ubuntu-linux-kernel/drivers/net/wireless/st/cw1200/hwio.c

313 lines
7.2 KiB
C
Raw Permalink Normal View History

2024-04-01 15:06:58 +00:00
/*
* Low-level device IO routines for ST-Ericsson CW1200 drivers
*
* Copyright (c) 2010, ST-Ericsson
* Author: Dmitry Tarnyagin <dmitry.tarnyagin@lockless.no>
*
* Based on:
* ST-Ericsson UMAC CW1200 driver, which is
* Copyright (c) 2010, ST-Ericsson
* Author: Ajitpal Singh <ajitpal.singh@lockless.no>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include "cw1200.h"
#include "hwio.h"
#include "hwbus.h"
/* Sdio addr is 4*spi_addr */
#define SPI_REG_ADDR_TO_SDIO(spi_reg_addr) ((spi_reg_addr) << 2)
#define SDIO_ADDR17BIT(buf_id, mpf, rfu, reg_id_ofs) \
((((buf_id) & 0x1F) << 7) \
| (((mpf) & 1) << 6) \
| (((rfu) & 1) << 5) \
| (((reg_id_ofs) & 0x1F) << 0))
#define MAX_RETRY 3
static int __cw1200_reg_read(struct cw1200_common *priv, u16 addr,
void *buf, size_t buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit;
/* Check if buffer is aligned to 4 byte boundary */
if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) {
pr_err("buffer is not aligned.\n");
return -EINVAL;
}
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
return priv->hwbus_ops->hwbus_memcpy_fromio(priv->hwbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static int __cw1200_reg_write(struct cw1200_common *priv, u16 addr,
const void *buf, size_t buf_len, int buf_id)
{
u16 addr_sdio;
u32 sdio_reg_addr_17bit;
/* Convert to SDIO Register Address */
addr_sdio = SPI_REG_ADDR_TO_SDIO(addr);
sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio);
return priv->hwbus_ops->hwbus_memcpy_toio(priv->hwbus_priv,
sdio_reg_addr_17bit,
buf, buf_len);
}
static inline int __cw1200_reg_read_32(struct cw1200_common *priv,
u16 addr, u32 *val)
{
__le32 tmp;
int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
*val = le32_to_cpu(tmp);
return i;
}
static inline int __cw1200_reg_write_32(struct cw1200_common *priv,
u16 addr, u32 val)
{
__le32 tmp = cpu_to_le32(val);
return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
}
static inline int __cw1200_reg_read_16(struct cw1200_common *priv,
u16 addr, u16 *val)
{
__le16 tmp;
int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0);
*val = le16_to_cpu(tmp);
return i;
}
static inline int __cw1200_reg_write_16(struct cw1200_common *priv,
u16 addr, u16 val)
{
__le16 tmp = cpu_to_le16(val);
return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0);
}
int cw1200_reg_read(struct cw1200_common *priv, u16 addr, void *buf,
size_t buf_len)
{
int ret;
priv->hwbus_ops->lock(priv->hwbus_priv);
ret = __cw1200_reg_read(priv, addr, buf, buf_len, 0);
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_reg_write(struct cw1200_common *priv, u16 addr, const void *buf,
size_t buf_len)
{
int ret;
priv->hwbus_ops->lock(priv->hwbus_priv);
ret = __cw1200_reg_write(priv, addr, buf, buf_len, 0);
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_data_read(struct cw1200_common *priv, void *buf, size_t buf_len)
{
int ret, retry = 1;
int buf_id_rx = priv->buf_id_rx;
priv->hwbus_ops->lock(priv->hwbus_priv);
while (retry <= MAX_RETRY) {
ret = __cw1200_reg_read(priv,
ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_rx + 1);
if (!ret) {
buf_id_rx = (buf_id_rx + 1) & 3;
priv->buf_id_rx = buf_id_rx;
break;
} else {
retry++;
mdelay(1);
pr_err("error :[%d]\n", ret);
}
}
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_data_write(struct cw1200_common *priv, const void *buf,
size_t buf_len)
{
int ret, retry = 1;
int buf_id_tx = priv->buf_id_tx;
priv->hwbus_ops->lock(priv->hwbus_priv);
while (retry <= MAX_RETRY) {
ret = __cw1200_reg_write(priv,
ST90TDS_IN_OUT_QUEUE_REG_ID, buf,
buf_len, buf_id_tx);
if (!ret) {
buf_id_tx = (buf_id_tx + 1) & 31;
priv->buf_id_tx = buf_id_tx;
break;
} else {
retry++;
mdelay(1);
pr_err("error :[%d]\n", ret);
}
}
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_indirect_read(struct cw1200_common *priv, u32 addr, void *buf,
size_t buf_len, u32 prefetch, u16 port_addr)
{
u32 val32 = 0;
int i, ret;
if ((buf_len / 2) >= 0x1000) {
pr_err("Can't read more than 0xfff words.\n");
return -EINVAL;
}
priv->hwbus_ops->lock(priv->hwbus_priv);
/* Write address */
ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
pr_err("Can't write address register.\n");
goto out;
}
/* Read CONFIG Register Value - We will read 32 bits */
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.\n");
goto out;
}
/* Set PREFETCH bit */
ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID,
val32 | prefetch);
if (ret < 0) {
pr_err("Can't write prefetch bit.\n");
goto out;
}
/* Check for PRE-FETCH bit to be cleared */
for (i = 0; i < 20; i++) {
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't check prefetch bit.\n");
goto out;
}
if (!(val32 & prefetch))
break;
mdelay(i);
}
if (val32 & prefetch) {
pr_err("Prefetch bit is not cleared.\n");
goto out;
}
/* Read data port */
ret = __cw1200_reg_read(priv, port_addr, buf, buf_len, 0);
if (ret < 0) {
pr_err("Can't read data port.\n");
goto out;
}
out:
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int cw1200_apb_write(struct cw1200_common *priv, u32 addr, const void *buf,
size_t buf_len)
{
int ret;
if ((buf_len / 2) >= 0x1000) {
pr_err("Can't write more than 0xfff words.\n");
return -EINVAL;
}
priv->hwbus_ops->lock(priv->hwbus_priv);
/* Write address */
ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr);
if (ret < 0) {
pr_err("Can't write address register.\n");
goto out;
}
/* Write data port */
ret = __cw1200_reg_write(priv, ST90TDS_SRAM_DPORT_REG_ID,
buf, buf_len, 0);
if (ret < 0) {
pr_err("Can't write data port.\n");
goto out;
}
out:
priv->hwbus_ops->unlock(priv->hwbus_priv);
return ret;
}
int __cw1200_irq_enable(struct cw1200_common *priv, int enable)
{
u32 val32;
u16 val16;
int ret;
if (HIF_8601_SILICON == priv->hw_type) {
ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32);
if (ret < 0) {
pr_err("Can't read config register.\n");
return ret;
}
if (enable)
val32 |= ST90TDS_CONF_IRQ_RDY_ENABLE;
else
val32 &= ~ST90TDS_CONF_IRQ_RDY_ENABLE;
ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID, val32);
if (ret < 0) {
pr_err("Can't write config register.\n");
return ret;
}
} else {
ret = __cw1200_reg_read_16(priv, ST90TDS_CONFIG_REG_ID, &val16);
if (ret < 0) {
pr_err("Can't read control register.\n");
return ret;
}
if (enable)
val16 |= ST90TDS_CONT_IRQ_RDY_ENABLE;
else
val16 &= ~ST90TDS_CONT_IRQ_RDY_ENABLE;
ret = __cw1200_reg_write_16(priv, ST90TDS_CONFIG_REG_ID, val16);
if (ret < 0) {
pr_err("Can't write control register.\n");
return ret;
}
}
return 0;
}