ubuntu-linux-kernel/drivers/i2c/busses/i2c-omap.c

1579 lines
41 KiB
C
Raw Normal View History

2024-04-01 15:06:58 +00:00
/*
* TI OMAP I2C master mode driver
*
* Copyright (C) 2003 MontaVista Software, Inc.
* Copyright (C) 2005 Nokia Corporation
* Copyright (C) 2004 - 2007 Texas Instruments.
*
* Originally written by MontaVista Software, Inc.
* Additional contributions by:
* Tony Lindgren <tony@atomide.com>
* Imre Deak <imre.deak@nokia.com>
* Juha Yrjölä <juha.yrjola@solidboot.com>
* Syed Khasim <x0khasim@ti.com>
* Nishant Menon <nm@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/i2c-omap.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>
/* I2C controller revisions */
#define OMAP_I2C_OMAP1_REV_2 0x20
/* I2C controller revisions present on specific hardware */
#define OMAP_I2C_REV_ON_2430 0x00000036
#define OMAP_I2C_REV_ON_3430_3530 0x0000003C
#define OMAP_I2C_REV_ON_3630 0x00000040
#define OMAP_I2C_REV_ON_4430_PLUS 0x50400002
/* timeout waiting for the controller to respond */
#define OMAP_I2C_TIMEOUT (msecs_to_jiffies(1000))
/* timeout for pm runtime autosuspend */
#define OMAP_I2C_PM_TIMEOUT 1000 /* ms */
/* timeout for making decision on bus free status */
#define OMAP_I2C_BUS_FREE_TIMEOUT (msecs_to_jiffies(10))
/* For OMAP3 I2C_IV has changed to I2C_WE (wakeup enable) */
enum {
OMAP_I2C_REV_REG = 0,
OMAP_I2C_IE_REG,
OMAP_I2C_STAT_REG,
OMAP_I2C_IV_REG,
OMAP_I2C_WE_REG,
OMAP_I2C_SYSS_REG,
OMAP_I2C_BUF_REG,
OMAP_I2C_CNT_REG,
OMAP_I2C_DATA_REG,
OMAP_I2C_SYSC_REG,
OMAP_I2C_CON_REG,
OMAP_I2C_OA_REG,
OMAP_I2C_SA_REG,
OMAP_I2C_PSC_REG,
OMAP_I2C_SCLL_REG,
OMAP_I2C_SCLH_REG,
OMAP_I2C_SYSTEST_REG,
OMAP_I2C_BUFSTAT_REG,
/* only on OMAP4430 */
OMAP_I2C_IP_V2_REVNB_LO,
OMAP_I2C_IP_V2_REVNB_HI,
OMAP_I2C_IP_V2_IRQSTATUS_RAW,
OMAP_I2C_IP_V2_IRQENABLE_SET,
OMAP_I2C_IP_V2_IRQENABLE_CLR,
};
/* I2C Interrupt Enable Register (OMAP_I2C_IE): */
#define OMAP_I2C_IE_XDR (1 << 14) /* TX Buffer drain int enable */
#define OMAP_I2C_IE_RDR (1 << 13) /* RX Buffer drain int enable */
#define OMAP_I2C_IE_XRDY (1 << 4) /* TX data ready int enable */
#define OMAP_I2C_IE_RRDY (1 << 3) /* RX data ready int enable */
#define OMAP_I2C_IE_ARDY (1 << 2) /* Access ready int enable */
#define OMAP_I2C_IE_NACK (1 << 1) /* No ack interrupt enable */
#define OMAP_I2C_IE_AL (1 << 0) /* Arbitration lost int ena */
/* I2C Status Register (OMAP_I2C_STAT): */
#define OMAP_I2C_STAT_XDR (1 << 14) /* TX Buffer draining */
#define OMAP_I2C_STAT_RDR (1 << 13) /* RX Buffer draining */
#define OMAP_I2C_STAT_BB (1 << 12) /* Bus busy */
#define OMAP_I2C_STAT_ROVR (1 << 11) /* Receive overrun */
#define OMAP_I2C_STAT_XUDF (1 << 10) /* Transmit underflow */
#define OMAP_I2C_STAT_AAS (1 << 9) /* Address as slave */
#define OMAP_I2C_STAT_BF (1 << 8) /* Bus Free */
#define OMAP_I2C_STAT_XRDY (1 << 4) /* Transmit data ready */
#define OMAP_I2C_STAT_RRDY (1 << 3) /* Receive data ready */
#define OMAP_I2C_STAT_ARDY (1 << 2) /* Register access ready */
#define OMAP_I2C_STAT_NACK (1 << 1) /* No ack interrupt enable */
#define OMAP_I2C_STAT_AL (1 << 0) /* Arbitration lost int ena */
/* I2C WE wakeup enable register */
#define OMAP_I2C_WE_XDR_WE (1 << 14) /* TX drain wakup */
#define OMAP_I2C_WE_RDR_WE (1 << 13) /* RX drain wakeup */
#define OMAP_I2C_WE_AAS_WE (1 << 9) /* Address as slave wakeup*/
#define OMAP_I2C_WE_BF_WE (1 << 8) /* Bus free wakeup */
#define OMAP_I2C_WE_STC_WE (1 << 6) /* Start condition wakeup */
#define OMAP_I2C_WE_GC_WE (1 << 5) /* General call wakeup */
#define OMAP_I2C_WE_DRDY_WE (1 << 3) /* TX/RX data ready wakeup */
#define OMAP_I2C_WE_ARDY_WE (1 << 2) /* Reg access ready wakeup */
#define OMAP_I2C_WE_NACK_WE (1 << 1) /* No acknowledgment wakeup */
#define OMAP_I2C_WE_AL_WE (1 << 0) /* Arbitration lost wakeup */
#define OMAP_I2C_WE_ALL (OMAP_I2C_WE_XDR_WE | OMAP_I2C_WE_RDR_WE | \
OMAP_I2C_WE_AAS_WE | OMAP_I2C_WE_BF_WE | \
OMAP_I2C_WE_STC_WE | OMAP_I2C_WE_GC_WE | \
OMAP_I2C_WE_DRDY_WE | OMAP_I2C_WE_ARDY_WE | \
OMAP_I2C_WE_NACK_WE | OMAP_I2C_WE_AL_WE)
/* I2C Buffer Configuration Register (OMAP_I2C_BUF): */
#define OMAP_I2C_BUF_RDMA_EN (1 << 15) /* RX DMA channel enable */
#define OMAP_I2C_BUF_RXFIF_CLR (1 << 14) /* RX FIFO Clear */
#define OMAP_I2C_BUF_XDMA_EN (1 << 7) /* TX DMA channel enable */
#define OMAP_I2C_BUF_TXFIF_CLR (1 << 6) /* TX FIFO Clear */
/* I2C Configuration Register (OMAP_I2C_CON): */
#define OMAP_I2C_CON_EN (1 << 15) /* I2C module enable */
#define OMAP_I2C_CON_BE (1 << 14) /* Big endian mode */
#define OMAP_I2C_CON_OPMODE_HS (1 << 12) /* High Speed support */
#define OMAP_I2C_CON_STB (1 << 11) /* Start byte mode (master) */
#define OMAP_I2C_CON_MST (1 << 10) /* Master/slave mode */
#define OMAP_I2C_CON_TRX (1 << 9) /* TX/RX mode (master only) */
#define OMAP_I2C_CON_XA (1 << 8) /* Expand address */
#define OMAP_I2C_CON_RM (1 << 2) /* Repeat mode (master only) */
#define OMAP_I2C_CON_STP (1 << 1) /* Stop cond (master only) */
#define OMAP_I2C_CON_STT (1 << 0) /* Start condition (master) */
/* I2C SCL time value when Master */
#define OMAP_I2C_SCLL_HSSCLL 8
#define OMAP_I2C_SCLH_HSSCLH 8
/* I2C System Test Register (OMAP_I2C_SYSTEST): */
#define OMAP_I2C_SYSTEST_ST_EN (1 << 15) /* System test enable */
#define OMAP_I2C_SYSTEST_FREE (1 << 14) /* Free running mode */
#define OMAP_I2C_SYSTEST_TMODE_MASK (3 << 12) /* Test mode select */
#define OMAP_I2C_SYSTEST_TMODE_SHIFT (12) /* Test mode select */
/* Functional mode */
#define OMAP_I2C_SYSTEST_SCL_I_FUNC (1 << 8) /* SCL line input value */
#define OMAP_I2C_SYSTEST_SCL_O_FUNC (1 << 7) /* SCL line output value */
#define OMAP_I2C_SYSTEST_SDA_I_FUNC (1 << 6) /* SDA line input value */
#define OMAP_I2C_SYSTEST_SDA_O_FUNC (1 << 5) /* SDA line output value */
/* SDA/SCL IO mode */
#define OMAP_I2C_SYSTEST_SCL_I (1 << 3) /* SCL line sense in */
#define OMAP_I2C_SYSTEST_SCL_O (1 << 2) /* SCL line drive out */
#define OMAP_I2C_SYSTEST_SDA_I (1 << 1) /* SDA line sense in */
#define OMAP_I2C_SYSTEST_SDA_O (1 << 0) /* SDA line drive out */
/* OCP_SYSSTATUS bit definitions */
#define SYSS_RESETDONE_MASK (1 << 0)
/* OCP_SYSCONFIG bit definitions */
#define SYSC_CLOCKACTIVITY_MASK (0x3 << 8)
#define SYSC_SIDLEMODE_MASK (0x3 << 3)
#define SYSC_ENAWAKEUP_MASK (1 << 2)
#define SYSC_SOFTRESET_MASK (1 << 1)
#define SYSC_AUTOIDLE_MASK (1 << 0)
#define SYSC_IDLEMODE_SMART 0x2
#define SYSC_CLOCKACTIVITY_FCLK 0x2
/* Errata definitions */
#define I2C_OMAP_ERRATA_I207 (1 << 0)
#define I2C_OMAP_ERRATA_I462 (1 << 1)
#define OMAP_I2C_IP_V2_INTERRUPTS_MASK 0x6FFF
struct omap_i2c_dev {
struct device *dev;
void __iomem *base; /* virtual */
int irq;
int reg_shift; /* bit shift for I2C register addresses */
struct completion cmd_complete;
struct resource *ioarea;
u32 latency; /* maximum mpu wkup latency */
void (*set_mpu_wkup_lat)(struct device *dev,
long latency);
u32 speed; /* Speed of bus in kHz */
u32 flags;
u16 scheme;
u16 cmd_err;
u8 *buf;
u8 *regs;
size_t buf_len;
struct i2c_adapter adapter;
u8 threshold;
u8 fifo_size; /* use as flag and value
* fifo_size==0 implies no fifo
* if set, should be trsh+1
*/
u32 rev;
unsigned b_hw:1; /* bad h/w fixes */
unsigned bb_valid:1; /* true when BB-bit reflects
* the I2C bus state
*/
unsigned receiver:1; /* true when we're in receiver mode */
u16 iestate; /* Saved interrupt register */
u16 pscstate;
u16 scllstate;
u16 sclhstate;
u16 syscstate;
u16 westate;
u16 errata;
};
static const u8 reg_map_ip_v1[] = {
[OMAP_I2C_REV_REG] = 0x00,
[OMAP_I2C_IE_REG] = 0x01,
[OMAP_I2C_STAT_REG] = 0x02,
[OMAP_I2C_IV_REG] = 0x03,
[OMAP_I2C_WE_REG] = 0x03,
[OMAP_I2C_SYSS_REG] = 0x04,
[OMAP_I2C_BUF_REG] = 0x05,
[OMAP_I2C_CNT_REG] = 0x06,
[OMAP_I2C_DATA_REG] = 0x07,
[OMAP_I2C_SYSC_REG] = 0x08,
[OMAP_I2C_CON_REG] = 0x09,
[OMAP_I2C_OA_REG] = 0x0a,
[OMAP_I2C_SA_REG] = 0x0b,
[OMAP_I2C_PSC_REG] = 0x0c,
[OMAP_I2C_SCLL_REG] = 0x0d,
[OMAP_I2C_SCLH_REG] = 0x0e,
[OMAP_I2C_SYSTEST_REG] = 0x0f,
[OMAP_I2C_BUFSTAT_REG] = 0x10,
};
static const u8 reg_map_ip_v2[] = {
[OMAP_I2C_REV_REG] = 0x04,
[OMAP_I2C_IE_REG] = 0x2c,
[OMAP_I2C_STAT_REG] = 0x28,
[OMAP_I2C_IV_REG] = 0x34,
[OMAP_I2C_WE_REG] = 0x34,
[OMAP_I2C_SYSS_REG] = 0x90,
[OMAP_I2C_BUF_REG] = 0x94,
[OMAP_I2C_CNT_REG] = 0x98,
[OMAP_I2C_DATA_REG] = 0x9c,
[OMAP_I2C_SYSC_REG] = 0x10,
[OMAP_I2C_CON_REG] = 0xa4,
[OMAP_I2C_OA_REG] = 0xa8,
[OMAP_I2C_SA_REG] = 0xac,
[OMAP_I2C_PSC_REG] = 0xb0,
[OMAP_I2C_SCLL_REG] = 0xb4,
[OMAP_I2C_SCLH_REG] = 0xb8,
[OMAP_I2C_SYSTEST_REG] = 0xbC,
[OMAP_I2C_BUFSTAT_REG] = 0xc0,
[OMAP_I2C_IP_V2_REVNB_LO] = 0x00,
[OMAP_I2C_IP_V2_REVNB_HI] = 0x04,
[OMAP_I2C_IP_V2_IRQSTATUS_RAW] = 0x24,
[OMAP_I2C_IP_V2_IRQENABLE_SET] = 0x2c,
[OMAP_I2C_IP_V2_IRQENABLE_CLR] = 0x30,
};
static inline void omap_i2c_write_reg(struct omap_i2c_dev *omap,
int reg, u16 val)
{
writew_relaxed(val, omap->base +
(omap->regs[reg] << omap->reg_shift));
}
static inline u16 omap_i2c_read_reg(struct omap_i2c_dev *omap, int reg)
{
return readw_relaxed(omap->base +
(omap->regs[reg] << omap->reg_shift));
}
static void __omap_i2c_init(struct omap_i2c_dev *omap)
{
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
/* Setup clock prescaler to obtain approx 12MHz I2C module clock: */
omap_i2c_write_reg(omap, OMAP_I2C_PSC_REG, omap->pscstate);
/* SCL low and high time values */
omap_i2c_write_reg(omap, OMAP_I2C_SCLL_REG, omap->scllstate);
omap_i2c_write_reg(omap, OMAP_I2C_SCLH_REG, omap->sclhstate);
if (omap->rev >= OMAP_I2C_REV_ON_3430_3530)
omap_i2c_write_reg(omap, OMAP_I2C_WE_REG, omap->westate);
/* Take the I2C module out of reset: */
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN);
/*
* NOTE: right after setting CON_EN, STAT_BB could be 0 while the
* bus is busy. It will be changed to 1 on the next IP FCLK clock.
* udelay(1) will be enough to fix that.
*/
/*
* Don't write to this register if the IE state is 0 as it can
* cause deadlock.
*/
if (omap->iestate)
omap_i2c_write_reg(omap, OMAP_I2C_IE_REG, omap->iestate);
}
static int omap_i2c_reset(struct omap_i2c_dev *omap)
{
unsigned long timeout;
u16 sysc;
if (omap->rev >= OMAP_I2C_OMAP1_REV_2) {
sysc = omap_i2c_read_reg(omap, OMAP_I2C_SYSC_REG);
/* Disable I2C controller before soft reset */
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG,
omap_i2c_read_reg(omap, OMAP_I2C_CON_REG) &
~(OMAP_I2C_CON_EN));
omap_i2c_write_reg(omap, OMAP_I2C_SYSC_REG, SYSC_SOFTRESET_MASK);
/* For some reason we need to set the EN bit before the
* reset done bit gets set. */
timeout = jiffies + OMAP_I2C_TIMEOUT;
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN);
while (!(omap_i2c_read_reg(omap, OMAP_I2C_SYSS_REG) &
SYSS_RESETDONE_MASK)) {
if (time_after(jiffies, timeout)) {
dev_warn(omap->dev, "timeout waiting "
"for controller reset\n");
return -ETIMEDOUT;
}
msleep(1);
}
/* SYSC register is cleared by the reset; rewrite it */
omap_i2c_write_reg(omap, OMAP_I2C_SYSC_REG, sysc);
if (omap->rev > OMAP_I2C_REV_ON_3430_3530) {
/* Schedule I2C-bus monitoring on the next transfer */
omap->bb_valid = 0;
}
}
return 0;
}
static int omap_i2c_init(struct omap_i2c_dev *omap)
{
u16 psc = 0, scll = 0, sclh = 0;
u16 fsscll = 0, fssclh = 0, hsscll = 0, hssclh = 0;
unsigned long fclk_rate = 12000000;
unsigned long internal_clk = 0;
struct clk *fclk;
int error;
if (omap->rev >= OMAP_I2C_REV_ON_3430_3530) {
/*
* Enabling all wakup sources to stop I2C freezing on
* WFI instruction.
* REVISIT: Some wkup sources might not be needed.
*/
omap->westate = OMAP_I2C_WE_ALL;
}
if (omap->flags & OMAP_I2C_FLAG_ALWAYS_ARMXOR_CLK) {
/*
* The I2C functional clock is the armxor_ck, so there's
* no need to get "armxor_ck" separately. Now, if OMAP2420
* always returns 12MHz for the functional clock, we can
* do this bit unconditionally.
*/
fclk = clk_get(omap->dev, "fck");
if (IS_ERR(fclk)) {
error = PTR_ERR(fclk);
dev_err(omap->dev, "could not get fck: %i\n", error);
return error;
}
fclk_rate = clk_get_rate(fclk);
clk_put(fclk);
/* TRM for 5912 says the I2C clock must be prescaled to be
* between 7 - 12 MHz. The XOR input clock is typically
* 12, 13 or 19.2 MHz. So we should have code that produces:
*
* XOR MHz Divider Prescaler
* 12 1 0
* 13 2 1
* 19.2 2 1
*/
if (fclk_rate > 12000000)
psc = fclk_rate / 12000000;
}
if (!(omap->flags & OMAP_I2C_FLAG_SIMPLE_CLOCK)) {
/*
* HSI2C controller internal clk rate should be 19.2 Mhz for
* HS and for all modes on 2430. On 34xx we can use lower rate
* to get longer filter period for better noise suppression.
* The filter is iclk (fclk for HS) period.
*/
if (omap->speed > 400 ||
omap->flags & OMAP_I2C_FLAG_FORCE_19200_INT_CLK)
internal_clk = 19200;
else if (omap->speed > 100)
internal_clk = 9600;
else
internal_clk = 4000;
fclk = clk_get(omap->dev, "fck");
if (IS_ERR(fclk)) {
error = PTR_ERR(fclk);
dev_err(omap->dev, "could not get fck: %i\n", error);
return error;
}
fclk_rate = clk_get_rate(fclk) / 1000;
clk_put(fclk);
/* Compute prescaler divisor */
psc = fclk_rate / internal_clk;
psc = psc - 1;
/* If configured for High Speed */
if (omap->speed > 400) {
unsigned long scl;
/* For first phase of HS mode */
scl = internal_clk / 400;
fsscll = scl - (scl / 3) - 7;
fssclh = (scl / 3) - 5;
/* For second phase of HS mode */
scl = fclk_rate / omap->speed;
hsscll = scl - (scl / 3) - 7;
hssclh = (scl / 3) - 5;
} else if (omap->speed > 100) {
unsigned long scl;
/* Fast mode */
scl = internal_clk / omap->speed;
fsscll = scl - (scl / 3) - 7;
fssclh = (scl / 3) - 5;
} else {
/* Standard mode */
fsscll = internal_clk / (omap->speed * 2) - 7;
fssclh = internal_clk / (omap->speed * 2) - 5;
}
scll = (hsscll << OMAP_I2C_SCLL_HSSCLL) | fsscll;
sclh = (hssclh << OMAP_I2C_SCLH_HSSCLH) | fssclh;
} else {
/* Program desired operating rate */
fclk_rate /= (psc + 1) * 1000;
if (psc > 2)
psc = 2;
scll = fclk_rate / (omap->speed * 2) - 7 + psc;
sclh = fclk_rate / (omap->speed * 2) - 7 + psc;
}
omap->iestate = (OMAP_I2C_IE_XRDY | OMAP_I2C_IE_RRDY |
OMAP_I2C_IE_ARDY | OMAP_I2C_IE_NACK |
OMAP_I2C_IE_AL) | ((omap->fifo_size) ?
(OMAP_I2C_IE_RDR | OMAP_I2C_IE_XDR) : 0);
omap->pscstate = psc;
omap->scllstate = scll;
omap->sclhstate = sclh;
if (omap->rev <= OMAP_I2C_REV_ON_3430_3530) {
/* Not implemented */
omap->bb_valid = 1;
}
__omap_i2c_init(omap);
return 0;
}
/*
* Try bus recovery, but only if SDA is actually low.
*/
static int omap_i2c_recover_bus(struct omap_i2c_dev *omap)
{
u16 systest;
systest = omap_i2c_read_reg(omap, OMAP_I2C_SYSTEST_REG);
if ((systest & OMAP_I2C_SYSTEST_SCL_I_FUNC) &&
(systest & OMAP_I2C_SYSTEST_SDA_I_FUNC))
return 0; /* bus seems to already be fine */
if (!(systest & OMAP_I2C_SYSTEST_SCL_I_FUNC))
return -EBUSY; /* recovery would not fix SCL */
return i2c_recover_bus(&omap->adapter);
}
/*
* Waiting on Bus Busy
*/
static int omap_i2c_wait_for_bb(struct omap_i2c_dev *omap)
{
unsigned long timeout;
timeout = jiffies + OMAP_I2C_TIMEOUT;
while (omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG) & OMAP_I2C_STAT_BB) {
if (time_after(jiffies, timeout))
return omap_i2c_recover_bus(omap);
msleep(1);
}
return 0;
}
/*
* Wait while BB-bit doesn't reflect the I2C bus state
*
* In a multimaster environment, after IP software reset, BB-bit value doesn't
* correspond to the current bus state. It may happen what BB-bit will be 0,
* while the bus is busy due to another I2C master activity.
* Here are BB-bit values after reset:
* SDA SCL BB NOTES
* 0 0 0 1, 2
* 1 0 0 1, 2
* 0 1 1
* 1 1 0 3
* Later, if IP detect SDA=0 and SCL=1 (ACK) or SDA 1->0 while SCL=1 (START)
* combinations on the bus, it set BB-bit to 1.
* If IP detect SDA 0->1 while SCL=1 (STOP) combination on the bus,
* it set BB-bit to 0 and BF to 1.
* BB and BF bits correctly tracks the bus state while IP is suspended
* BB bit became valid on the next FCLK clock after CON_EN bit set
*
* NOTES:
* 1. Any transfer started when BB=0 and bus is busy wouldn't be
* completed by IP and results in controller timeout.
* 2. Any transfer started when BB=0 and SCL=0 results in IP
* starting to drive SDA low. In that case IP corrupt data
* on the bus.
* 3. Any transfer started in the middle of another master's transfer
* results in unpredictable results and data corruption
*/
static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *omap)
{
unsigned long bus_free_timeout = 0;
unsigned long timeout;
int bus_free = 0;
u16 stat, systest;
if (omap->bb_valid)
return 0;
timeout = jiffies + OMAP_I2C_TIMEOUT;
while (1) {
stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
/*
* We will see BB or BF event in a case IP had detected any
* activity on the I2C bus. Now IP correctly tracks the bus
* state. BB-bit value is valid.
*/
if (stat & (OMAP_I2C_STAT_BB | OMAP_I2C_STAT_BF))
break;
/*
* Otherwise, we must look signals on the bus to make
* the right decision.
*/
systest = omap_i2c_read_reg(omap, OMAP_I2C_SYSTEST_REG);
if ((systest & OMAP_I2C_SYSTEST_SCL_I_FUNC) &&
(systest & OMAP_I2C_SYSTEST_SDA_I_FUNC)) {
if (!bus_free) {
bus_free_timeout = jiffies +
OMAP_I2C_BUS_FREE_TIMEOUT;
bus_free = 1;
}
/*
* SDA and SCL lines was high for 10 ms without bus
* activity detected. The bus is free. Consider
* BB-bit value is valid.
*/
if (time_after(jiffies, bus_free_timeout))
break;
} else {
bus_free = 0;
}
if (time_after(jiffies, timeout)) {
/*
* SDA or SCL were low for the entire timeout without
* any activity detected. Most likely, a slave is
* locking up the bus with no master driving the clock.
*/
dev_warn(omap->dev, "timeout waiting for bus ready\n");
return omap_i2c_recover_bus(omap);
}
msleep(1);
}
omap->bb_valid = 1;
return 0;
}
static void omap_i2c_resize_fifo(struct omap_i2c_dev *omap, u8 size, bool is_rx)
{
u16 buf;
if (omap->flags & OMAP_I2C_FLAG_NO_FIFO)
return;
/*
* Set up notification threshold based on message size. We're doing
* this to try and avoid draining feature as much as possible. Whenever
* we have big messages to transfer (bigger than our total fifo size)
* then we might use draining feature to transfer the remaining bytes.
*/
omap->threshold = clamp(size, (u8) 1, omap->fifo_size);
buf = omap_i2c_read_reg(omap, OMAP_I2C_BUF_REG);
if (is_rx) {
/* Clear RX Threshold */
buf &= ~(0x3f << 8);
buf |= ((omap->threshold - 1) << 8) | OMAP_I2C_BUF_RXFIF_CLR;
} else {
/* Clear TX Threshold */
buf &= ~0x3f;
buf |= (omap->threshold - 1) | OMAP_I2C_BUF_TXFIF_CLR;
}
omap_i2c_write_reg(omap, OMAP_I2C_BUF_REG, buf);
if (omap->rev < OMAP_I2C_REV_ON_3630)
omap->b_hw = 1; /* Enable hardware fixes */
/* calculate wakeup latency constraint for MPU */
if (omap->set_mpu_wkup_lat != NULL)
omap->latency = (1000000 * omap->threshold) /
(1000 * omap->speed / 8);
}
/*
* Low level master read/write transaction.
*/
static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
struct i2c_msg *msg, int stop)
{
struct omap_i2c_dev *omap = i2c_get_adapdata(adap);
unsigned long timeout;
u16 w;
dev_dbg(omap->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
msg->addr, msg->len, msg->flags, stop);
if (msg->len == 0)
return -EINVAL;
omap->receiver = !!(msg->flags & I2C_M_RD);
omap_i2c_resize_fifo(omap, msg->len, omap->receiver);
omap_i2c_write_reg(omap, OMAP_I2C_SA_REG, msg->addr);
/* REVISIT: Could the STB bit of I2C_CON be used with probing? */
omap->buf = msg->buf;
omap->buf_len = msg->len;
/* make sure writes to omap->buf_len are ordered */
barrier();
omap_i2c_write_reg(omap, OMAP_I2C_CNT_REG, omap->buf_len);
/* Clear the FIFO Buffers */
w = omap_i2c_read_reg(omap, OMAP_I2C_BUF_REG);
w |= OMAP_I2C_BUF_RXFIF_CLR | OMAP_I2C_BUF_TXFIF_CLR;
omap_i2c_write_reg(omap, OMAP_I2C_BUF_REG, w);
reinit_completion(&omap->cmd_complete);
omap->cmd_err = 0;
w = OMAP_I2C_CON_EN | OMAP_I2C_CON_MST | OMAP_I2C_CON_STT;
/* High speed configuration */
if (omap->speed > 400)
w |= OMAP_I2C_CON_OPMODE_HS;
if (msg->flags & I2C_M_STOP)
stop = 1;
if (msg->flags & I2C_M_TEN)
w |= OMAP_I2C_CON_XA;
if (!(msg->flags & I2C_M_RD))
w |= OMAP_I2C_CON_TRX;
if (!omap->b_hw && stop)
w |= OMAP_I2C_CON_STP;
/*
* NOTE: STAT_BB bit could became 1 here if another master occupy
* the bus. IP successfully complete transfer when the bus will be
* free again (BB reset to 0).
*/
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
/*
* Don't write stt and stp together on some hardware.
*/
if (omap->b_hw && stop) {
unsigned long delay = jiffies + OMAP_I2C_TIMEOUT;
u16 con = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
while (con & OMAP_I2C_CON_STT) {
con = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
/* Let the user know if i2c is in a bad state */
if (time_after(jiffies, delay)) {
dev_err(omap->dev, "controller timed out "
"waiting for start condition to finish\n");
return -ETIMEDOUT;
}
cpu_relax();
}
w |= OMAP_I2C_CON_STP;
w &= ~OMAP_I2C_CON_STT;
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
}
/*
* REVISIT: We should abort the transfer on signals, but the bus goes
* into arbitration and we're currently unable to recover from it.
*/
timeout = wait_for_completion_timeout(&omap->cmd_complete,
OMAP_I2C_TIMEOUT);
if (timeout == 0) {
dev_err(omap->dev, "controller timed out\n");
omap_i2c_reset(omap);
__omap_i2c_init(omap);
return -ETIMEDOUT;
}
if (likely(!omap->cmd_err))
return 0;
/* We have an error */
if (omap->cmd_err & (OMAP_I2C_STAT_ROVR | OMAP_I2C_STAT_XUDF)) {
omap_i2c_reset(omap);
__omap_i2c_init(omap);
return -EIO;
}
if (omap->cmd_err & OMAP_I2C_STAT_AL)
return -EAGAIN;
if (omap->cmd_err & OMAP_I2C_STAT_NACK) {
if (msg->flags & I2C_M_IGNORE_NAK)
return 0;
w = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
w |= OMAP_I2C_CON_STP;
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
return -EREMOTEIO;
}
return -EIO;
}
/*
* Prepare controller for a transaction and call omap_i2c_xfer_msg
* to do the work during IRQ processing.
*/
static int
omap_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct omap_i2c_dev *omap = i2c_get_adapdata(adap);
int i;
int r;
r = pm_runtime_get_sync(omap->dev);
if (r < 0)
goto out;
r = omap_i2c_wait_for_bb_valid(omap);
if (r < 0)
goto out;
r = omap_i2c_wait_for_bb(omap);
if (r < 0)
goto out;
if (omap->set_mpu_wkup_lat != NULL)
omap->set_mpu_wkup_lat(omap->dev, omap->latency);
for (i = 0; i < num; i++) {
r = omap_i2c_xfer_msg(adap, &msgs[i], (i == (num - 1)));
if (r != 0)
break;
}
if (r == 0)
r = num;
omap_i2c_wait_for_bb(omap);
if (omap->set_mpu_wkup_lat != NULL)
omap->set_mpu_wkup_lat(omap->dev, -1);
out:
pm_runtime_mark_last_busy(omap->dev);
pm_runtime_put_autosuspend(omap->dev);
return r;
}
static u32
omap_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
I2C_FUNC_PROTOCOL_MANGLING;
}
static inline void
omap_i2c_complete_cmd(struct omap_i2c_dev *omap, u16 err)
{
omap->cmd_err |= err;
complete(&omap->cmd_complete);
}
static inline void
omap_i2c_ack_stat(struct omap_i2c_dev *omap, u16 stat)
{
omap_i2c_write_reg(omap, OMAP_I2C_STAT_REG, stat);
}
static inline void i2c_omap_errata_i207(struct omap_i2c_dev *omap, u16 stat)
{
/*
* I2C Errata(Errata Nos. OMAP2: 1.67, OMAP3: 1.8)
* Not applicable for OMAP4.
* Under certain rare conditions, RDR could be set again
* when the bus is busy, then ignore the interrupt and
* clear the interrupt.
*/
if (stat & OMAP_I2C_STAT_RDR) {
/* Step 1: If RDR is set, clear it */
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
/* Step 2: */
if (!(omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG)
& OMAP_I2C_STAT_BB)) {
/* Step 3: */
if (omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG)
& OMAP_I2C_STAT_RDR) {
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
dev_dbg(omap->dev, "RDR when bus is busy.\n");
}
}
}
}
/* rev1 devices are apparently only on some 15xx */
#ifdef CONFIG_ARCH_OMAP15XX
static irqreturn_t
omap_i2c_omap1_isr(int this_irq, void *dev_id)
{
struct omap_i2c_dev *omap = dev_id;
u16 iv, w;
if (pm_runtime_suspended(omap->dev))
return IRQ_NONE;
iv = omap_i2c_read_reg(omap, OMAP_I2C_IV_REG);
switch (iv) {
case 0x00: /* None */
break;
case 0x01: /* Arbitration lost */
dev_err(omap->dev, "Arbitration lost\n");
omap_i2c_complete_cmd(omap, OMAP_I2C_STAT_AL);
break;
case 0x02: /* No acknowledgement */
omap_i2c_complete_cmd(omap, OMAP_I2C_STAT_NACK);
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_STP);
break;
case 0x03: /* Register access ready */
omap_i2c_complete_cmd(omap, 0);
break;
case 0x04: /* Receive data ready */
if (omap->buf_len) {
w = omap_i2c_read_reg(omap, OMAP_I2C_DATA_REG);
*omap->buf++ = w;
omap->buf_len--;
if (omap->buf_len) {
*omap->buf++ = w >> 8;
omap->buf_len--;
}
} else
dev_err(omap->dev, "RRDY IRQ while no data requested\n");
break;
case 0x05: /* Transmit data ready */
if (omap->buf_len) {
w = *omap->buf++;
omap->buf_len--;
if (omap->buf_len) {
w |= *omap->buf++ << 8;
omap->buf_len--;
}
omap_i2c_write_reg(omap, OMAP_I2C_DATA_REG, w);
} else
dev_err(omap->dev, "XRDY IRQ while no data to send\n");
break;
default:
return IRQ_NONE;
}
return IRQ_HANDLED;
}
#else
#define omap_i2c_omap1_isr NULL
#endif
/*
* OMAP3430 Errata i462: When an XRDY/XDR is hit, wait for XUDF before writing
* data to DATA_REG. Otherwise some data bytes can be lost while transferring
* them from the memory to the I2C interface.
*/
static int errata_omap3_i462(struct omap_i2c_dev *omap)
{
unsigned long timeout = 10000;
u16 stat;
do {
stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
if (stat & OMAP_I2C_STAT_XUDF)
break;
if (stat & (OMAP_I2C_STAT_NACK | OMAP_I2C_STAT_AL)) {
omap_i2c_ack_stat(omap, (OMAP_I2C_STAT_XRDY |
OMAP_I2C_STAT_XDR));
if (stat & OMAP_I2C_STAT_NACK) {
omap->cmd_err |= OMAP_I2C_STAT_NACK;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_NACK);
}
if (stat & OMAP_I2C_STAT_AL) {
dev_err(omap->dev, "Arbitration lost\n");
omap->cmd_err |= OMAP_I2C_STAT_AL;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_AL);
}
return -EIO;
}
cpu_relax();
} while (--timeout);
if (!timeout) {
dev_err(omap->dev, "timeout waiting on XUDF bit\n");
return 0;
}
return 0;
}
static void omap_i2c_receive_data(struct omap_i2c_dev *omap, u8 num_bytes,
bool is_rdr)
{
u16 w;
while (num_bytes--) {
w = omap_i2c_read_reg(omap, OMAP_I2C_DATA_REG);
*omap->buf++ = w;
omap->buf_len--;
/*
* Data reg in 2430, omap3 and
* omap4 is 8 bit wide
*/
if (omap->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) {
*omap->buf++ = w >> 8;
omap->buf_len--;
}
}
}
static int omap_i2c_transmit_data(struct omap_i2c_dev *omap, u8 num_bytes,
bool is_xdr)
{
u16 w;
while (num_bytes--) {
w = *omap->buf++;
omap->buf_len--;
/*
* Data reg in 2430, omap3 and
* omap4 is 8 bit wide
*/
if (omap->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) {
w |= *omap->buf++ << 8;
omap->buf_len--;
}
if (omap->errata & I2C_OMAP_ERRATA_I462) {
int ret;
ret = errata_omap3_i462(omap);
if (ret < 0)
return ret;
}
omap_i2c_write_reg(omap, OMAP_I2C_DATA_REG, w);
}
return 0;
}
static irqreturn_t
omap_i2c_isr(int irq, void *dev_id)
{
struct omap_i2c_dev *omap = dev_id;
irqreturn_t ret = IRQ_HANDLED;
u16 mask;
u16 stat;
stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
mask = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
if (stat & mask)
ret = IRQ_WAKE_THREAD;
return ret;
}
static irqreturn_t
omap_i2c_isr_thread(int this_irq, void *dev_id)
{
struct omap_i2c_dev *omap = dev_id;
u16 bits;
u16 stat;
int err = 0, count = 0;
do {
bits = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
stat &= bits;
/* If we're in receiver mode, ignore XDR/XRDY */
if (omap->receiver)
stat &= ~(OMAP_I2C_STAT_XDR | OMAP_I2C_STAT_XRDY);
else
stat &= ~(OMAP_I2C_STAT_RDR | OMAP_I2C_STAT_RRDY);
if (!stat) {
/* my work here is done */
goto out;
}
dev_dbg(omap->dev, "IRQ (ISR = 0x%04x)\n", stat);
if (count++ == 100) {
dev_warn(omap->dev, "Too much work in one IRQ\n");
break;
}
if (stat & OMAP_I2C_STAT_NACK) {
err |= OMAP_I2C_STAT_NACK;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_NACK);
}
if (stat & OMAP_I2C_STAT_AL) {
dev_err(omap->dev, "Arbitration lost\n");
err |= OMAP_I2C_STAT_AL;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_AL);
}
/*
* ProDB0017052: Clear ARDY bit twice
*/
if (stat & OMAP_I2C_STAT_ARDY)
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_ARDY);
if (stat & (OMAP_I2C_STAT_ARDY | OMAP_I2C_STAT_NACK |
OMAP_I2C_STAT_AL)) {
omap_i2c_ack_stat(omap, (OMAP_I2C_STAT_RRDY |
OMAP_I2C_STAT_RDR |
OMAP_I2C_STAT_XRDY |
OMAP_I2C_STAT_XDR |
OMAP_I2C_STAT_ARDY));
break;
}
if (stat & OMAP_I2C_STAT_RDR) {
u8 num_bytes = 1;
if (omap->fifo_size)
num_bytes = omap->buf_len;
if (omap->errata & I2C_OMAP_ERRATA_I207) {
i2c_omap_errata_i207(omap, stat);
num_bytes = (omap_i2c_read_reg(omap,
OMAP_I2C_BUFSTAT_REG) >> 8) & 0x3F;
}
omap_i2c_receive_data(omap, num_bytes, true);
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
continue;
}
if (stat & OMAP_I2C_STAT_RRDY) {
u8 num_bytes = 1;
if (omap->threshold)
num_bytes = omap->threshold;
omap_i2c_receive_data(omap, num_bytes, false);
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RRDY);
continue;
}
if (stat & OMAP_I2C_STAT_XDR) {
u8 num_bytes = 1;
int ret;
if (omap->fifo_size)
num_bytes = omap->buf_len;
ret = omap_i2c_transmit_data(omap, num_bytes, true);
if (ret < 0)
break;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XDR);
continue;
}
if (stat & OMAP_I2C_STAT_XRDY) {
u8 num_bytes = 1;
int ret;
if (omap->threshold)
num_bytes = omap->threshold;
ret = omap_i2c_transmit_data(omap, num_bytes, false);
if (ret < 0)
break;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XRDY);
continue;
}
if (stat & OMAP_I2C_STAT_ROVR) {
dev_err(omap->dev, "Receive overrun\n");
err |= OMAP_I2C_STAT_ROVR;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_ROVR);
break;
}
if (stat & OMAP_I2C_STAT_XUDF) {
dev_err(omap->dev, "Transmit underflow\n");
err |= OMAP_I2C_STAT_XUDF;
omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XUDF);
break;
}
} while (stat);
omap_i2c_complete_cmd(omap, err);
out:
return IRQ_HANDLED;
}
static const struct i2c_algorithm omap_i2c_algo = {
.master_xfer = omap_i2c_xfer,
.functionality = omap_i2c_func,
};
#ifdef CONFIG_OF
static struct omap_i2c_bus_platform_data omap2420_pdata = {
.rev = OMAP_I2C_IP_VERSION_1,
.flags = OMAP_I2C_FLAG_NO_FIFO |
OMAP_I2C_FLAG_SIMPLE_CLOCK |
OMAP_I2C_FLAG_16BIT_DATA_REG |
OMAP_I2C_FLAG_BUS_SHIFT_2,
};
static struct omap_i2c_bus_platform_data omap2430_pdata = {
.rev = OMAP_I2C_IP_VERSION_1,
.flags = OMAP_I2C_FLAG_BUS_SHIFT_2 |
OMAP_I2C_FLAG_FORCE_19200_INT_CLK,
};
static struct omap_i2c_bus_platform_data omap3_pdata = {
.rev = OMAP_I2C_IP_VERSION_1,
.flags = OMAP_I2C_FLAG_BUS_SHIFT_2,
};
static struct omap_i2c_bus_platform_data omap4_pdata = {
.rev = OMAP_I2C_IP_VERSION_2,
};
static const struct of_device_id omap_i2c_of_match[] = {
{
.compatible = "ti,omap4-i2c",
.data = &omap4_pdata,
},
{
.compatible = "ti,omap3-i2c",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap2430-i2c",
.data = &omap2430_pdata,
},
{
.compatible = "ti,omap2420-i2c",
.data = &omap2420_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_i2c_of_match);
#endif
#define OMAP_I2C_SCHEME(rev) ((rev & 0xc000) >> 14)
#define OMAP_I2C_REV_SCHEME_0_MAJOR(rev) (rev >> 4)
#define OMAP_I2C_REV_SCHEME_0_MINOR(rev) (rev & 0xf)
#define OMAP_I2C_REV_SCHEME_1_MAJOR(rev) ((rev & 0x0700) >> 7)
#define OMAP_I2C_REV_SCHEME_1_MINOR(rev) (rev & 0x1f)
#define OMAP_I2C_SCHEME_0 0
#define OMAP_I2C_SCHEME_1 1
static int omap_i2c_get_scl(struct i2c_adapter *adap)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
u32 reg;
reg = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG);
return reg & OMAP_I2C_SYSTEST_SCL_I_FUNC;
}
static int omap_i2c_get_sda(struct i2c_adapter *adap)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
u32 reg;
reg = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG);
return reg & OMAP_I2C_SYSTEST_SDA_I_FUNC;
}
static void omap_i2c_set_scl(struct i2c_adapter *adap, int val)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
u32 reg;
reg = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG);
if (val)
reg |= OMAP_I2C_SYSTEST_SCL_O;
else
reg &= ~OMAP_I2C_SYSTEST_SCL_O;
omap_i2c_write_reg(dev, OMAP_I2C_SYSTEST_REG, reg);
}
static void omap_i2c_prepare_recovery(struct i2c_adapter *adap)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
u32 reg;
reg = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG);
/* enable test mode */
reg |= OMAP_I2C_SYSTEST_ST_EN;
/* select SDA/SCL IO mode */
reg |= 3 << OMAP_I2C_SYSTEST_TMODE_SHIFT;
/* set SCL to high-impedance state (reset value is 0) */
reg |= OMAP_I2C_SYSTEST_SCL_O;
/* set SDA to high-impedance state (reset value is 0) */
reg |= OMAP_I2C_SYSTEST_SDA_O;
omap_i2c_write_reg(dev, OMAP_I2C_SYSTEST_REG, reg);
}
static void omap_i2c_unprepare_recovery(struct i2c_adapter *adap)
{
struct omap_i2c_dev *dev = i2c_get_adapdata(adap);
u32 reg;
reg = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG);
/* restore reset values */
reg &= ~OMAP_I2C_SYSTEST_ST_EN;
reg &= ~OMAP_I2C_SYSTEST_TMODE_MASK;
reg &= ~OMAP_I2C_SYSTEST_SCL_O;
reg &= ~OMAP_I2C_SYSTEST_SDA_O;
omap_i2c_write_reg(dev, OMAP_I2C_SYSTEST_REG, reg);
}
static struct i2c_bus_recovery_info omap_i2c_bus_recovery_info = {
.get_scl = omap_i2c_get_scl,
.get_sda = omap_i2c_get_sda,
.set_scl = omap_i2c_set_scl,
.prepare_recovery = omap_i2c_prepare_recovery,
.unprepare_recovery = omap_i2c_unprepare_recovery,
.recover_bus = i2c_generic_scl_recovery,
};
static int
omap_i2c_probe(struct platform_device *pdev)
{
struct omap_i2c_dev *omap;
struct i2c_adapter *adap;
struct resource *mem;
const struct omap_i2c_bus_platform_data *pdata =
dev_get_platdata(&pdev->dev);
struct device_node *node = pdev->dev.of_node;
const struct of_device_id *match;
int irq;
int r;
u32 rev;
u16 minor, major;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return irq;
}
omap = devm_kzalloc(&pdev->dev, sizeof(struct omap_i2c_dev), GFP_KERNEL);
if (!omap)
return -ENOMEM;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
omap->base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(omap->base))
return PTR_ERR(omap->base);
match = of_match_device(of_match_ptr(omap_i2c_of_match), &pdev->dev);
if (match) {
u32 freq = 100000; /* default to 100000 Hz */
pdata = match->data;
omap->flags = pdata->flags;
of_property_read_u32(node, "clock-frequency", &freq);
/* convert DT freq value in Hz into kHz for speed */
omap->speed = freq / 1000;
} else if (pdata != NULL) {
omap->speed = pdata->clkrate;
omap->flags = pdata->flags;
omap->set_mpu_wkup_lat = pdata->set_mpu_wkup_lat;
}
omap->dev = &pdev->dev;
omap->irq = irq;
platform_set_drvdata(pdev, omap);
init_completion(&omap->cmd_complete);
omap->reg_shift = (omap->flags >> OMAP_I2C_FLAG_BUS_SHIFT__SHIFT) & 3;
pm_runtime_enable(omap->dev);
pm_runtime_set_autosuspend_delay(omap->dev, OMAP_I2C_PM_TIMEOUT);
pm_runtime_use_autosuspend(omap->dev);
r = pm_runtime_get_sync(omap->dev);
if (r < 0)
goto err_free_mem;
/*
* Read the Rev hi bit-[15:14] ie scheme this is 1 indicates ver2.
* On omap1/3/2 Offset 4 is IE Reg the bit [15:14] is 0 at reset.
* Also since the omap_i2c_read_reg uses reg_map_ip_* a
* readw_relaxed is done.
*/
rev = readw_relaxed(omap->base + 0x04);
omap->scheme = OMAP_I2C_SCHEME(rev);
switch (omap->scheme) {
case OMAP_I2C_SCHEME_0:
omap->regs = (u8 *)reg_map_ip_v1;
omap->rev = omap_i2c_read_reg(omap, OMAP_I2C_REV_REG);
minor = OMAP_I2C_REV_SCHEME_0_MAJOR(omap->rev);
major = OMAP_I2C_REV_SCHEME_0_MAJOR(omap->rev);
break;
case OMAP_I2C_SCHEME_1:
/* FALLTHROUGH */
default:
omap->regs = (u8 *)reg_map_ip_v2;
rev = (rev << 16) |
omap_i2c_read_reg(omap, OMAP_I2C_IP_V2_REVNB_LO);
minor = OMAP_I2C_REV_SCHEME_1_MINOR(rev);
major = OMAP_I2C_REV_SCHEME_1_MAJOR(rev);
omap->rev = rev;
}
omap->errata = 0;
if (omap->rev >= OMAP_I2C_REV_ON_2430 &&
omap->rev < OMAP_I2C_REV_ON_4430_PLUS)
omap->errata |= I2C_OMAP_ERRATA_I207;
if (omap->rev <= OMAP_I2C_REV_ON_3430_3530)
omap->errata |= I2C_OMAP_ERRATA_I462;
if (!(omap->flags & OMAP_I2C_FLAG_NO_FIFO)) {
u16 s;
/* Set up the fifo size - Get total size */
s = (omap_i2c_read_reg(omap, OMAP_I2C_BUFSTAT_REG) >> 14) & 0x3;
omap->fifo_size = 0x8 << s;
/*
* Set up notification threshold as half the total available
* size. This is to ensure that we can handle the status on int
* call back latencies.
*/
omap->fifo_size = (omap->fifo_size / 2);
if (omap->rev < OMAP_I2C_REV_ON_3630)
omap->b_hw = 1; /* Enable hardware fixes */
/* calculate wakeup latency constraint for MPU */
if (omap->set_mpu_wkup_lat != NULL)
omap->latency = (1000000 * omap->fifo_size) /
(1000 * omap->speed / 8);
}
/* reset ASAP, clearing any IRQs */
omap_i2c_init(omap);
if (omap->rev < OMAP_I2C_OMAP1_REV_2)
r = devm_request_irq(&pdev->dev, omap->irq, omap_i2c_omap1_isr,
IRQF_NO_SUSPEND, pdev->name, omap);
else
r = devm_request_threaded_irq(&pdev->dev, omap->irq,
omap_i2c_isr, omap_i2c_isr_thread,
IRQF_NO_SUSPEND | IRQF_ONESHOT,
pdev->name, omap);
if (r) {
dev_err(omap->dev, "failure requesting irq %i\n", omap->irq);
goto err_unuse_clocks;
}
adap = &omap->adapter;
i2c_set_adapdata(adap, omap);
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_DEPRECATED;
strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
adap->algo = &omap_i2c_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
adap->bus_recovery_info = &omap_i2c_bus_recovery_info;
/* i2c device drivers may be active on return from add_adapter() */
adap->nr = pdev->id;
r = i2c_add_numbered_adapter(adap);
if (r)
goto err_unuse_clocks;
dev_info(omap->dev, "bus %d rev%d.%d at %d kHz\n", adap->nr,
major, minor, omap->speed);
pm_runtime_mark_last_busy(omap->dev);
pm_runtime_put_autosuspend(omap->dev);
return 0;
err_unuse_clocks:
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
pm_runtime_dont_use_autosuspend(omap->dev);
pm_runtime_put_sync(omap->dev);
pm_runtime_disable(&pdev->dev);
err_free_mem:
return r;
}
static int omap_i2c_remove(struct platform_device *pdev)
{
struct omap_i2c_dev *omap = platform_get_drvdata(pdev);
int ret;
i2c_del_adapter(&omap->adapter);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
return ret;
omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int omap_i2c_runtime_suspend(struct device *dev)
{
struct omap_i2c_dev *omap = dev_get_drvdata(dev);
omap->iestate = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
if (omap->scheme == OMAP_I2C_SCHEME_0)
omap_i2c_write_reg(omap, OMAP_I2C_IE_REG, 0);
else
omap_i2c_write_reg(omap, OMAP_I2C_IP_V2_IRQENABLE_CLR,
OMAP_I2C_IP_V2_INTERRUPTS_MASK);
if (omap->rev < OMAP_I2C_OMAP1_REV_2) {
omap_i2c_read_reg(omap, OMAP_I2C_IV_REG); /* Read clears */
} else {
omap_i2c_write_reg(omap, OMAP_I2C_STAT_REG, omap->iestate);
/* Flush posted write */
omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
}
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int omap_i2c_runtime_resume(struct device *dev)
{
struct omap_i2c_dev *omap = dev_get_drvdata(dev);
pinctrl_pm_select_default_state(dev);
if (!omap->regs)
return 0;
__omap_i2c_init(omap);
return 0;
}
static const struct dev_pm_ops omap_i2c_pm_ops = {
SET_RUNTIME_PM_OPS(omap_i2c_runtime_suspend,
omap_i2c_runtime_resume, NULL)
};
#define OMAP_I2C_PM_OPS (&omap_i2c_pm_ops)
#else
#define OMAP_I2C_PM_OPS NULL
#endif /* CONFIG_PM */
static struct platform_driver omap_i2c_driver = {
.probe = omap_i2c_probe,
.remove = omap_i2c_remove,
.driver = {
.name = "omap_i2c",
.pm = OMAP_I2C_PM_OPS,
.of_match_table = of_match_ptr(omap_i2c_of_match),
},
};
/* I2C may be needed to bring up other drivers */
static int __init
omap_i2c_init_driver(void)
{
return platform_driver_register(&omap_i2c_driver);
}
subsys_initcall(omap_i2c_init_driver);
static void __exit omap_i2c_exit_driver(void)
{
platform_driver_unregister(&omap_i2c_driver);
}
module_exit(omap_i2c_exit_driver);
MODULE_AUTHOR("MontaVista Software, Inc. (and others)");
MODULE_DESCRIPTION("TI OMAP I2C bus adapter");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:omap_i2c");