527 lines
15 KiB
C
527 lines
15 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
#include <linux/crypto.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/rculist.h>
|
||
|
#include <net/inetpeer.h>
|
||
|
#include <net/tcp.h>
|
||
|
|
||
|
void tcp_fastopen_init_key_once(struct net *net)
|
||
|
{
|
||
|
u8 key[TCP_FASTOPEN_KEY_LENGTH];
|
||
|
struct tcp_fastopen_context *ctxt;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
|
||
|
if (ctxt) {
|
||
|
rcu_read_unlock();
|
||
|
return;
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/* tcp_fastopen_reset_cipher publishes the new context
|
||
|
* atomically, so we allow this race happening here.
|
||
|
*
|
||
|
* All call sites of tcp_fastopen_cookie_gen also check
|
||
|
* for a valid cookie, so this is an acceptable risk.
|
||
|
*/
|
||
|
get_random_bytes(key, sizeof(key));
|
||
|
tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
|
||
|
}
|
||
|
|
||
|
static void tcp_fastopen_ctx_free(struct rcu_head *head)
|
||
|
{
|
||
|
struct tcp_fastopen_context *ctx =
|
||
|
container_of(head, struct tcp_fastopen_context, rcu);
|
||
|
crypto_free_cipher(ctx->tfm);
|
||
|
kfree(ctx);
|
||
|
}
|
||
|
|
||
|
void tcp_fastopen_destroy_cipher(struct sock *sk)
|
||
|
{
|
||
|
struct tcp_fastopen_context *ctx;
|
||
|
|
||
|
ctx = rcu_dereference_protected(
|
||
|
inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
|
||
|
if (ctx)
|
||
|
call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
|
||
|
}
|
||
|
|
||
|
void tcp_fastopen_ctx_destroy(struct net *net)
|
||
|
{
|
||
|
struct tcp_fastopen_context *ctxt;
|
||
|
|
||
|
spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
|
||
|
|
||
|
ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
|
||
|
lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
|
||
|
rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
|
||
|
spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
|
||
|
|
||
|
if (ctxt)
|
||
|
call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
|
||
|
}
|
||
|
|
||
|
int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
|
||
|
void *key, unsigned int len)
|
||
|
{
|
||
|
struct tcp_fastopen_context *ctx, *octx;
|
||
|
struct fastopen_queue *q;
|
||
|
int err;
|
||
|
|
||
|
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
|
||
|
if (!ctx)
|
||
|
return -ENOMEM;
|
||
|
ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
|
||
|
|
||
|
if (IS_ERR(ctx->tfm)) {
|
||
|
err = PTR_ERR(ctx->tfm);
|
||
|
error: kfree(ctx);
|
||
|
pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
|
||
|
return err;
|
||
|
}
|
||
|
err = crypto_cipher_setkey(ctx->tfm, key, len);
|
||
|
if (err) {
|
||
|
pr_err("TCP: TFO cipher key error: %d\n", err);
|
||
|
crypto_free_cipher(ctx->tfm);
|
||
|
goto error;
|
||
|
}
|
||
|
memcpy(ctx->key, key, len);
|
||
|
|
||
|
|
||
|
spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
|
||
|
if (sk) {
|
||
|
q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
|
||
|
octx = rcu_dereference_protected(q->ctx,
|
||
|
lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
|
||
|
rcu_assign_pointer(q->ctx, ctx);
|
||
|
} else {
|
||
|
octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
|
||
|
lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
|
||
|
rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
|
||
|
}
|
||
|
spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
|
||
|
|
||
|
if (octx)
|
||
|
call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
|
||
|
struct tcp_fastopen_cookie *foc)
|
||
|
{
|
||
|
struct tcp_fastopen_context *ctx;
|
||
|
bool ok = false;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
|
||
|
if (!ctx)
|
||
|
ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
|
||
|
|
||
|
if (ctx) {
|
||
|
crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
|
||
|
foc->len = TCP_FASTOPEN_COOKIE_SIZE;
|
||
|
ok = true;
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
/* Generate the fastopen cookie by doing aes128 encryption on both
|
||
|
* the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
|
||
|
* addresses. For the longer IPv6 addresses use CBC-MAC.
|
||
|
*
|
||
|
* XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
|
||
|
*/
|
||
|
static bool tcp_fastopen_cookie_gen(struct sock *sk,
|
||
|
struct request_sock *req,
|
||
|
struct sk_buff *syn,
|
||
|
struct tcp_fastopen_cookie *foc)
|
||
|
{
|
||
|
if (req->rsk_ops->family == AF_INET) {
|
||
|
const struct iphdr *iph = ip_hdr(syn);
|
||
|
|
||
|
__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
|
||
|
return __tcp_fastopen_cookie_gen(sk, path, foc);
|
||
|
}
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_IPV6)
|
||
|
if (req->rsk_ops->family == AF_INET6) {
|
||
|
const struct ipv6hdr *ip6h = ipv6_hdr(syn);
|
||
|
struct tcp_fastopen_cookie tmp;
|
||
|
|
||
|
if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
|
||
|
struct in6_addr *buf = &tmp.addr;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < 4; i++)
|
||
|
buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
|
||
|
return __tcp_fastopen_cookie_gen(sk, buf, foc);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
|
||
|
* queue this additional data / FIN.
|
||
|
*/
|
||
|
void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
|
||
|
{
|
||
|
struct tcp_sock *tp = tcp_sk(sk);
|
||
|
|
||
|
if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
|
||
|
return;
|
||
|
|
||
|
skb = skb_clone(skb, GFP_ATOMIC);
|
||
|
if (!skb)
|
||
|
return;
|
||
|
|
||
|
skb_dst_drop(skb);
|
||
|
/* segs_in has been initialized to 1 in tcp_create_openreq_child().
|
||
|
* Hence, reset segs_in to 0 before calling tcp_segs_in()
|
||
|
* to avoid double counting. Also, tcp_segs_in() expects
|
||
|
* skb->len to include the tcp_hdrlen. Hence, it should
|
||
|
* be called before __skb_pull().
|
||
|
*/
|
||
|
tp->segs_in = 0;
|
||
|
tcp_segs_in(tp, skb);
|
||
|
__skb_pull(skb, tcp_hdrlen(skb));
|
||
|
sk_forced_mem_schedule(sk, skb->truesize);
|
||
|
skb_set_owner_r(skb, sk);
|
||
|
|
||
|
TCP_SKB_CB(skb)->seq++;
|
||
|
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
|
||
|
|
||
|
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
||
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
||
|
tp->syn_data_acked = 1;
|
||
|
|
||
|
/* u64_stats_update_begin(&tp->syncp) not needed here,
|
||
|
* as we certainly are not changing upper 32bit value (0)
|
||
|
*/
|
||
|
tp->bytes_received = skb->len;
|
||
|
|
||
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
|
||
|
tcp_fin(sk);
|
||
|
}
|
||
|
|
||
|
static struct sock *tcp_fastopen_create_child(struct sock *sk,
|
||
|
struct sk_buff *skb,
|
||
|
struct request_sock *req)
|
||
|
{
|
||
|
struct tcp_sock *tp;
|
||
|
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
|
||
|
struct sock *child;
|
||
|
bool own_req;
|
||
|
|
||
|
req->num_retrans = 0;
|
||
|
req->num_timeout = 0;
|
||
|
req->sk = NULL;
|
||
|
|
||
|
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
|
||
|
NULL, &own_req);
|
||
|
if (!child)
|
||
|
return NULL;
|
||
|
|
||
|
spin_lock(&queue->fastopenq.lock);
|
||
|
queue->fastopenq.qlen++;
|
||
|
spin_unlock(&queue->fastopenq.lock);
|
||
|
|
||
|
/* Initialize the child socket. Have to fix some values to take
|
||
|
* into account the child is a Fast Open socket and is created
|
||
|
* only out of the bits carried in the SYN packet.
|
||
|
*/
|
||
|
tp = tcp_sk(child);
|
||
|
|
||
|
tp->fastopen_rsk = req;
|
||
|
tcp_rsk(req)->tfo_listener = true;
|
||
|
|
||
|
/* RFC1323: The window in SYN & SYN/ACK segments is never
|
||
|
* scaled. So correct it appropriately.
|
||
|
*/
|
||
|
tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
|
||
|
tp->max_window = tp->snd_wnd;
|
||
|
|
||
|
/* Activate the retrans timer so that SYNACK can be retransmitted.
|
||
|
* The request socket is not added to the ehash
|
||
|
* because it's been added to the accept queue directly.
|
||
|
*/
|
||
|
inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
|
||
|
TCP_TIMEOUT_INIT, TCP_RTO_MAX);
|
||
|
|
||
|
refcount_set(&req->rsk_refcnt, 2);
|
||
|
|
||
|
/* Now finish processing the fastopen child socket. */
|
||
|
tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
|
||
|
|
||
|
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
|
||
|
|
||
|
tcp_fastopen_add_skb(child, skb);
|
||
|
|
||
|
tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
|
||
|
tp->rcv_wup = tp->rcv_nxt;
|
||
|
/* tcp_conn_request() is sending the SYNACK,
|
||
|
* and queues the child into listener accept queue.
|
||
|
*/
|
||
|
return child;
|
||
|
}
|
||
|
|
||
|
static bool tcp_fastopen_queue_check(struct sock *sk)
|
||
|
{
|
||
|
struct fastopen_queue *fastopenq;
|
||
|
|
||
|
/* Make sure the listener has enabled fastopen, and we don't
|
||
|
* exceed the max # of pending TFO requests allowed before trying
|
||
|
* to validating the cookie in order to avoid burning CPU cycles
|
||
|
* unnecessarily.
|
||
|
*
|
||
|
* XXX (TFO) - The implication of checking the max_qlen before
|
||
|
* processing a cookie request is that clients can't differentiate
|
||
|
* between qlen overflow causing Fast Open to be disabled
|
||
|
* temporarily vs a server not supporting Fast Open at all.
|
||
|
*/
|
||
|
fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
|
||
|
if (fastopenq->max_qlen == 0)
|
||
|
return false;
|
||
|
|
||
|
if (fastopenq->qlen >= fastopenq->max_qlen) {
|
||
|
struct request_sock *req1;
|
||
|
spin_lock(&fastopenq->lock);
|
||
|
req1 = fastopenq->rskq_rst_head;
|
||
|
if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
|
||
|
__NET_INC_STATS(sock_net(sk),
|
||
|
LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
|
||
|
spin_unlock(&fastopenq->lock);
|
||
|
return false;
|
||
|
}
|
||
|
fastopenq->rskq_rst_head = req1->dl_next;
|
||
|
fastopenq->qlen--;
|
||
|
spin_unlock(&fastopenq->lock);
|
||
|
reqsk_put(req1);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool tcp_fastopen_no_cookie(const struct sock *sk,
|
||
|
const struct dst_entry *dst,
|
||
|
int flag)
|
||
|
{
|
||
|
return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
|
||
|
tcp_sk(sk)->fastopen_no_cookie ||
|
||
|
(dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
|
||
|
}
|
||
|
|
||
|
/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
|
||
|
* may be updated and return the client in the SYN-ACK later. E.g., Fast Open
|
||
|
* cookie request (foc->len == 0).
|
||
|
*/
|
||
|
struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
|
||
|
struct request_sock *req,
|
||
|
struct tcp_fastopen_cookie *foc,
|
||
|
const struct dst_entry *dst)
|
||
|
{
|
||
|
bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
|
||
|
int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
|
||
|
struct tcp_fastopen_cookie valid_foc = { .len = -1 };
|
||
|
struct sock *child;
|
||
|
|
||
|
if (foc->len == 0) /* Client requests a cookie */
|
||
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
|
||
|
|
||
|
if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
|
||
|
(syn_data || foc->len >= 0) &&
|
||
|
tcp_fastopen_queue_check(sk))) {
|
||
|
foc->len = -1;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (syn_data &&
|
||
|
tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
|
||
|
goto fastopen;
|
||
|
|
||
|
if (foc->len >= 0 && /* Client presents or requests a cookie */
|
||
|
tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
|
||
|
foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
|
||
|
foc->len == valid_foc.len &&
|
||
|
!memcmp(foc->val, valid_foc.val, foc->len)) {
|
||
|
/* Cookie is valid. Create a (full) child socket to accept
|
||
|
* the data in SYN before returning a SYN-ACK to ack the
|
||
|
* data. If we fail to create the socket, fall back and
|
||
|
* ack the ISN only but includes the same cookie.
|
||
|
*
|
||
|
* Note: Data-less SYN with valid cookie is allowed to send
|
||
|
* data in SYN_RECV state.
|
||
|
*/
|
||
|
fastopen:
|
||
|
child = tcp_fastopen_create_child(sk, skb, req);
|
||
|
if (child) {
|
||
|
foc->len = -1;
|
||
|
NET_INC_STATS(sock_net(sk),
|
||
|
LINUX_MIB_TCPFASTOPENPASSIVE);
|
||
|
return child;
|
||
|
}
|
||
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
|
||
|
} else if (foc->len > 0) /* Client presents an invalid cookie */
|
||
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
|
||
|
|
||
|
valid_foc.exp = foc->exp;
|
||
|
*foc = valid_foc;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
|
||
|
struct tcp_fastopen_cookie *cookie)
|
||
|
{
|
||
|
unsigned long last_syn_loss = 0;
|
||
|
const struct dst_entry *dst;
|
||
|
int syn_loss = 0;
|
||
|
|
||
|
tcp_fastopen_cache_get(sk, mss, cookie, &syn_loss, &last_syn_loss);
|
||
|
|
||
|
/* Recurring FO SYN losses: no cookie or data in SYN */
|
||
|
if (syn_loss > 1 &&
|
||
|
time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
|
||
|
cookie->len = -1;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Firewall blackhole issue check */
|
||
|
if (tcp_fastopen_active_should_disable(sk)) {
|
||
|
cookie->len = -1;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
dst = __sk_dst_get(sk);
|
||
|
|
||
|
if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
|
||
|
cookie->len = -1;
|
||
|
return true;
|
||
|
}
|
||
|
return cookie->len > 0;
|
||
|
}
|
||
|
|
||
|
/* This function checks if we want to defer sending SYN until the first
|
||
|
* write(). We defer under the following conditions:
|
||
|
* 1. fastopen_connect sockopt is set
|
||
|
* 2. we have a valid cookie
|
||
|
* Return value: return true if we want to defer until application writes data
|
||
|
* return false if we want to send out SYN immediately
|
||
|
*/
|
||
|
bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
|
||
|
{
|
||
|
struct tcp_fastopen_cookie cookie = { .len = 0 };
|
||
|
struct tcp_sock *tp = tcp_sk(sk);
|
||
|
u16 mss;
|
||
|
|
||
|
if (tp->fastopen_connect && !tp->fastopen_req) {
|
||
|
if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
|
||
|
inet_sk(sk)->defer_connect = 1;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Alloc fastopen_req in order for FO option to be included
|
||
|
* in SYN
|
||
|
*/
|
||
|
tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
|
||
|
sk->sk_allocation);
|
||
|
if (tp->fastopen_req)
|
||
|
tp->fastopen_req->cookie = cookie;
|
||
|
else
|
||
|
*err = -ENOBUFS;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
EXPORT_SYMBOL(tcp_fastopen_defer_connect);
|
||
|
|
||
|
/*
|
||
|
* The following code block is to deal with middle box issues with TFO:
|
||
|
* Middlebox firewall issues can potentially cause server's data being
|
||
|
* blackholed after a successful 3WHS using TFO.
|
||
|
* The proposed solution is to disable active TFO globally under the
|
||
|
* following circumstances:
|
||
|
* 1. client side TFO socket receives out of order FIN
|
||
|
* 2. client side TFO socket receives out of order RST
|
||
|
* We disable active side TFO globally for 1hr at first. Then if it
|
||
|
* happens again, we disable it for 2h, then 4h, 8h, ...
|
||
|
* And we reset the timeout back to 1hr when we see a successful active
|
||
|
* TFO connection with data exchanges.
|
||
|
*/
|
||
|
|
||
|
/* Disable active TFO and record current jiffies and
|
||
|
* tfo_active_disable_times
|
||
|
*/
|
||
|
void tcp_fastopen_active_disable(struct sock *sk)
|
||
|
{
|
||
|
struct net *net = sock_net(sk);
|
||
|
|
||
|
atomic_inc(&net->ipv4.tfo_active_disable_times);
|
||
|
net->ipv4.tfo_active_disable_stamp = jiffies;
|
||
|
NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
|
||
|
}
|
||
|
|
||
|
/* Calculate timeout for tfo active disable
|
||
|
* Return true if we are still in the active TFO disable period
|
||
|
* Return false if timeout already expired and we should use active TFO
|
||
|
*/
|
||
|
bool tcp_fastopen_active_should_disable(struct sock *sk)
|
||
|
{
|
||
|
unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
|
||
|
int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
|
||
|
unsigned long timeout;
|
||
|
int multiplier;
|
||
|
|
||
|
if (!tfo_da_times)
|
||
|
return false;
|
||
|
|
||
|
/* Limit timout to max: 2^6 * initial timeout */
|
||
|
multiplier = 1 << min(tfo_da_times - 1, 6);
|
||
|
timeout = multiplier * tfo_bh_timeout * HZ;
|
||
|
if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
|
||
|
return true;
|
||
|
|
||
|
/* Mark check bit so we can check for successful active TFO
|
||
|
* condition and reset tfo_active_disable_times
|
||
|
*/
|
||
|
tcp_sk(sk)->syn_fastopen_ch = 1;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Disable active TFO if FIN is the only packet in the ofo queue
|
||
|
* and no data is received.
|
||
|
* Also check if we can reset tfo_active_disable_times if data is
|
||
|
* received successfully on a marked active TFO sockets opened on
|
||
|
* a non-loopback interface
|
||
|
*/
|
||
|
void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
|
||
|
{
|
||
|
struct tcp_sock *tp = tcp_sk(sk);
|
||
|
struct dst_entry *dst;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (!tp->syn_fastopen)
|
||
|
return;
|
||
|
|
||
|
if (!tp->data_segs_in) {
|
||
|
skb = skb_rb_first(&tp->out_of_order_queue);
|
||
|
if (skb && !skb_rb_next(skb)) {
|
||
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
|
||
|
tcp_fastopen_active_disable(sk);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
} else if (tp->syn_fastopen_ch &&
|
||
|
atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
|
||
|
dst = sk_dst_get(sk);
|
||
|
if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
|
||
|
atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
|
||
|
dst_release(dst);
|
||
|
}
|
||
|
}
|