360 lines
9.8 KiB
C
360 lines
9.8 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _ASM_X86_MMU_CONTEXT_H
|
||
|
#define _ASM_X86_MMU_CONTEXT_H
|
||
|
|
||
|
#include <asm/desc.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/pkeys.h>
|
||
|
|
||
|
#include <trace/events/tlb.h>
|
||
|
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/paravirt.h>
|
||
|
#include <asm/mpx.h>
|
||
|
|
||
|
extern atomic64_t last_mm_ctx_id;
|
||
|
|
||
|
#ifndef CONFIG_PARAVIRT
|
||
|
static inline void paravirt_activate_mm(struct mm_struct *prev,
|
||
|
struct mm_struct *next)
|
||
|
{
|
||
|
}
|
||
|
#endif /* !CONFIG_PARAVIRT */
|
||
|
|
||
|
#ifdef CONFIG_PERF_EVENTS
|
||
|
extern struct static_key rdpmc_always_available;
|
||
|
|
||
|
static inline void load_mm_cr4(struct mm_struct *mm)
|
||
|
{
|
||
|
if (static_key_false(&rdpmc_always_available) ||
|
||
|
atomic_read(&mm->context.perf_rdpmc_allowed))
|
||
|
cr4_set_bits(X86_CR4_PCE);
|
||
|
else
|
||
|
cr4_clear_bits(X86_CR4_PCE);
|
||
|
}
|
||
|
#else
|
||
|
static inline void load_mm_cr4(struct mm_struct *mm) {}
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
||
|
/*
|
||
|
* ldt_structs can be allocated, used, and freed, but they are never
|
||
|
* modified while live.
|
||
|
*/
|
||
|
struct ldt_struct {
|
||
|
/*
|
||
|
* Xen requires page-aligned LDTs with special permissions. This is
|
||
|
* needed to prevent us from installing evil descriptors such as
|
||
|
* call gates. On native, we could merge the ldt_struct and LDT
|
||
|
* allocations, but it's not worth trying to optimize.
|
||
|
*/
|
||
|
struct desc_struct *entries;
|
||
|
unsigned int nr_entries;
|
||
|
|
||
|
/*
|
||
|
* If PTI is in use, then the entries array is not mapped while we're
|
||
|
* in user mode. The whole array will be aliased at the addressed
|
||
|
* given by ldt_slot_va(slot). We use two slots so that we can allocate
|
||
|
* and map, and enable a new LDT without invalidating the mapping
|
||
|
* of an older, still-in-use LDT.
|
||
|
*
|
||
|
* slot will be -1 if this LDT doesn't have an alias mapping.
|
||
|
*/
|
||
|
int slot;
|
||
|
};
|
||
|
|
||
|
/* This is a multiple of PAGE_SIZE. */
|
||
|
#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
|
||
|
|
||
|
static inline void *ldt_slot_va(int slot)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_64
|
||
|
return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
|
||
|
#else
|
||
|
BUG();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Used for LDT copy/destruction.
|
||
|
*/
|
||
|
static inline void init_new_context_ldt(struct mm_struct *mm)
|
||
|
{
|
||
|
mm->context.ldt = NULL;
|
||
|
init_rwsem(&mm->context.ldt_usr_sem);
|
||
|
}
|
||
|
int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
|
||
|
void destroy_context_ldt(struct mm_struct *mm);
|
||
|
void ldt_arch_exit_mmap(struct mm_struct *mm);
|
||
|
#else /* CONFIG_MODIFY_LDT_SYSCALL */
|
||
|
static inline void init_new_context_ldt(struct mm_struct *mm) { }
|
||
|
static inline int ldt_dup_context(struct mm_struct *oldmm,
|
||
|
struct mm_struct *mm)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
static inline void destroy_context_ldt(struct mm_struct *mm) { }
|
||
|
static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
|
||
|
#endif
|
||
|
|
||
|
static inline void load_mm_ldt(struct mm_struct *mm)
|
||
|
{
|
||
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
||
|
struct ldt_struct *ldt;
|
||
|
|
||
|
/* READ_ONCE synchronizes with smp_store_release */
|
||
|
ldt = READ_ONCE(mm->context.ldt);
|
||
|
|
||
|
/*
|
||
|
* Any change to mm->context.ldt is followed by an IPI to all
|
||
|
* CPUs with the mm active. The LDT will not be freed until
|
||
|
* after the IPI is handled by all such CPUs. This means that,
|
||
|
* if the ldt_struct changes before we return, the values we see
|
||
|
* will be safe, and the new values will be loaded before we run
|
||
|
* any user code.
|
||
|
*
|
||
|
* NB: don't try to convert this to use RCU without extreme care.
|
||
|
* We would still need IRQs off, because we don't want to change
|
||
|
* the local LDT after an IPI loaded a newer value than the one
|
||
|
* that we can see.
|
||
|
*/
|
||
|
|
||
|
if (unlikely(ldt)) {
|
||
|
if (static_cpu_has(X86_FEATURE_PTI)) {
|
||
|
if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
|
||
|
/*
|
||
|
* Whoops -- either the new LDT isn't mapped
|
||
|
* (if slot == -1) or is mapped into a bogus
|
||
|
* slot (if slot > 1).
|
||
|
*/
|
||
|
clear_LDT();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If page table isolation is enabled, ldt->entries
|
||
|
* will not be mapped in the userspace pagetables.
|
||
|
* Tell the CPU to access the LDT through the alias
|
||
|
* at ldt_slot_va(ldt->slot).
|
||
|
*/
|
||
|
set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
|
||
|
} else {
|
||
|
set_ldt(ldt->entries, ldt->nr_entries);
|
||
|
}
|
||
|
} else {
|
||
|
clear_LDT();
|
||
|
}
|
||
|
#else
|
||
|
clear_LDT();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
|
||
|
{
|
||
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
||
|
/*
|
||
|
* Load the LDT if either the old or new mm had an LDT.
|
||
|
*
|
||
|
* An mm will never go from having an LDT to not having an LDT. Two
|
||
|
* mms never share an LDT, so we don't gain anything by checking to
|
||
|
* see whether the LDT changed. There's also no guarantee that
|
||
|
* prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
|
||
|
* then prev->context.ldt will also be non-NULL.
|
||
|
*
|
||
|
* If we really cared, we could optimize the case where prev == next
|
||
|
* and we're exiting lazy mode. Most of the time, if this happens,
|
||
|
* we don't actually need to reload LDTR, but modify_ldt() is mostly
|
||
|
* used by legacy code and emulators where we don't need this level of
|
||
|
* performance.
|
||
|
*
|
||
|
* This uses | instead of || because it generates better code.
|
||
|
*/
|
||
|
if (unlikely((unsigned long)prev->context.ldt |
|
||
|
(unsigned long)next->context.ldt))
|
||
|
load_mm_ldt(next);
|
||
|
#endif
|
||
|
|
||
|
DEBUG_LOCKS_WARN_ON(preemptible());
|
||
|
}
|
||
|
|
||
|
void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
|
||
|
|
||
|
static inline int init_new_context(struct task_struct *tsk,
|
||
|
struct mm_struct *mm)
|
||
|
{
|
||
|
mutex_init(&mm->context.lock);
|
||
|
|
||
|
mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
|
||
|
atomic64_set(&mm->context.tlb_gen, 0);
|
||
|
|
||
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
||
|
if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
|
||
|
/* pkey 0 is the default and always allocated */
|
||
|
mm->context.pkey_allocation_map = 0x1;
|
||
|
/* -1 means unallocated or invalid */
|
||
|
mm->context.execute_only_pkey = -1;
|
||
|
}
|
||
|
#endif
|
||
|
init_new_context_ldt(mm);
|
||
|
return 0;
|
||
|
}
|
||
|
static inline void destroy_context(struct mm_struct *mm)
|
||
|
{
|
||
|
destroy_context_ldt(mm);
|
||
|
}
|
||
|
|
||
|
extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
||
|
struct task_struct *tsk);
|
||
|
|
||
|
extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
||
|
struct task_struct *tsk);
|
||
|
#define switch_mm_irqs_off switch_mm_irqs_off
|
||
|
|
||
|
#define activate_mm(prev, next) \
|
||
|
do { \
|
||
|
paravirt_activate_mm((prev), (next)); \
|
||
|
switch_mm((prev), (next), NULL); \
|
||
|
} while (0);
|
||
|
|
||
|
#ifdef CONFIG_X86_32
|
||
|
#define deactivate_mm(tsk, mm) \
|
||
|
do { \
|
||
|
lazy_load_gs(0); \
|
||
|
} while (0)
|
||
|
#else
|
||
|
#define deactivate_mm(tsk, mm) \
|
||
|
do { \
|
||
|
load_gs_index(0); \
|
||
|
loadsegment(fs, 0); \
|
||
|
} while (0)
|
||
|
#endif
|
||
|
|
||
|
static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
|
||
|
{
|
||
|
paravirt_arch_dup_mmap(oldmm, mm);
|
||
|
return ldt_dup_context(oldmm, mm);
|
||
|
}
|
||
|
|
||
|
static inline void arch_exit_mmap(struct mm_struct *mm)
|
||
|
{
|
||
|
paravirt_arch_exit_mmap(mm);
|
||
|
ldt_arch_exit_mmap(mm);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static inline bool is_64bit_mm(struct mm_struct *mm)
|
||
|
{
|
||
|
return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
|
||
|
!(mm->context.ia32_compat == TIF_IA32);
|
||
|
}
|
||
|
#else
|
||
|
static inline bool is_64bit_mm(struct mm_struct *mm)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||
|
struct vm_area_struct *vma)
|
||
|
{
|
||
|
mpx_mm_init(mm);
|
||
|
}
|
||
|
|
||
|
static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
|
||
|
unsigned long start, unsigned long end)
|
||
|
{
|
||
|
/*
|
||
|
* mpx_notify_unmap() goes and reads a rarely-hot
|
||
|
* cacheline in the mm_struct. That can be expensive
|
||
|
* enough to be seen in profiles.
|
||
|
*
|
||
|
* The mpx_notify_unmap() call and its contents have been
|
||
|
* observed to affect munmap() performance on hardware
|
||
|
* where MPX is not present.
|
||
|
*
|
||
|
* The unlikely() optimizes for the fast case: no MPX
|
||
|
* in the CPU, or no MPX use in the process. Even if
|
||
|
* we get this wrong (in the unlikely event that MPX
|
||
|
* is widely enabled on some system) the overhead of
|
||
|
* MPX itself (reading bounds tables) is expected to
|
||
|
* overwhelm the overhead of getting this unlikely()
|
||
|
* consistently wrong.
|
||
|
*/
|
||
|
if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
|
||
|
mpx_notify_unmap(mm, vma, start, end);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
||
|
static inline int vma_pkey(struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
|
||
|
VM_PKEY_BIT2 | VM_PKEY_BIT3;
|
||
|
|
||
|
return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
|
||
|
}
|
||
|
#else
|
||
|
static inline int vma_pkey(struct vm_area_struct *vma)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* We only want to enforce protection keys on the current process
|
||
|
* because we effectively have no access to PKRU for other
|
||
|
* processes or any way to tell *which * PKRU in a threaded
|
||
|
* process we could use.
|
||
|
*
|
||
|
* So do not enforce things if the VMA is not from the current
|
||
|
* mm, or if we are in a kernel thread.
|
||
|
*/
|
||
|
static inline bool vma_is_foreign(struct vm_area_struct *vma)
|
||
|
{
|
||
|
if (!current->mm)
|
||
|
return true;
|
||
|
/*
|
||
|
* Should PKRU be enforced on the access to this VMA? If
|
||
|
* the VMA is from another process, then PKRU has no
|
||
|
* relevance and should not be enforced.
|
||
|
*/
|
||
|
if (current->mm != vma->vm_mm)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
|
||
|
bool write, bool execute, bool foreign)
|
||
|
{
|
||
|
/* pkeys never affect instruction fetches */
|
||
|
if (execute)
|
||
|
return true;
|
||
|
/* allow access if the VMA is not one from this process */
|
||
|
if (foreign || vma_is_foreign(vma))
|
||
|
return true;
|
||
|
return __pkru_allows_pkey(vma_pkey(vma), write);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This can be used from process context to figure out what the value of
|
||
|
* CR3 is without needing to do a (slow) __read_cr3().
|
||
|
*
|
||
|
* It's intended to be used for code like KVM that sneakily changes CR3
|
||
|
* and needs to restore it. It needs to be used very carefully.
|
||
|
*/
|
||
|
static inline unsigned long __get_current_cr3_fast(void)
|
||
|
{
|
||
|
unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
|
||
|
this_cpu_read(cpu_tlbstate.loaded_mm_asid));
|
||
|
|
||
|
/* For now, be very restrictive about when this can be called. */
|
||
|
VM_WARN_ON(in_nmi() || preemptible());
|
||
|
|
||
|
VM_BUG_ON(cr3 != __read_cr3());
|
||
|
return cr3;
|
||
|
}
|
||
|
|
||
|
#endif /* _ASM_X86_MMU_CONTEXT_H */
|