if (fifo_enable && line == 2) {
*(rp++) = RISC_WRITECR;
*(rp++) = sram_ch->dma_ctl;
*(rp++) = sram_ch->fld_aud_fifo_en;
*(rp++) = 0x00000020;
}
offset += AUDIO_LINE_SIZE;
}
return rp;
}
static int cx25821_risc_buffer_upstream_audio(struct cx25821_dev *dev,
struct pci_dev *pci,
unsigned int bpl, unsigned int lines)
{
__le32 *rp;
int fifo_enable = 0;
int frame = 0, i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int databuf_offset = 0;
int risc_flag = RISC_CNT_INC;
dma_addr_t risc_phys_jump_addr;
/* Virtual address of Risc buffer program */
rp = dev->_risc_virt_addr;
/* sync instruction */
*(rp++) = cpu_to_le32(RISC_RESYNC | AUDIO_SYNC_LINE);
for (frame = 0; frame < NUM_AUDIO_FRAMES; frame++) {
databuf_offset = frame_size * frame;
if (frame == 0) {
fifo_enable = 1;
risc_flag = RISC_CNT_RESET;
} else {
fifo_enable = 0;
risc_flag = RISC_CNT_INC;
}
/* Calculate physical jump address */
if ((frame + 1) == NUM_AUDIO_FRAMES) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE;
} else {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE * (frame + 1);
}
rp = cx25821_risc_field_upstream_audio(dev, rp,
dev->_audiodata_buf_phys_addr + databuf_offset,
bpl, fifo_enable);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++)
*(rp++) = cpu_to_le32(RISC_NOOP);
}
/* Loop to (Nth)FrameRISC or to Start of Risc program &
* generate IRQ */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | risc_flag);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
/* Recalculate virtual address based on frame index */
rp = dev->_risc_virt_addr + RISC_SYNC_INSTRUCTION_SIZE / 4 +
(AUDIO_RISC_DMA_BUF_SIZE * (frame + 1) / 4);
}
return 0;
}
static void cx25821_free_memory_audio(struct cx25821_dev *dev)
{
if (dev->_risc_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiorisc_size,
dev->_risc_virt_addr, dev->_risc_phys_addr);
dev->_risc_virt_addr = NULL;
}
if (dev->_audiodata_buf_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiodata_buf_size,
dev->_audiodata_buf_virt_addr,
dev->_audiodata_buf_phys_addr);
dev->_audiodata_buf_virt_addr = NULL;
}
}
void cx25821_stop_upstream_audio(struct cx25821_dev *dev)
{
const struct sram_channel *sram_ch =
dev->channels[AUDIO_UPSTREAM_SRAM_CHANNEL_B].sram_channels;
u32 tmp = 0;
if (!dev->_audio_is_running) {
printk(KERN_DEBUG
pr_fmt("No audio file is currently running so return!\n"));
return;
}
/* Disable RISC interrupts */
cx_write(sram_ch->int_msk, 0);
/* Turn OFF risc and fifo enable in AUD_DMA_CNTRL */
tmp = cx_read(sram_ch->dma_ctl);
cx_write(sram_ch->dma_ctl,
tmp & ~(sram_ch->fld_aud_fifo_en | sram_ch->fld_aud_risc_en));
/* Clear data buffer memory */
if (dev->_audiodata_buf_virt_addr)
memset(dev->_audiodata_buf_virt_addr, 0,
dev->_audiodata_buf_size);
dev->_audio_is_running = 0;
dev->_is_first_audio_frame = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = END_OF_FILE;
flush_work(&dev->_audio_work_entry);
kfree(dev->_audiofilename);
}
void cx25821_free_mem_upstream_audio(struct cx25821_dev *dev)
{
if (dev->_audio_is_running)
cx25821_stop_upstream_audio(dev);
cx25821_free_memory_audio(dev);
}
static int cx25821_get_audio_data(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
struct file *file;
int frame_index_temp = dev->_audioframe_index;
int i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int frame_offset = frame_size * frame_index_temp;
char mybuf[AUDIO_LINE_SIZE];
loff_t file_offset = dev->_audioframe_count * frame_size;
char *p = NULL;
if (dev->_audiofile_status == END_OF_FILE)
return 0;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, -PTR_ERR(file));
return PTR_ERR(file);
}
if (dev->_audiodata_buf_virt_addr)
p = (char *)dev->_audiodata_buf_virt_addr + frame_offset;
for (i = 0; i < dev->_audio_lines_count; i++) {
int n = kernel_read(file, mybuf, AUDIO_LINE_SIZE, &file_offset);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
dev->_audiofile_status = IN_PROGRESS;
if (p) {
memcpy(p, mybuf, n);
p += n;
}
}
dev->_audioframe_count++;
fput(file);
return 0;
}
static void cx25821_audioups_handler(struct work_struct *work)
{
struct cx25821_dev *dev = container_of(work, struct cx25821_dev,
_audio_work_entry);
if (!dev) {
pr_err("ERROR %s(): since container_of(work_struct) FAILED!\n",
__func__);
return;
}
cx25821_get_audio_data(dev, dev->channels[dev->_audio_upstream_channel].
sram_channels);
}
static int cx25821_openfile_audio(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
char *p = (void *)dev->_audiodata_buf_virt_addr;
struct file *file;
loff_t file_offset = 0;
int i, j;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, PTR_ERR(file));
return PTR_ERR(file);
}
for (j = 0; j < NUM_AUDIO_FRAMES; j++) {
for (i = 0; i < dev->_audio_lines_count; i++) {
char buf[AUDIO_LINE_SIZE];
loff_t offset = file_offset;
int n = kernel_read(file, buf, AUDIO_LINE_SIZE, &file_offset);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
if (p)
memcpy(p + offset, buf, n);
}
dev->_audioframe_count++;
}
dev->_audiofile_status = IN_PROGRESS;
fput(file);
return 0;
}
static int cx25821_audio_upstream_buffer_prepare(struct cx25821_dev *dev,
const struct sram_channel *sram_ch,
int bpl)
{
int ret = 0;
dma_addr_t dma_addr;
dma_addr_t data_dma_addr;
cx25821_free_memory_audio(dev);
dev->_risc_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_riscbuf_size, &dma_addr);
dev->_risc_virt_start_addr = dev->_risc_virt_addr;
dev->_risc_phys_start_addr = dma_addr;
dev->_risc_phys_addr = dma_addr;
dev->_audiorisc_size = dev->audio_upstream_riscbuf_size;
if (!dev->_risc_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for RISC program! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_risc_virt_addr, 0, dev->_audiorisc_size);
/* For Audio Data buffer allocation */
dev->_audiodata_buf_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_databuf_size, &data_dma_addr);
dev->_audiodata_buf_phys_addr = data_dma_addr;
dev->_audiodata_buf_size = dev->audio_upstream_databuf_size;
if (!dev->_audiodata_buf_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for data buffer! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_audiodata_buf_virt_addr, 0, dev->_audiodata_buf_size);
ret = cx25821_openfile_audio(dev, sram_ch);
if (ret < 0)
return ret;
/* Creating RISC programs */
ret = cx25821_risc_buffer_upstream_audio(dev, dev->pci, bpl,
dev->_audio_lines_count);
if (ret < 0) {
printk(KERN_DEBUG
pr_fmt("ERROR creating audio upstream RISC programs!\n"));
goto error;
}
return 0;
error:
return ret;
}
static int cx25821_audio_upstream_irq(struct cx25821_dev *dev, int chan_num,
u32 status)
{
int i = 0;
u32 int_msk_tmp;
const struct sram_channel *channel = dev->channels[chan_num].sram_channels;
dma_addr_t risc_phys_jump_addr;
__le32 *rp;
if (status & FLD_AUD_SRC_RISCI1) {
/* Get interrupt_index of the program that interrupted */
u32 prog_cnt = cx_read(channel->gpcnt);
/* Since we've identified our IRQ, clear our bits from the
* interrupt mask and interrupt status registers */
cx_write(channel->int_msk, 0);
cx_write(channel->int_stat, cx_read(channel->int_stat));
spin_lock(&dev->slock);
while (prog_cnt != dev->_last_index_irq) {
/* Update _last_index_irq */
if (dev->_last_index_irq < (NUMBER_OF_PROGRAMS - 1))
dev->_last_index_irq++;
else
dev->_last_index_irq = 0;
dev->_audioframe_index = dev->_last_index_irq;
schedule_work(&dev->_audio_work_entry);
}
if (dev->_is_first_audio_frame) {
dev->_is_first_audio_frame = 0;
if (dev->_risc_virt_start_addr != NULL) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE;
rp = cx25821_risc_field_upstream_audio(dev,
dev->_risc_virt_start_addr + 1,
dev->_audiodata_buf_phys_addr,
AUDIO_LINE_SIZE, FIFO_DISABLE);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++) {
*(rp++) =
cpu_to_le32(RISC_NOOP);
}
}
/* Jump to 2nd Audio Frame */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 |
RISC_CNT_RESET);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
}
}
spin_unlock(&dev->slock);
} else {
if (status & FLD_AUD_SRC_OF)
pr_warn("%s(): Audio Received Overflow Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_SYNC)
pr_warn("%s(): Audio Received Sync Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_OPC_ERR)
pr_warn("%s(): Audio Received OpCode Error Interrupt!\n",
__func__);
/* Read and write back the interrupt status register to clear
* our bits */
cx_write(channel->int_stat, cx_read(channel->int_stat));
}
if (dev->_audiofile_status == END_OF_FILE) {
pr_warn("EOF Channel Audio Framecount = %d\n",
dev->_audioframe_count);
return -1;
}
/* ElSE, set the interrupt mask register, re-enable irq. */
int_msk_tmp = cx_read(channel->int_msk);
cx_write(channel->int_msk, int_msk_tmp |= _intr_msk);
return 0;
}
static irqreturn_t cx25821_upstream_irq_audio(int irq, void *dev_id)
{
struct cx25821_dev *dev = dev_id;
u32 audio_status;
int handled = 0;
const struct sram_channel *sram_ch;
if (!dev)
return -1;
sram_ch = dev->channels[dev->_audio_upstream_channel].sram_channels;
audio_status = cx_read(sram_ch->int_stat);
/* Only deal with our interrupt */
if (audio_status) {
handled = cx25821_audio_upstream_irq(dev,
dev->_audio_upstream_channel, audio_status);
}
if (handled < 0)
cx25821_stop_upstream_audio(dev);
else
handled += handled;
return IRQ_RETVAL(handled);
}
static void cx25821_wait_fifo_enable(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
int count = 0;
u32 tmp;
do {
/* Wait 10 microsecond before checking to see if the FIFO is
* turned ON. */
udelay(10);
tmp = cx_read(sram_ch->dma_ctl);
/* 10 millisecond timeout */
if (count++ > 1000) {
pr_err("ERROR: %s() fifo is NOT turned on. Timeout!\n",
__func__);
return;
}
} while (!(tmp & sram_ch->fld_aud_fifo_en));
}
static int cx25821_start_audio_dma_upstream(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
u32 tmp = 0;
int err = 0;
/* Set the physical start address of the RISC program in the initial
* program counter(IPC) member of the CMDS. */
cx_write(sram_ch->cmds_start + 0, dev->_risc_phys_addr);
/* Risc IPC High 64 bits 63-32 */
cx_write(sram_ch->cmds_start + 4, 0);
/* reset counter */
cx_write(sram_ch->gpcnt_ctl, 3);
/* Set the line length (It looks like we do not need to set the
* line length) */
cx_write(sram_ch->aud_length, AUDIO_LINE_SIZE & FLD_AUD_DST_LN_LNGTH);
/* Set the input mode to 16-bit */
tmp = cx_read(sram_ch->aud_cfg);
tmp |= FLD_AUD_SRC_ENABLE | FLD_AUD_DST_PK_MODE | FLD_AUD_CLK_ENABLE |
FLD_AUD_MASTER_MODE | FLD_AUD_CLK_SELECT_PLL_D |
FLD_AUD_SONY_MODE;
cx_write(sram_ch->aud_cfg, tmp);
/* Read and write back the interrupt status register to clear it */
tmp = cx_read(sram_ch->int_stat);
cx_write(sram_ch->int_stat, tmp);
/* Clear our bits from the interrupt status register. */
cx_write(sram_ch->int_stat, _intr_msk);
/* Set the interrupt mask register, enable irq. */
cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) | (1 << sram_ch->irq_bit));
tmp = cx_read(sram_ch->int_msk);
cx_write(sram_ch->int_msk, tmp |= _intr_msk);
err = request_irq(dev->pci->irq, cx25821_upstream_irq_audio,
IRQF_SHARED, dev->name, dev);
if (err < 0) {
pr_err("%s: can't get upstream IRQ %d\n", dev->name,
dev->pci->irq);
goto fail_irq;
}
/* Start the DMA engine */
tmp = cx_read(sram_ch->dma_ctl);
cx_set(sram_ch->dma_ctl, tmp | sram_ch->fld_aud_risc_en);
dev->_audio_is_running = 1;
dev->_is_first_audio_frame = 1;
/* The fifo_en bit turns on by the first Risc program */
cx25821_wait_fifo_enable(dev, sram_ch);
return 0;
fail_irq:
cx25821_dev_unregister(dev);
return err;
}
int cx25821_audio_upstream_init(struct cx25821_dev *dev, int channel_select)
{
const struct sram_channel *sram_ch;
int err = 0;
if (dev->_audio_is_running) {
pr_warn("Audio Channel is still running so return!\n");
return 0;
}
dev->_audio_upstream_channel = channel_select;
sram_ch = dev->channels[channel_select].sram_channels;
/* Work queue */
INIT_WORK(&dev->_audio_work_entry, cx25821_audioups_handler);
dev->_last_index_irq = 0;
dev->_audio_is_running = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = RESET_STATUS;
dev->_audio_lines_count = LINES_PER_AUDIO_BUFFER;
_line_size = AUDIO_LINE_SIZE;
if ((dev->input_audiofilename) &&
(strcmp(dev->input_audiofilename, "") != 0))
dev->_audiofilename = kstrdup(dev->input_audiofilename,
GFP_KERNEL);
else
dev->_audiofilename = kstrdup(_defaultAudioName,
GFP_KERNEL);
if (!dev->_audiofilename) {
err = -ENOMEM;
goto error;
}
cx25821_sram_channel_setup_upstream_audio(dev, sram_ch,
_line_size, 0);
dev->audio_upstream_riscbuf_size =
AUDIO_RISC_DMA_BUF_SIZE * NUM_AUDIO_PROGS +
RISC_SYNC_INSTRUCTION_SIZE;
dev->audio_upstream_databuf_size = AUDIO_DATA_BUF_SZ * NUM_AUDIO_PROGS;
/* Allocating buffers and prepare RISC program */
err = cx25821_audio_upstream_buffer_prepare(dev, sram_ch,
_line_size);
if (err < 0) {
pr_err("%s: Failed to set up Audio upstream buffers!\n",
dev->name);
goto error;
}
/* Start RISC engine */
cx25821_start_audio_dma_upstream(dev, sram_ch);
return 0;
error:
cx25821_dev_unregister(dev);
return err;
}