ubuntu-linux-kernel/drivers/media/dvb-frontends/s5h1411.c

947 lines
24 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
Samsung S5H1411 VSB/QAM demodulator driver
Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#include "s5h1411.h"
struct s5h1411_state {
struct i2c_adapter *i2c;
/* configuration settings */
const struct s5h1411_config *config;
struct dvb_frontend frontend;
enum fe_modulation current_modulation;
unsigned int first_tune:1;
u32 current_frequency;
int if_freq;
u8 inversion;
};
static int debug;
#define dprintk(arg...) do { \
if (debug) \
printk(arg); \
} while (0)
/* Register values to initialise the demod, defaults to VSB */
static struct init_tab {
u8 addr;
u8 reg;
u16 data;
} init_tab[] = {
{ S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, },
{ S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, },
{ S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, },
{ S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, },
{ S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, },
{ S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, },
{ S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, },
{ S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, },
{ S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, },
{ S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, },
{ S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, },
{ S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, },
{ S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, },
{ S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, },
{ S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, },
{ S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, },
{ S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, },
{ S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, },
{ S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, },
{ S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, },
{ S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, },
{ S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, },
{ S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, },
{ S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, },
{ S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, },
{ S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, },
{ S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, },
{ S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, },
{ S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, },
{ S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, },
{ S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, },
{ S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, },
{ S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, },
{ S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, },
{ S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, },
{ S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, },
{ S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, },
{ S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, },
{ S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, },
{ S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, },
{ S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, },
{ S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, },
{ S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, },
{ S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, },
{ S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, },
{ S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, },
{ S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, },
{ S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, },
{ S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, },
{ S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, },
{ S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, },
{ S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, },
{ S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, },
{ S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, },
{ S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, },
{ S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, },
{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, },
{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, },
{ S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, },
{ S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, },
{ S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, },
{ S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, },
{ S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, },
{ S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, },
{ S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, },
{ S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, },
{ S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, },
{ S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, },
{ S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, },
{ S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, },
{ S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, },
{ S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, },
{ S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, },
{ S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, },
};
/* VSB SNR lookup table */
static struct vsb_snr_tab {
u16 val;
u16 data;
} vsb_snr_tab[] = {
{ 0x39f, 300, },
{ 0x39b, 295, },
{ 0x397, 290, },
{ 0x394, 285, },
{ 0x38f, 280, },
{ 0x38b, 275, },
{ 0x387, 270, },
{ 0x382, 265, },
{ 0x37d, 260, },
{ 0x377, 255, },
{ 0x370, 250, },
{ 0x36a, 245, },
{ 0x364, 240, },
{ 0x35b, 235, },
{ 0x353, 230, },
{ 0x349, 225, },
{ 0x340, 320, },
{ 0x337, 215, },
{ 0x327, 210, },
{ 0x31b, 205, },
{ 0x310, 200, },
{ 0x302, 195, },
{ 0x2f3, 190, },
{ 0x2e4, 185, },
{ 0x2d7, 180, },
{ 0x2cd, 175, },
{ 0x2bb, 170, },
{ 0x2a9, 165, },
{ 0x29e, 160, },
{ 0x284, 155, },
{ 0x27a, 150, },
{ 0x260, 145, },
{ 0x23a, 140, },
{ 0x224, 135, },
{ 0x213, 130, },
{ 0x204, 125, },
{ 0x1fe, 120, },
{ 0, 0, },
};
/* QAM64 SNR lookup table */
static struct qam64_snr_tab {
u16 val;
u16 data;
} qam64_snr_tab[] = {
{ 0x0001, 0, },
{ 0x0af0, 300, },
{ 0x0d80, 290, },
{ 0x10a0, 280, },
{ 0x14b5, 270, },
{ 0x1590, 268, },
{ 0x1680, 266, },
{ 0x17b0, 264, },
{ 0x18c0, 262, },
{ 0x19b0, 260, },
{ 0x1ad0, 258, },
{ 0x1d00, 256, },
{ 0x1da0, 254, },
{ 0x1ef0, 252, },
{ 0x2050, 250, },
{ 0x20f0, 249, },
{ 0x21d0, 248, },
{ 0x22b0, 247, },
{ 0x23a0, 246, },
{ 0x2470, 245, },
{ 0x24f0, 244, },
{ 0x25a0, 243, },
{ 0x26c0, 242, },
{ 0x27b0, 241, },
{ 0x28d0, 240, },
{ 0x29b0, 239, },
{ 0x2ad0, 238, },
{ 0x2ba0, 237, },
{ 0x2c80, 236, },
{ 0x2d20, 235, },
{ 0x2e00, 234, },
{ 0x2f10, 233, },
{ 0x3050, 232, },
{ 0x3190, 231, },
{ 0x3300, 230, },
{ 0x3340, 229, },
{ 0x3200, 228, },
{ 0x3550, 227, },
{ 0x3610, 226, },
{ 0x3600, 225, },
{ 0x3700, 224, },
{ 0x3800, 223, },
{ 0x3920, 222, },
{ 0x3a20, 221, },
{ 0x3b30, 220, },
{ 0x3d00, 219, },
{ 0x3e00, 218, },
{ 0x4000, 217, },
{ 0x4100, 216, },
{ 0x4300, 215, },
{ 0x4400, 214, },
{ 0x4600, 213, },
{ 0x4700, 212, },
{ 0x4800, 211, },
{ 0x4a00, 210, },
{ 0x4b00, 209, },
{ 0x4d00, 208, },
{ 0x4f00, 207, },
{ 0x5050, 206, },
{ 0x5200, 205, },
{ 0x53c0, 204, },
{ 0x5450, 203, },
{ 0x5650, 202, },
{ 0x5820, 201, },
{ 0x6000, 200, },
{ 0xffff, 0, },
};
/* QAM256 SNR lookup table */
static struct qam256_snr_tab {
u16 val;
u16 data;
} qam256_snr_tab[] = {
{ 0x0001, 0, },
{ 0x0970, 400, },
{ 0x0a90, 390, },
{ 0x0b90, 380, },
{ 0x0d90, 370, },
{ 0x0ff0, 360, },
{ 0x1240, 350, },
{ 0x1345, 348, },
{ 0x13c0, 346, },
{ 0x14c0, 344, },
{ 0x1500, 342, },
{ 0x1610, 340, },
{ 0x1700, 338, },
{ 0x1800, 336, },
{ 0x18b0, 334, },
{ 0x1900, 332, },
{ 0x1ab0, 330, },
{ 0x1bc0, 328, },
{ 0x1cb0, 326, },
{ 0x1db0, 324, },
{ 0x1eb0, 322, },
{ 0x2030, 320, },
{ 0x2200, 318, },
{ 0x2280, 316, },
{ 0x2410, 314, },
{ 0x25b0, 312, },
{ 0x27a0, 310, },
{ 0x2840, 308, },
{ 0x29d0, 306, },
{ 0x2b10, 304, },
{ 0x2d30, 302, },
{ 0x2f20, 300, },
{ 0x30c0, 298, },
{ 0x3260, 297, },
{ 0x32c0, 296, },
{ 0x3300, 295, },
{ 0x33b0, 294, },
{ 0x34b0, 293, },
{ 0x35a0, 292, },
{ 0x3650, 291, },
{ 0x3800, 290, },
{ 0x3900, 289, },
{ 0x3a50, 288, },
{ 0x3b30, 287, },
{ 0x3cb0, 286, },
{ 0x3e20, 285, },
{ 0x3fa0, 284, },
{ 0x40a0, 283, },
{ 0x41c0, 282, },
{ 0x42f0, 281, },
{ 0x44a0, 280, },
{ 0x4600, 279, },
{ 0x47b0, 278, },
{ 0x4900, 277, },
{ 0x4a00, 276, },
{ 0x4ba0, 275, },
{ 0x4d00, 274, },
{ 0x4f00, 273, },
{ 0x5000, 272, },
{ 0x51f0, 272, },
{ 0x53a0, 270, },
{ 0x5520, 269, },
{ 0x5700, 268, },
{ 0x5800, 267, },
{ 0x5a00, 266, },
{ 0x5c00, 265, },
{ 0x5d00, 264, },
{ 0x5f00, 263, },
{ 0x6000, 262, },
{ 0x6200, 261, },
{ 0x6400, 260, },
{ 0xffff, 0, },
};
/* 8 bit registers, 16 bit values */
static int s5h1411_writereg(struct s5h1411_state *state,
u8 addr, u8 reg, u16 data)
{
int ret;
u8 buf[] = { reg, data >> 8, data & 0xff };
struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, ret == %i)\n",
__func__, addr, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0, 0 };
struct i2c_msg msg[] = {
{ .addr = addr, .flags = 0, .buf = b0, .len = 1 },
{ .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
printk(KERN_ERR "%s: readreg error (ret == %i)\n",
__func__, ret);
return (b1[0] << 8) | b1[1];
}
static int s5h1411_softreset(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1);
return 0;
}
static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d KHz)\n", __func__, KHz);
switch (KHz) {
case 3250:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9);
break;
case 3500:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225);
break;
case 4000:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd);
break;
default:
dprintk("%s(%d KHz) Invalid, defaulting to 5380\n",
__func__, KHz);
/* fall through */
case 5380:
case 44000:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4);
break;
}
state->if_freq = KHz;
return 0;
}
static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, mode);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff;
switch (mode) {
case S5H1411_MPEGTIMING_CONTINOUS_INVERTING_CLOCK:
val |= 0x0000;
break;
case S5H1411_MPEGTIMING_CONTINOUS_NONINVERTING_CLOCK:
dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
val |= 0x1000;
break;
case S5H1411_MPEGTIMING_NONCONTINOUS_INVERTING_CLOCK:
val |= 0x2000;
break;
case S5H1411_MPEGTIMING_NONCONTINOUS_NONINVERTING_CLOCK:
val |= 0x3000;
break;
default:
return -EINVAL;
}
/* Configure MPEG Signal Timing charactistics */
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val);
}
static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, inversion);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000;
if (inversion == 1)
val |= 0x1000; /* Inverted */
state->inversion = inversion;
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val);
}
static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, serial);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100;
if (serial == 1)
val |= 0x100;
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val);
}
static int s5h1411_enable_modulation(struct dvb_frontend *fe,
enum fe_modulation m)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(0x%08x)\n", __func__, m);
if ((state->first_tune == 0) && (m == state->current_modulation)) {
dprintk("%s() Already at desired modulation. Skipping...\n",
__func__);
return 0;
}
switch (m) {
case VSB_8:
dprintk("%s() VSB_8\n", __func__);
s5h1411_set_if_freq(fe, state->config->vsb_if);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1);
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk("%s() QAM_AUTO (64/256)\n", __func__);
s5h1411_set_if_freq(fe, state->config->qam_if);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0);
break;
default:
dprintk("%s() Invalid modulation\n", __func__);
return -EINVAL;
}
state->current_modulation = m;
state->first_tune = 0;
s5h1411_softreset(fe);
return 0;
}
static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
else
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0);
}
static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, enable);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02;
if (enable)
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0,
val | 0x02);
else
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val);
}
static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1);
else {
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0);
s5h1411_softreset(fe);
}
return 0;
}
static int s5h1411_sleep(struct dvb_frontend *fe)
{
return s5h1411_set_powerstate(fe, 1);
}
static int s5h1411_register_reset(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0);
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
static int s5h1411_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(frequency=%d)\n", __func__, p->frequency);
s5h1411_softreset(fe);
state->current_frequency = p->frequency;
s5h1411_enable_modulation(fe, p->modulation);
if (fe->ops.tuner_ops.set_params) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
/* Issue a reset to the demod so it knows to resync against the
newly tuned frequency */
s5h1411_softreset(fe);
return 0;
}
/* Reset the demod hardware and reset all of the configuration registers
to a default state. */
static int s5h1411_init(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
int i;
dprintk("%s()\n", __func__);
s5h1411_set_powerstate(fe, 0);
s5h1411_register_reset(fe);
for (i = 0; i < ARRAY_SIZE(init_tab); i++)
s5h1411_writereg(state, init_tab[i].addr,
init_tab[i].reg,
init_tab[i].data);
/* The datasheet says that after initialisation, VSB is default */
state->current_modulation = VSB_8;
/* Although the datasheet says it's in VSB, empirical evidence
shows problems getting lock on the first tuning request. Make
sure we call enable_modulation the first time around */
state->first_tune = 1;
if (state->config->output_mode == S5H1411_SERIAL_OUTPUT)
/* Serial */
s5h1411_set_serialmode(fe, 1);
else
/* Parallel */
s5h1411_set_serialmode(fe, 0);
s5h1411_set_spectralinversion(fe, state->config->inversion);
s5h1411_set_if_freq(fe, state->config->vsb_if);
s5h1411_set_gpio(fe, state->config->gpio);
s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing);
s5h1411_softreset(fe);
/* Note: Leaving the I2C gate closed. */
s5h1411_i2c_gate_ctrl(fe, 0);
return 0;
}
static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 reg;
u32 tuner_status = 0;
*status = 0;
/* Register F2 bit 15 = Master Lock, removed */
switch (state->current_modulation) {
case QAM_64:
case QAM_256:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0);
if (reg & 0x10) /* QAM FEC Lock */
*status |= FE_HAS_SYNC | FE_HAS_LOCK;
if (reg & 0x100) /* QAM EQ Lock */
*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
case VSB_8:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2);
if (reg & 0x1000) /* FEC Lock */
*status |= FE_HAS_SYNC | FE_HAS_LOCK;
if (reg & 0x2000) /* EQ Lock */
*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53);
if (reg & 0x1) /* AFC Lock */
*status |= FE_HAS_SIGNAL;
break;
default:
return -EINVAL;
}
switch (state->config->status_mode) {
case S5H1411_DEMODLOCKING:
if (*status & FE_HAS_VITERBI)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
case S5H1411_TUNERLOCKING:
/* Get the tuner status */
if (fe->ops.tuner_ops.get_status) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.get_status(fe, &tuner_status);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
if (tuner_status)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
}
dprintk("%s() status 0x%08x\n", __func__, *status);
return 0;
}
static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
if (v < qam256_snr_tab[i].val) {
*snr = qam256_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
if (v < qam64_snr_tab[i].val) {
*snr = qam64_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
if (v > vsb_snr_tab[i].val) {
*snr = vsb_snr_tab[i].data;
ret = 0;
break;
}
}
dprintk("%s() snr=%d\n", __func__, *snr);
return ret;
}
static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 reg;
dprintk("%s()\n", __func__);
switch (state->current_modulation) {
case QAM_64:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
return s5h1411_qam64_lookup_snr(fe, snr, reg);
case QAM_256:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
return s5h1411_qam256_lookup_snr(fe, snr, reg);
case VSB_8:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR,
0xf2) & 0x3ff;
return s5h1411_vsb_lookup_snr(fe, snr, reg);
default:
break;
}
return -EINVAL;
}
static int s5h1411_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
/* borrowed from lgdt330x.c
*
* Calculate strength from SNR up to 35dB
* Even though the SNR can go higher than 35dB,
* there is some comfort factor in having a range of
* strong signals that can show at 100%
*/
u16 snr;
u32 tmp;
int ret = s5h1411_read_snr(fe, &snr);
*signal_strength = 0;
if (0 == ret) {
/* The following calculation method was chosen
* purely for the sake of code re-use from the
* other demod drivers that use this method */
/* Convert from SNR in dB * 10 to 8.24 fixed-point */
tmp = (snr * ((1 << 24) / 10));
/* Convert from 8.24 fixed-point to
* scale the range 0 - 35*2^24 into 0 - 65535*/
if (tmp >= 8960 * 0x10000)
*signal_strength = 0xffff;
else
*signal_strength = tmp / 8960;
}
return ret;
}
static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct s5h1411_state *state = fe->demodulator_priv;
*ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9);
return 0;
}
static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber)
{
return s5h1411_read_ucblocks(fe, ber);
}
static int s5h1411_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct s5h1411_state *state = fe->demodulator_priv;
p->frequency = state->current_frequency;
p->modulation = state->current_modulation;
return 0;
}
static int s5h1411_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void s5h1411_release(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops s5h1411_ops;
struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config,
struct i2c_adapter *i2c)
{
struct s5h1411_state *state = NULL;
u16 reg;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->current_modulation = VSB_8;
state->inversion = state->config->inversion;
/* check if the demod exists */
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05);
if (reg != 0x0066)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1411_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
if (s5h1411_init(&state->frontend) != 0) {
printk(KERN_ERR "%s: Failed to initialize correctly\n",
__func__);
goto error;
}
/* Note: Leaving the I2C gate open here. */
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
/* Put the device into low-power mode until first use */
s5h1411_set_powerstate(&state->frontend, 1);
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(s5h1411_attach);
static const struct dvb_frontend_ops s5h1411_ops = {
.delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
.info = {
.name = "Samsung S5H1411 QAM/8VSB Frontend",
.frequency_min = 54000000,
.frequency_max = 858000000,
.frequency_stepsize = 62500,
.caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
},
.init = s5h1411_init,
.sleep = s5h1411_sleep,
.i2c_gate_ctrl = s5h1411_i2c_gate_ctrl,
.set_frontend = s5h1411_set_frontend,
.get_frontend = s5h1411_get_frontend,
.get_tune_settings = s5h1411_get_tune_settings,
.read_status = s5h1411_read_status,
.read_ber = s5h1411_read_ber,
.read_signal_strength = s5h1411_read_signal_strength,
.read_snr = s5h1411_read_snr,
.read_ucblocks = s5h1411_read_ucblocks,
.release = s5h1411_release,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");