ubuntu-linux-kernel/drivers/mmc/host/dw_mmc.c

3525 lines
90 KiB
C
Raw Permalink Normal View History

2024-04-01 15:06:58 +00:00
/*
* Synopsys DesignWare Multimedia Card Interface driver
* (Based on NXP driver for lpc 31xx)
*
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2009, 2010 Imagination Technologies Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mmc/slot-gpio.h>
#include "dw_mmc.h"
/* Common flag combinations */
#define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
SDMMC_INT_HTO | SDMMC_INT_SBE | \
SDMMC_INT_EBE | SDMMC_INT_HLE)
#define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
#define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
DW_MCI_CMD_ERROR_FLAGS)
#define DW_MCI_SEND_STATUS 1
#define DW_MCI_RECV_STATUS 2
#define DW_MCI_DMA_THRESHOLD 16
#define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
#define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
#define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
SDMMC_IDMAC_INT_TI)
#define DESC_RING_BUF_SZ PAGE_SIZE
struct idmac_desc_64addr {
u32 des0; /* Control Descriptor */
#define IDMAC_OWN_CLR64(x) \
!((x) & cpu_to_le32(IDMAC_DES0_OWN))
u32 des1; /* Reserved */
u32 des2; /*Buffer sizes */
#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
u32 des3; /* Reserved */
u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
u32 des6; /* Lower 32-bits of Next Descriptor Address */
u32 des7; /* Upper 32-bits of Next Descriptor Address */
};
struct idmac_desc {
__le32 des0; /* Control Descriptor */
#define IDMAC_DES0_DIC BIT(1)
#define IDMAC_DES0_LD BIT(2)
#define IDMAC_DES0_FD BIT(3)
#define IDMAC_DES0_CH BIT(4)
#define IDMAC_DES0_ER BIT(5)
#define IDMAC_DES0_CES BIT(30)
#define IDMAC_DES0_OWN BIT(31)
__le32 des1; /* Buffer sizes */
#define IDMAC_SET_BUFFER1_SIZE(d, s) \
((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
__le32 des2; /* buffer 1 physical address */
__le32 des3; /* buffer 2 physical address */
};
/* Each descriptor can transfer up to 4KB of data in chained mode */
#define DW_MCI_DESC_DATA_LENGTH 0x1000
#if defined(CONFIG_DEBUG_FS)
static int dw_mci_req_show(struct seq_file *s, void *v)
{
struct dw_mci_slot *slot = s->private;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_command *stop;
struct mmc_data *data;
/* Make sure we get a consistent snapshot */
spin_lock_bh(&slot->host->lock);
mrq = slot->mrq;
if (mrq) {
cmd = mrq->cmd;
data = mrq->data;
stop = mrq->stop;
if (cmd)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2],
cmd->resp[2], cmd->error);
if (data)
seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
data->bytes_xfered, data->blocks,
data->blksz, data->flags, data->error);
if (stop)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
stop->opcode, stop->arg, stop->flags,
stop->resp[0], stop->resp[1], stop->resp[2],
stop->resp[2], stop->error);
}
spin_unlock_bh(&slot->host->lock);
return 0;
}
static int dw_mci_req_open(struct inode *inode, struct file *file)
{
return single_open(file, dw_mci_req_show, inode->i_private);
}
static const struct file_operations dw_mci_req_fops = {
.owner = THIS_MODULE,
.open = dw_mci_req_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int dw_mci_regs_show(struct seq_file *s, void *v)
{
struct dw_mci *host = s->private;
seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
return 0;
}
static int dw_mci_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, dw_mci_regs_show, inode->i_private);
}
static const struct file_operations dw_mci_regs_fops = {
.owner = THIS_MODULE,
.open = dw_mci_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
struct dw_mci *host = slot->host;
struct dentry *root;
struct dentry *node;
root = mmc->debugfs_root;
if (!root)
return;
node = debugfs_create_file("regs", S_IRUSR, root, host,
&dw_mci_regs_fops);
if (!node)
goto err;
node = debugfs_create_file("req", S_IRUSR, root, slot,
&dw_mci_req_fops);
if (!node)
goto err;
node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
if (!node)
goto err;
node = debugfs_create_x32("pending_events", S_IRUSR, root,
(u32 *)&host->pending_events);
if (!node)
goto err;
node = debugfs_create_x32("completed_events", S_IRUSR, root,
(u32 *)&host->completed_events);
if (!node)
goto err;
return;
err:
dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
}
#endif /* defined(CONFIG_DEBUG_FS) */
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
{
u32 ctrl;
ctrl = mci_readl(host, CTRL);
ctrl |= reset;
mci_writel(host, CTRL, ctrl);
/* wait till resets clear */
if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
!(ctrl & reset),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"Timeout resetting block (ctrl reset %#x)\n",
ctrl & reset);
return false;
}
return true;
}
static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
{
u32 status;
/*
* Databook says that before issuing a new data transfer command
* we need to check to see if the card is busy. Data transfer commands
* all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
*
* ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
* expected.
*/
if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
!(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_BUSY),
10, 500 * USEC_PER_MSEC))
dev_err(host->dev, "Busy; trying anyway\n");
}
}
static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
{
struct dw_mci *host = slot->host;
unsigned int cmd_status = 0;
mci_writel(host, CMDARG, arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd);
mci_writel(host, CMD, SDMMC_CMD_START | cmd);
if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
!(cmd_status & SDMMC_CMD_START),
1, 500 * USEC_PER_MSEC))
dev_err(&slot->mmc->class_dev,
"Timeout sending command (cmd %#x arg %#x status %#x)\n",
cmd, arg, cmd_status);
}
static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 cmdr;
cmd->error = -EINPROGRESS;
cmdr = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE ||
(cmd->opcode == SD_IO_RW_DIRECT &&
((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
cmdr |= SDMMC_CMD_STOP;
else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
u32 clk_en_a;
/* Special bit makes CMD11 not die */
cmdr |= SDMMC_CMD_VOLT_SWITCH;
/* Change state to continue to handle CMD11 weirdness */
WARN_ON(slot->host->state != STATE_SENDING_CMD);
slot->host->state = STATE_SENDING_CMD11;
/*
* We need to disable low power mode (automatic clock stop)
* while doing voltage switch so we don't confuse the card,
* since stopping the clock is a specific part of the UHS
* voltage change dance.
*
* Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
* unconditionally turned back on in dw_mci_setup_bus() if it's
* ever called with a non-zero clock. That shouldn't happen
* until the voltage change is all done.
*/
clk_en_a = mci_readl(host, CLKENA);
clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
if (cmd->flags & MMC_RSP_PRESENT) {
/* We expect a response, so set this bit */
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
if (cmd->data) {
cmdr |= SDMMC_CMD_DAT_EXP;
if (cmd->data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DAT_WR;
}
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
{
struct mmc_command *stop;
u32 cmdr;
if (!cmd->data)
return 0;
stop = &host->stop_abort;
cmdr = cmd->opcode;
memset(stop, 0, sizeof(struct mmc_command));
if (cmdr == MMC_READ_SINGLE_BLOCK ||
cmdr == MMC_READ_MULTIPLE_BLOCK ||
cmdr == MMC_WRITE_BLOCK ||
cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
cmdr == MMC_SEND_TUNING_BLOCK ||
cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
stop->opcode = MMC_STOP_TRANSMISSION;
stop->arg = 0;
stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
} else if (cmdr == SD_IO_RW_EXTENDED) {
stop->opcode = SD_IO_RW_DIRECT;
stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((cmd->arg >> 28) & 0x7);
stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
} else {
return 0;
}
cmdr = stop->opcode | SDMMC_CMD_STOP |
SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static inline void dw_mci_set_cto(struct dw_mci *host)
{
unsigned int cto_clks;
unsigned int cto_div;
unsigned int cto_ms;
unsigned long irqflags;
cto_clks = mci_readl(host, TMOUT) & 0xff;
cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (cto_div == 0)
cto_div = 1;
cto_ms = DIV_ROUND_UP(MSEC_PER_SEC * cto_clks * cto_div, host->bus_hz);
/* add a bit spare time */
cto_ms += 10;
/*
* The durations we're working with are fairly short so we have to be
* extra careful about synchronization here. Specifically in hardware a
* command timeout is _at most_ 5.1 ms, so that means we expect an
* interrupt (either command done or timeout) to come rather quickly
* after the mci_writel. ...but just in case we have a long interrupt
* latency let's add a bit of paranoia.
*
* In general we'll assume that at least an interrupt will be asserted
* in hardware by the time the cto_timer runs. ...and if it hasn't
* been asserted in hardware by that time then we'll assume it'll never
* come.
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cto_timer,
jiffies + msecs_to_jiffies(cto_ms) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_start_command(struct dw_mci *host,
struct mmc_command *cmd, u32 cmd_flags)
{
host->cmd = cmd;
dev_vdbg(host->dev,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd_flags);
mci_writel(host, CMDARG, cmd->arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd_flags);
mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
/* response expected command only */
if (cmd_flags & SDMMC_CMD_RESP_EXP)
dw_mci_set_cto(host);
}
static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
{
struct mmc_command *stop = &host->stop_abort;
dw_mci_start_command(host, stop, host->stop_cmdr);
}
/* DMA interface functions */
static void dw_mci_stop_dma(struct dw_mci *host)
{
if (host->using_dma) {
host->dma_ops->stop(host);
host->dma_ops->cleanup(host);
}
/* Data transfer was stopped by the interrupt handler */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_dma_cleanup(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (data && data->host_cookie == COOKIE_MAPPED) {
dma_unmap_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
}
static void dw_mci_idmac_reset(struct dw_mci *host)
{
u32 bmod = mci_readl(host, BMOD);
/* Software reset of DMA */
bmod |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, bmod);
}
static void dw_mci_idmac_stop_dma(struct dw_mci *host)
{
u32 temp;
/* Disable and reset the IDMAC interface */
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_USE_IDMAC;
temp |= SDMMC_CTRL_DMA_RESET;
mci_writel(host, CTRL, temp);
/* Stop the IDMAC running */
temp = mci_readl(host, BMOD);
temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
temp |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, temp);
}
static void dw_mci_dmac_complete_dma(void *arg)
{
struct dw_mci *host = arg;
struct mmc_data *data = host->data;
dev_vdbg(host->dev, "DMA complete\n");
if ((host->use_dma == TRANS_MODE_EDMAC) &&
data && (data->flags & MMC_DATA_READ))
/* Invalidate cache after read */
dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
data->sg,
data->sg_len,
DMA_FROM_DEVICE);
host->dma_ops->cleanup(host);
/*
* If the card was removed, data will be NULL. No point in trying to
* send the stop command or waiting for NBUSY in this case.
*/
if (data) {
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
}
static int dw_mci_idmac_init(struct dw_mci *host)
{
int i;
if (host->dma_64bit_address == 1) {
struct idmac_desc_64addr *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
i++, p++) {
p->des6 = (host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) & 0xffffffff;
p->des7 = (u64)(host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) >> 32;
/* Initialize reserved and buffer size fields to "0" */
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des6 = host->sg_dma & 0xffffffff;
p->des7 = (u64)host->sg_dma >> 32;
p->des0 = IDMAC_DES0_ER;
} else {
struct idmac_desc *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu;
i < host->ring_size - 1;
i++, p++) {
p->des3 = cpu_to_le32(host->sg_dma +
(sizeof(struct idmac_desc) * (i + 1)));
p->des1 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des3 = cpu_to_le32(host->sg_dma);
p->des0 = cpu_to_le32(IDMAC_DES0_ER);
}
dw_mci_idmac_reset(host);
if (host->dma_64bit_address == 1) {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS64, IDMAC_INT_CLR);
mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
} else {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS, IDMAC_INT_CLR);
mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDR, host->sg_dma);
}
return 0;
}
static inline int dw_mci_prepare_desc64(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc_64addr *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u64 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
!(val & IDMAC_DES0_OWN),
10, 100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
IDMAC_DES0_CH;
/* Buffer length */
IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des4 = mem_addr & 0xffffffff;
desc->des5 = mem_addr >> 32;
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= IDMAC_DES0_FD;
/* Set last descriptor */
desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
desc_last->des0 |= IDMAC_DES0_LD;
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static inline int dw_mci_prepare_desc32(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u32 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
IDMAC_OWN_CLR64(val),
10,
100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
IDMAC_DES0_DIC |
IDMAC_DES0_CH);
/* Buffer length */
IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des2 = cpu_to_le32(mem_addr);
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
/* Set last descriptor */
desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
IDMAC_DES0_DIC));
desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
{
u32 temp;
int ret;
if (host->dma_64bit_address == 1)
ret = dw_mci_prepare_desc64(host, host->data, sg_len);
else
ret = dw_mci_prepare_desc32(host, host->data, sg_len);
if (ret)
goto out;
/* drain writebuffer */
wmb();
/* Make sure to reset DMA in case we did PIO before this */
dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
dw_mci_idmac_reset(host);
/* Select IDMAC interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* drain writebuffer */
wmb();
/* Enable the IDMAC */
temp = mci_readl(host, BMOD);
temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
mci_writel(host, BMOD, temp);
/* Start it running */
mci_writel(host, PLDMND, 1);
out:
return ret;
}
static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
.init = dw_mci_idmac_init,
.start = dw_mci_idmac_start_dma,
.stop = dw_mci_idmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static void dw_mci_edmac_stop_dma(struct dw_mci *host)
{
dmaengine_terminate_async(host->dms->ch);
}
static int dw_mci_edmac_start_dma(struct dw_mci *host,
unsigned int sg_len)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *desc = NULL;
struct scatterlist *sgl = host->data->sg;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 sg_elems = host->data->sg_len;
u32 fifoth_val;
u32 fifo_offset = host->fifo_reg - host->regs;
int ret = 0;
/* Set external dma config: burst size, burst width */
cfg.dst_addr = host->phy_regs + fifo_offset;
cfg.src_addr = cfg.dst_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
/* Match burst msize with external dma config */
fifoth_val = mci_readl(host, FIFOTH);
cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
cfg.src_maxburst = cfg.dst_maxburst;
if (host->data->flags & MMC_DATA_WRITE)
cfg.direction = DMA_MEM_TO_DEV;
else
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(host->dms->ch, &cfg);
if (ret) {
dev_err(host->dev, "Failed to config edmac.\n");
return -EBUSY;
}
desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
sg_len, cfg.direction,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(host->dev, "Can't prepare slave sg.\n");
return -EBUSY;
}
/* Set dw_mci_dmac_complete_dma as callback */
desc->callback = dw_mci_dmac_complete_dma;
desc->callback_param = (void *)host;
dmaengine_submit(desc);
/* Flush cache before write */
if (host->data->flags & MMC_DATA_WRITE)
dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
sg_elems, DMA_TO_DEVICE);
dma_async_issue_pending(host->dms->ch);
return 0;
}
static int dw_mci_edmac_init(struct dw_mci *host)
{
/* Request external dma channel */
host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
if (!host->dms)
return -ENOMEM;
host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
if (!host->dms->ch) {
dev_err(host->dev, "Failed to get external DMA channel.\n");
kfree(host->dms);
host->dms = NULL;
return -ENXIO;
}
return 0;
}
static void dw_mci_edmac_exit(struct dw_mci *host)
{
if (host->dms) {
if (host->dms->ch) {
dma_release_channel(host->dms->ch);
host->dms->ch = NULL;
}
kfree(host->dms);
host->dms = NULL;
}
}
static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
.init = dw_mci_edmac_init,
.exit = dw_mci_edmac_exit,
.start = dw_mci_edmac_start_dma,
.stop = dw_mci_edmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static int dw_mci_pre_dma_transfer(struct dw_mci *host,
struct mmc_data *data,
int cookie)
{
struct scatterlist *sg;
unsigned int i, sg_len;
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_len;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. Also, we don't bother
* with all the DMA setup overhead for short transfers.
*/
if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
return -EINVAL;
if (data->blksz & 3)
return -EINVAL;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3)
return -EINVAL;
}
sg_len = dma_map_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (sg_len == 0)
return -EINVAL;
data->host_cookie = cookie;
return sg_len;
}
static void dw_mci_pre_req(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
/* This data might be unmapped at this time */
data->host_cookie = COOKIE_UNMAPPED;
if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
COOKIE_PRE_MAPPED) < 0)
data->host_cookie = COOKIE_UNMAPPED;
}
static void dw_mci_post_req(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(slot->host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static int dw_mci_get_cd(struct mmc_host *mmc)
{
int present;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int gpio_cd = mmc_gpio_get_cd(mmc);
/* Use platform get_cd function, else try onboard card detect */
if (((mmc->caps & MMC_CAP_NEEDS_POLL)
|| !mmc_card_is_removable(mmc))) {
present = 1;
if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
if (mmc->caps & MMC_CAP_NEEDS_POLL) {
dev_info(&mmc->class_dev,
"card is polling.\n");
} else {
dev_info(&mmc->class_dev,
"card is non-removable.\n");
}
set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
}
return present;
} else if (gpio_cd >= 0)
present = gpio_cd;
else
present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
== 0 ? 1 : 0;
spin_lock_bh(&host->lock);
if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is present\n");
else if (!present &&
!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is not present\n");
spin_unlock_bh(&host->lock);
return present;
}
static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 fifo_width = 1 << host->data_shift;
u32 blksz_depth = blksz / fifo_width, fifoth_val;
u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
int idx = ARRAY_SIZE(mszs) - 1;
/* pio should ship this scenario */
if (!host->use_dma)
return;
tx_wmark = (host->fifo_depth) / 2;
tx_wmark_invers = host->fifo_depth - tx_wmark;
/*
* MSIZE is '1',
* if blksz is not a multiple of the FIFO width
*/
if (blksz % fifo_width)
goto done;
do {
if (!((blksz_depth % mszs[idx]) ||
(tx_wmark_invers % mszs[idx]))) {
msize = idx;
rx_wmark = mszs[idx] - 1;
break;
}
} while (--idx > 0);
/*
* If idx is '0', it won't be tried
* Thus, initial values are uesed
*/
done:
fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
mci_writel(host, FIFOTH, fifoth_val);
}
static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
u32 blksz_depth, fifo_depth;
u16 thld_size;
u8 enable;
/*
* CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
* in the FIFO region, so we really shouldn't access it).
*/
if (host->verid < DW_MMC_240A ||
(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
return;
/*
* Card write Threshold is introduced since 2.80a
* It's used when HS400 mode is enabled.
*/
if (data->flags & MMC_DATA_WRITE &&
!(host->timing != MMC_TIMING_MMC_HS400))
return;
if (data->flags & MMC_DATA_WRITE)
enable = SDMMC_CARD_WR_THR_EN;
else
enable = SDMMC_CARD_RD_THR_EN;
if (host->timing != MMC_TIMING_MMC_HS200 &&
host->timing != MMC_TIMING_UHS_SDR104)
goto disable;
blksz_depth = blksz / (1 << host->data_shift);
fifo_depth = host->fifo_depth;
if (blksz_depth > fifo_depth)
goto disable;
/*
* If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
* If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
* Currently just choose blksz.
*/
thld_size = blksz;
mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
return;
disable:
mci_writel(host, CDTHRCTL, 0);
}
static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int sg_len;
u32 temp;
host->using_dma = 0;
/* If we don't have a channel, we can't do DMA */
if (!host->use_dma)
return -ENODEV;
sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_len < 0) {
host->dma_ops->stop(host);
return sg_len;
}
host->using_dma = 1;
if (host->use_dma == TRANS_MODE_IDMAC)
dev_vdbg(host->dev,
"sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
(unsigned long)host->sg_cpu,
(unsigned long)host->sg_dma,
sg_len);
/*
* Decide the MSIZE and RX/TX Watermark.
* If current block size is same with previous size,
* no need to update fifoth.
*/
if (host->prev_blksz != data->blksz)
dw_mci_adjust_fifoth(host, data);
/* Enable the DMA interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/* Disable RX/TX IRQs, let DMA handle it */
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
if (host->dma_ops->start(host, sg_len)) {
host->dma_ops->stop(host);
/* We can't do DMA, try PIO for this one */
dev_dbg(host->dev,
"%s: fall back to PIO mode for current transfer\n",
__func__);
return -ENODEV;
}
return 0;
}
static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int flags = SG_MITER_ATOMIC;
u32 temp;
data->error = -EINPROGRESS;
WARN_ON(host->data);
host->sg = NULL;
host->data = data;
if (data->flags & MMC_DATA_READ)
host->dir_status = DW_MCI_RECV_STATUS;
else
host->dir_status = DW_MCI_SEND_STATUS;
dw_mci_ctrl_thld(host, data);
if (dw_mci_submit_data_dma(host, data)) {
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->sg = data->sg;
host->part_buf_start = 0;
host->part_buf_count = 0;
mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/*
* Use the initial fifoth_val for PIO mode. If wm_algined
* is set, we set watermark same as data size.
* If next issued data may be transfered by DMA mode,
* prev_blksz should be invalidated.
*/
if (host->wm_aligned)
dw_mci_adjust_fifoth(host, data);
else
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
} else {
/*
* Keep the current block size.
* It will be used to decide whether to update
* fifoth register next time.
*/
host->prev_blksz = data->blksz;
}
}
static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
{
struct dw_mci *host = slot->host;
unsigned int clock = slot->clock;
u32 div;
u32 clk_en_a;
u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
/* We must continue to set bit 28 in CMD until the change is complete */
if (host->state == STATE_WAITING_CMD11_DONE)
sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
if (!clock) {
mci_writel(host, CLKENA, 0);
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
} else if (clock != host->current_speed || force_clkinit) {
div = host->bus_hz / clock;
if (host->bus_hz % clock && host->bus_hz > clock)
/*
* move the + 1 after the divide to prevent
* over-clocking the card.
*/
div += 1;
div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
if ((clock != slot->__clk_old &&
!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
force_clkinit) {
/* Silent the verbose log if calling from PM context */
if (!force_clkinit)
dev_info(&slot->mmc->class_dev,
"Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
slot->id, host->bus_hz, clock,
div ? ((host->bus_hz / div) >> 1) :
host->bus_hz, div);
/*
* If card is polling, display the message only
* one time at boot time.
*/
if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
slot->mmc->f_min == clock)
set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
}
/* disable clock */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* set clock to desired speed */
mci_writel(host, CLKDIV, div);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* enable clock; only low power if no SDIO */
clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
mci_writel(host, CLKENA, clk_en_a);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* keep the last clock value that was requested from core */
slot->__clk_old = clock;
}
host->current_speed = clock;
/* Set the current slot bus width */
mci_writel(host, CTYPE, (slot->ctype << slot->id));
}
static void __dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot,
struct mmc_command *cmd)
{
struct mmc_request *mrq;
struct mmc_data *data;
u32 cmdflags;
mrq = slot->mrq;
host->mrq = mrq;
host->pending_events = 0;
host->completed_events = 0;
host->cmd_status = 0;
host->data_status = 0;
host->dir_status = 0;
data = cmd->data;
if (data) {
mci_writel(host, TMOUT, 0xFFFFFFFF);
mci_writel(host, BYTCNT, data->blksz*data->blocks);
mci_writel(host, BLKSIZ, data->blksz);
}
cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
/* this is the first command, send the initialization clock */
if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
cmdflags |= SDMMC_CMD_INIT;
if (data) {
dw_mci_submit_data(host, data);
wmb(); /* drain writebuffer */
}
dw_mci_start_command(host, cmd, cmdflags);
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
unsigned long irqflags;
/*
* Databook says to fail after 2ms w/ no response, but evidence
* shows that sometimes the cmd11 interrupt takes over 130ms.
* We'll set to 500ms, plus an extra jiffy just in case jiffies
* is just about to roll over.
*
* We do this whole thing under spinlock and only if the
* command hasn't already completed (indicating the the irq
* already ran so we don't want the timeout).
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cmd11_timer,
jiffies + msecs_to_jiffies(500) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
}
static void dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot)
{
struct mmc_request *mrq = slot->mrq;
struct mmc_command *cmd;
cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
__dw_mci_start_request(host, slot, cmd);
}
/* must be called with host->lock held */
static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
struct mmc_request *mrq)
{
dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
host->state);
slot->mrq = mrq;
if (host->state == STATE_WAITING_CMD11_DONE) {
dev_warn(&slot->mmc->class_dev,
"Voltage change didn't complete\n");
/*
* this case isn't expected to happen, so we can
* either crash here or just try to continue on
* in the closest possible state
*/
host->state = STATE_IDLE;
}
if (host->state == STATE_IDLE) {
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
list_add_tail(&slot->queue_node, &host->queue);
}
}
static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
WARN_ON(slot->mrq);
/*
* The check for card presence and queueing of the request must be
* atomic, otherwise the card could be removed in between and the
* request wouldn't fail until another card was inserted.
*/
if (!dw_mci_get_cd(mmc)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
spin_lock_bh(&host->lock);
dw_mci_queue_request(host, slot, mrq);
spin_unlock_bh(&host->lock);
}
static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
u32 regs;
int ret;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
slot->ctype = SDMMC_CTYPE_4BIT;
break;
case MMC_BUS_WIDTH_8:
slot->ctype = SDMMC_CTYPE_8BIT;
break;
default:
/* set default 1 bit mode */
slot->ctype = SDMMC_CTYPE_1BIT;
}
regs = mci_readl(slot->host, UHS_REG);
/* DDR mode set */
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_HS400)
regs |= ((0x1 << slot->id) << 16);
else
regs &= ~((0x1 << slot->id) << 16);
mci_writel(slot->host, UHS_REG, regs);
slot->host->timing = ios->timing;
/*
* Use mirror of ios->clock to prevent race with mmc
* core ios update when finding the minimum.
*/
slot->clock = ios->clock;
if (drv_data && drv_data->set_ios)
drv_data->set_ios(slot->host, ios);
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->vdd);
if (ret) {
dev_err(slot->host->dev,
"failed to enable vmmc regulator\n");
/*return, if failed turn on vmmc*/
return;
}
}
set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
regs = mci_readl(slot->host, PWREN);
regs |= (1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
case MMC_POWER_ON:
if (!slot->host->vqmmc_enabled) {
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(slot->host->dev,
"failed to enable vqmmc\n");
else
slot->host->vqmmc_enabled = true;
} else {
/* Keep track so we don't reset again */
slot->host->vqmmc_enabled = true;
}
/* Reset our state machine after powering on */
dw_mci_ctrl_reset(slot->host,
SDMMC_CTRL_ALL_RESET_FLAGS);
}
/* Adjust clock / bus width after power is up */
dw_mci_setup_bus(slot, false);
break;
case MMC_POWER_OFF:
/* Turn clock off before power goes down */
dw_mci_setup_bus(slot, false);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
slot->host->vqmmc_enabled = false;
regs = mci_readl(slot->host, PWREN);
regs &= ~(1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
default:
break;
}
if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
slot->host->state = STATE_IDLE;
}
static int dw_mci_card_busy(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
u32 status;
/*
* Check the busy bit which is low when DAT[3:0]
* (the data lines) are 0000
*/
status = mci_readl(slot->host, STATUS);
return !!(status & SDMMC_STATUS_BUSY);
}
static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 uhs;
u32 v18 = SDMMC_UHS_18V << slot->id;
int ret;
if (drv_data && drv_data->switch_voltage)
return drv_data->switch_voltage(mmc, ios);
/*
* Program the voltage. Note that some instances of dw_mmc may use
* the UHS_REG for this. For other instances (like exynos) the UHS_REG
* does no harm but you need to set the regulator directly. Try both.
*/
uhs = mci_readl(host, UHS_REG);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
uhs &= ~v18;
else
uhs |= v18;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
dev_dbg(&mmc->class_dev,
"Regulator set error %d - %s V\n",
ret, uhs & v18 ? "1.8" : "3.3");
return ret;
}
}
mci_writel(host, UHS_REG, uhs);
return 0;
}
static int dw_mci_get_ro(struct mmc_host *mmc)
{
int read_only;
struct dw_mci_slot *slot = mmc_priv(mmc);
int gpio_ro = mmc_gpio_get_ro(mmc);
/* Use platform get_ro function, else try on board write protect */
if (gpio_ro >= 0)
read_only = gpio_ro;
else
read_only =
mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
dev_dbg(&mmc->class_dev, "card is %s\n",
read_only ? "read-only" : "read-write");
return read_only;
}
static void dw_mci_hw_reset(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int reset;
if (host->use_dma == TRANS_MODE_IDMAC)
dw_mci_idmac_reset(host);
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
SDMMC_CTRL_FIFO_RESET))
return;
/*
* According to eMMC spec, card reset procedure:
* tRstW >= 1us: RST_n pulse width
* tRSCA >= 200us: RST_n to Command time
* tRSTH >= 1us: RST_n high period
*/
reset = mci_readl(host, RST_N);
reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
mci_writel(host, RST_N, reset);
usleep_range(1, 2);
reset |= SDMMC_RST_HWACTIVE << slot->id;
mci_writel(host, RST_N, reset);
usleep_range(200, 300);
}
static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
/*
* Low power mode will stop the card clock when idle. According to the
* description of the CLKENA register we should disable low power mode
* for SDIO cards if we need SDIO interrupts to work.
*/
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
u32 clk_en_a_old;
u32 clk_en_a;
clk_en_a_old = mci_readl(host, CLKENA);
if (card->type == MMC_TYPE_SDIO ||
card->type == MMC_TYPE_SD_COMBO) {
set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old & ~clken_low_pwr;
} else {
clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old | clken_low_pwr;
}
if (clk_en_a != clk_en_a_old) {
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
}
}
static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
{
struct dw_mci *host = slot->host;
unsigned long irqflags;
u32 int_mask;
spin_lock_irqsave(&host->irq_lock, irqflags);
/* Enable/disable Slot Specific SDIO interrupt */
int_mask = mci_readl(host, INTMASK);
if (enb)
int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
else
int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
mci_writel(host, INTMASK, int_mask);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
__dw_mci_enable_sdio_irq(slot, enb);
/* Avoid runtime suspending the device when SDIO IRQ is enabled */
if (enb)
pm_runtime_get_noresume(host->dev);
else
pm_runtime_put_noidle(host->dev);
}
static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
__dw_mci_enable_sdio_irq(slot, 1);
}
static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int err = -EINVAL;
if (drv_data && drv_data->execute_tuning)
err = drv_data->execute_tuning(slot, opcode);
return err;
}
static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (drv_data && drv_data->prepare_hs400_tuning)
return drv_data->prepare_hs400_tuning(host, ios);
return 0;
}
static bool dw_mci_reset(struct dw_mci *host)
{
u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
bool ret = false;
u32 status = 0;
/*
* Resetting generates a block interrupt, hence setting
* the scatter-gather pointer to NULL.
*/
if (host->sg) {
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
}
if (host->use_dma)
flags |= SDMMC_CTRL_DMA_RESET;
if (dw_mci_ctrl_reset(host, flags)) {
/*
* In all cases we clear the RAWINTS
* register to clear any interrupts.
*/
mci_writel(host, RINTSTS, 0xFFFFFFFF);
if (!host->use_dma) {
ret = true;
goto ciu_out;
}
/* Wait for dma_req to be cleared */
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_DMA_REQ),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"%s: Timeout waiting for dma_req to be cleared\n",
__func__);
goto ciu_out;
}
/* when using DMA next we reset the fifo again */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
goto ciu_out;
} else {
/* if the controller reset bit did clear, then set clock regs */
if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
dev_err(host->dev,
"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
__func__);
goto ciu_out;
}
}
if (host->use_dma == TRANS_MODE_IDMAC)
/* It is also recommended that we reset and reprogram idmac */
dw_mci_idmac_reset(host);
ret = true;
ciu_out:
/* After a CTRL reset we need to have CIU set clock registers */
mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
return ret;
}
static const struct mmc_host_ops dw_mci_ops = {
.request = dw_mci_request,
.pre_req = dw_mci_pre_req,
.post_req = dw_mci_post_req,
.set_ios = dw_mci_set_ios,
.get_ro = dw_mci_get_ro,
.get_cd = dw_mci_get_cd,
.hw_reset = dw_mci_hw_reset,
.enable_sdio_irq = dw_mci_enable_sdio_irq,
.ack_sdio_irq = dw_mci_ack_sdio_irq,
.execute_tuning = dw_mci_execute_tuning,
.card_busy = dw_mci_card_busy,
.start_signal_voltage_switch = dw_mci_switch_voltage,
.init_card = dw_mci_init_card,
.prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
};
static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
__releases(&host->lock)
__acquires(&host->lock)
{
struct dw_mci_slot *slot;
struct mmc_host *prev_mmc = host->slot->mmc;
WARN_ON(host->cmd || host->data);
host->slot->mrq = NULL;
host->mrq = NULL;
if (!list_empty(&host->queue)) {
slot = list_entry(host->queue.next,
struct dw_mci_slot, queue_node);
list_del(&slot->queue_node);
dev_vdbg(host->dev, "list not empty: %s is next\n",
mmc_hostname(slot->mmc));
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
dev_vdbg(host->dev, "list empty\n");
if (host->state == STATE_SENDING_CMD11)
host->state = STATE_WAITING_CMD11_DONE;
else
host->state = STATE_IDLE;
}
spin_unlock(&host->lock);
mmc_request_done(prev_mmc, mrq);
spin_lock(&host->lock);
}
static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
{
u32 status = host->cmd_status;
host->cmd_status = 0;
/* Read the response from the card (up to 16 bytes) */
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = mci_readl(host, RESP0);
cmd->resp[2] = mci_readl(host, RESP1);
cmd->resp[1] = mci_readl(host, RESP2);
cmd->resp[0] = mci_readl(host, RESP3);
} else {
cmd->resp[0] = mci_readl(host, RESP0);
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
}
}
if (status & SDMMC_INT_RTO)
cmd->error = -ETIMEDOUT;
else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
cmd->error = -EILSEQ;
else if (status & SDMMC_INT_RESP_ERR)
cmd->error = -EIO;
else
cmd->error = 0;
return cmd->error;
}
static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
{
u32 status = host->data_status;
if (status & DW_MCI_DATA_ERROR_FLAGS) {
if (status & SDMMC_INT_DRTO) {
data->error = -ETIMEDOUT;
} else if (status & SDMMC_INT_DCRC) {
data->error = -EILSEQ;
} else if (status & SDMMC_INT_EBE) {
if (host->dir_status ==
DW_MCI_SEND_STATUS) {
/*
* No data CRC status was returned.
* The number of bytes transferred
* will be exaggerated in PIO mode.
*/
data->bytes_xfered = 0;
data->error = -ETIMEDOUT;
} else if (host->dir_status ==
DW_MCI_RECV_STATUS) {
data->error = -EILSEQ;
}
} else {
/* SDMMC_INT_SBE is included */
data->error = -EILSEQ;
}
dev_dbg(host->dev, "data error, status 0x%08x\n", status);
/*
* After an error, there may be data lingering
* in the FIFO
*/
dw_mci_reset(host);
} else {
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
}
return data->error;
}
static void dw_mci_set_drto(struct dw_mci *host)
{
unsigned int drto_clks;
unsigned int drto_div;
unsigned int drto_ms;
unsigned long irqflags;
drto_clks = mci_readl(host, TMOUT) >> 8;
drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (drto_div == 0)
drto_div = 1;
drto_ms = DIV_ROUND_UP(MSEC_PER_SEC * drto_clks * drto_div,
host->bus_hz);
/* add a bit spare time */
drto_ms += 10;
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
mod_timer(&host->dto_timer,
jiffies + msecs_to_jiffies(drto_ms));
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
return false;
/*
* Really be certain that the timer has stopped. This is a bit of
* paranoia and could only really happen if we had really bad
* interrupt latency and the interrupt routine and timeout were
* running concurrently so that the del_timer() in the interrupt
* handler couldn't run.
*/
WARN_ON(del_timer_sync(&host->cto_timer));
clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
return true;
}
static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
return false;
/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
WARN_ON(del_timer_sync(&host->dto_timer));
clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
return true;
}
static void dw_mci_tasklet_func(unsigned long priv)
{
struct dw_mci *host = (struct dw_mci *)priv;
struct mmc_data *data;
struct mmc_command *cmd;
struct mmc_request *mrq;
enum dw_mci_state state;
enum dw_mci_state prev_state;
unsigned int err;
spin_lock(&host->lock);
state = host->state;
data = host->data;
mrq = host->mrq;
do {
prev_state = state;
switch (state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
cmd = host->cmd;
host->cmd = NULL;
set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
err = dw_mci_command_complete(host, cmd);
if (cmd == mrq->sbc && !err) {
prev_state = state = STATE_SENDING_CMD;
__dw_mci_start_request(host, host->slot,
mrq->cmd);
goto unlock;
}
if (cmd->data && err) {
/*
* During UHS tuning sequence, sending the stop
* command after the response CRC error would
* throw the system into a confused state
* causing all future tuning phases to report
* failure.
*
* In such case controller will move into a data
* transfer state after a response error or
* response CRC error. Let's let that finish
* before trying to send a stop, so we'll go to
* STATE_SENDING_DATA.
*
* Although letting the data transfer take place
* will waste a bit of time (we already know
* the command was bad), it can't cause any
* errors since it's possible it would have
* taken place anyway if this tasklet got
* delayed. Allowing the transfer to take place
* avoids races and keeps things simple.
*/
if ((err != -ETIMEDOUT) &&
(cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
state = STATE_SENDING_DATA;
continue;
}
dw_mci_stop_dma(host);
send_stop_abort(host, data);
state = STATE_SENDING_STOP;
break;
}
if (!cmd->data || err) {
dw_mci_request_end(host, mrq);
goto unlock;
}
prev_state = state = STATE_SENDING_DATA;
/* fall through */
case STATE_SENDING_DATA:
/*
* We could get a data error and never a transfer
* complete so we'd better check for it here.
*
* Note that we don't really care if we also got a
* transfer complete; stopping the DMA and sending an
* abort won't hurt.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
dw_mci_stop_dma(host);
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
state = STATE_DATA_ERROR;
break;
}
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events)) {
/*
* If all data-related interrupts don't come
* within the given time in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
/*
* Handle an EVENT_DATA_ERROR that might have shown up
* before the transfer completed. This might not have
* been caught by the check above because the interrupt
* could have gone off between the previous check and
* the check for transfer complete.
*
* Technically this ought not be needed assuming we
* get a DATA_COMPLETE eventually (we'll notice the
* error and end the request), but it shouldn't hurt.
*
* This has the advantage of sending the stop command.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
dw_mci_stop_dma(host);
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
state = STATE_DATA_ERROR;
break;
}
prev_state = state = STATE_DATA_BUSY;
/* fall through */
case STATE_DATA_BUSY:
if (!dw_mci_clear_pending_data_complete(host)) {
/*
* If data error interrupt comes but data over
* interrupt doesn't come within the given time.
* in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
host->data = NULL;
set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
err = dw_mci_data_complete(host, data);
if (!err) {
if (!data->stop || mrq->sbc) {
if (mrq->sbc && data->stop)
data->stop->error = 0;
dw_mci_request_end(host, mrq);
goto unlock;
}
/* stop command for open-ended transfer*/
if (data->stop)
send_stop_abort(host, data);
} else {
/*
* If we don't have a command complete now we'll
* never get one since we just reset everything;
* better end the request.
*
* If we do have a command complete we'll fall
* through to the SENDING_STOP command and
* everything will be peachy keen.
*/
if (!test_bit(EVENT_CMD_COMPLETE,
&host->pending_events)) {
host->cmd = NULL;
dw_mci_request_end(host, mrq);
goto unlock;
}
}
/*
* If err has non-zero,
* stop-abort command has been already issued.
*/
prev_state = state = STATE_SENDING_STOP;
/* fall through */
case STATE_SENDING_STOP:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
/* CMD error in data command */
if (mrq->cmd->error && mrq->data)
dw_mci_reset(host);
host->cmd = NULL;
host->data = NULL;
if (!mrq->sbc && mrq->stop)
dw_mci_command_complete(host, mrq->stop);
else
host->cmd_status = 0;
dw_mci_request_end(host, mrq);
goto unlock;
case STATE_DATA_ERROR:
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events))
break;
state = STATE_DATA_BUSY;
break;
}
} while (state != prev_state);
host->state = state;
unlock:
spin_unlock(&host->lock);
}
/* push final bytes to part_buf, only use during push */
static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy((void *)&host->part_buf, buf, cnt);
host->part_buf_count = cnt;
}
/* append bytes to part_buf, only use during push */
static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
host->part_buf_count += cnt;
return cnt;
}
/* pull first bytes from part_buf, only use during pull */
static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min_t(int, cnt, host->part_buf_count);
if (cnt) {
memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
cnt);
host->part_buf_count -= cnt;
host->part_buf_start += cnt;
}
return cnt;
}
/* pull final bytes from the part_buf, assuming it's just been filled */
static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy(buf, &host->part_buf, cnt);
host->part_buf_start = cnt;
host->part_buf_count = (1 << host->data_shift) - cnt;
}
static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 2) {
mci_fifo_writew(host->fifo_reg, host->part_buf16);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
mci_fifo_writew(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writew(host->fifo_reg, host->part_buf16);
}
}
static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
/* pull data from fifo into aligned buffer */
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
*pdata++ = mci_fifo_readw(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf16 = mci_fifo_readw(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 4) {
mci_fifo_writel(host->fifo_reg, host->part_buf32);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
mci_fifo_writel(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writel(host->fifo_reg, host->part_buf32);
}
}
static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
/* pull data from fifo into aligned buffer */
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
*pdata++ = mci_fifo_readl(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf32 = mci_fifo_readl(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 8) {
mci_fifo_writeq(host->fifo_reg, host->part_buf);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
mci_fifo_writeq(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writeq(host->fifo_reg, host->part_buf);
}
}
static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
/* pull data from fifo into aligned buffer */
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
*pdata++ = mci_fifo_readq(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf = mci_fifo_readq(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
{
int len;
/* get remaining partial bytes */
len = dw_mci_pull_part_bytes(host, buf, cnt);
if (unlikely(len == cnt))
return;
buf += len;
cnt -= len;
/* get the rest of the data */
host->pull_data(host, buf, cnt);
}
static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
<< shift) + host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
dw_mci_pull_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
/* if the RXDR is ready read again */
} while ((status & SDMMC_INT_RXDR) ||
(dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_write_data_pio(struct dw_mci *host)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int fifo_depth = host->fifo_depth;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = ((fifo_depth -
SDMMC_GET_FCNT(mci_readl(host, STATUS)))
<< shift) - host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
host->push_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
{
del_timer(&host->cto_timer);
if (!host->cmd_status)
host->cmd_status = status;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
static void dw_mci_handle_cd(struct dw_mci *host)
{
struct dw_mci_slot *slot = host->slot;
if (slot->mmc->ops->card_event)
slot->mmc->ops->card_event(slot->mmc);
mmc_detect_change(slot->mmc,
msecs_to_jiffies(host->pdata->detect_delay_ms));
}
static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
{
struct dw_mci *host = dev_id;
u32 pending;
struct dw_mci_slot *slot = host->slot;
unsigned long irqflags;
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending) {
/* Check volt switch first, since it can look like an error */
if ((host->state == STATE_SENDING_CMD11) &&
(pending & SDMMC_INT_VOLT_SWITCH)) {
mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
pending &= ~SDMMC_INT_VOLT_SWITCH;
/*
* Hold the lock; we know cmd11_timer can't be kicked
* off after the lock is released, so safe to delete.
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
dw_mci_cmd_interrupt(host, pending);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
del_timer(&host->cmd11_timer);
}
if (pending & DW_MCI_CMD_ERROR_FLAGS) {
spin_lock_irqsave(&host->irq_lock, irqflags);
del_timer(&host->cto_timer);
mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
host->cmd_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
if (pending & DW_MCI_DATA_ERROR_FLAGS) {
/* if there is an error report DATA_ERROR */
mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_DATA_ERROR, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
if (pending & SDMMC_INT_DATA_OVER) {
spin_lock_irqsave(&host->irq_lock, irqflags);
del_timer(&host->dto_timer);
mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
if (!host->data_status)
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
if (host->dir_status == DW_MCI_RECV_STATUS) {
if (host->sg != NULL)
dw_mci_read_data_pio(host, true);
}
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
if (pending & SDMMC_INT_RXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
dw_mci_read_data_pio(host, false);
}
if (pending & SDMMC_INT_TXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
dw_mci_write_data_pio(host);
}
if (pending & SDMMC_INT_CMD_DONE) {
spin_lock_irqsave(&host->irq_lock, irqflags);
mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
dw_mci_cmd_interrupt(host, pending);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
if (pending & SDMMC_INT_CD) {
mci_writel(host, RINTSTS, SDMMC_INT_CD);
dw_mci_handle_cd(host);
}
if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
mci_writel(host, RINTSTS,
SDMMC_INT_SDIO(slot->sdio_id));
__dw_mci_enable_sdio_irq(slot, 0);
sdio_signal_irq(slot->mmc);
}
}
if (host->use_dma != TRANS_MODE_IDMAC)
return IRQ_HANDLED;
/* Handle IDMA interrupts */
if (host->dma_64bit_address == 1) {
pending = mci_readl(host, IDSTS64);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
} else {
pending = mci_readl(host, IDSTS);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
}
return IRQ_HANDLED;
}
static int dw_mci_init_slot(struct dw_mci *host)
{
struct mmc_host *mmc;
struct dw_mci_slot *slot;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int ctrl_id, ret;
u32 freq[2];
mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->id = 0;
slot->sdio_id = host->sdio_id0 + slot->id;
slot->mmc = mmc;
slot->host = host;
host->slot = slot;
mmc->ops = &dw_mci_ops;
if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
freq, 2)) {
mmc->f_min = DW_MCI_FREQ_MIN;
mmc->f_max = DW_MCI_FREQ_MAX;
} else {
dev_info(host->dev,
"'clock-freq-min-max' property was deprecated.\n");
mmc->f_min = freq[0];
mmc->f_max = freq[1];
}
/*if there are external regulators, get them*/
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto err_host_allocated;
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
if (host->pdata->caps)
mmc->caps = host->pdata->caps;
/*
* Support MMC_CAP_ERASE by default.
* It needs to use trim/discard/erase commands.
*/
mmc->caps |= MMC_CAP_ERASE;
if (host->pdata->pm_caps)
mmc->pm_caps = host->pdata->pm_caps;
if (host->dev->of_node) {
ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (ctrl_id < 0)
ctrl_id = 0;
} else {
ctrl_id = to_platform_device(host->dev)->id;
}
if (drv_data && drv_data->caps)
mmc->caps |= drv_data->caps[ctrl_id];
if (host->pdata->caps2)
mmc->caps2 = host->pdata->caps2;
ret = mmc_of_parse(mmc);
if (ret)
goto err_host_allocated;
/* Process SDIO IRQs through the sdio_irq_work. */
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
/* Useful defaults if platform data is unset. */
if (host->use_dma == TRANS_MODE_IDMAC) {
mmc->max_segs = host->ring_size;
mmc->max_blk_size = 65535;
mmc->max_seg_size = 0x1000;
mmc->max_req_size = mmc->max_seg_size * host->ring_size;
mmc->max_blk_count = mmc->max_req_size / 512;
} else if (host->use_dma == TRANS_MODE_EDMAC) {
mmc->max_segs = 64;
mmc->max_blk_size = 65535;
mmc->max_blk_count = 65535;
mmc->max_req_size =
mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
} else {
/* TRANS_MODE_PIO */
mmc->max_segs = 64;
mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
mmc->max_blk_count = 512;
mmc->max_req_size = mmc->max_blk_size *
mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
}
dw_mci_get_cd(mmc);
ret = mmc_add_host(mmc);
if (ret)
goto err_host_allocated;
#if defined(CONFIG_DEBUG_FS)
dw_mci_init_debugfs(slot);
#endif
return 0;
err_host_allocated:
mmc_free_host(mmc);
return ret;
}
static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
{
/* Debugfs stuff is cleaned up by mmc core */
mmc_remove_host(slot->mmc);
slot->host->slot = NULL;
mmc_free_host(slot->mmc);
}
static void dw_mci_init_dma(struct dw_mci *host)
{
int addr_config;
struct device *dev = host->dev;
/*
* Check tansfer mode from HCON[17:16]
* Clear the ambiguous description of dw_mmc databook:
* 2b'00: No DMA Interface -> Actually means using Internal DMA block
* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
* 2b'11: Non DW DMA Interface -> pio only
* Compared to DesignWare DMA Interface, Generic DMA Interface has a
* simpler request/acknowledge handshake mechanism and both of them
* are regarded as external dma master for dw_mmc.
*/
host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
if (host->use_dma == DMA_INTERFACE_IDMA) {
host->use_dma = TRANS_MODE_IDMAC;
} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
host->use_dma == DMA_INTERFACE_GDMA) {
host->use_dma = TRANS_MODE_EDMAC;
} else {
goto no_dma;
}
/* Determine which DMA interface to use */
if (host->use_dma == TRANS_MODE_IDMAC) {
/*
* Check ADDR_CONFIG bit in HCON to find
* IDMAC address bus width
*/
addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
if (addr_config == 1) {
/* host supports IDMAC in 64-bit address mode */
host->dma_64bit_address = 1;
dev_info(host->dev,
"IDMAC supports 64-bit address mode.\n");
if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
dma_set_coherent_mask(host->dev,
DMA_BIT_MASK(64));
} else {
/* host supports IDMAC in 32-bit address mode */
host->dma_64bit_address = 0;
dev_info(host->dev,
"IDMAC supports 32-bit address mode.\n");
}
/* Alloc memory for sg translation */
host->sg_cpu = dmam_alloc_coherent(host->dev,
DESC_RING_BUF_SZ,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(host->dev,
"%s: could not alloc DMA memory\n",
__func__);
goto no_dma;
}
host->dma_ops = &dw_mci_idmac_ops;
dev_info(host->dev, "Using internal DMA controller.\n");
} else {
/* TRANS_MODE_EDMAC: check dma bindings again */
if ((device_property_read_string_array(dev, "dma-names",
NULL, 0) < 0) ||
!device_property_present(dev, "dmas")) {
goto no_dma;
}
host->dma_ops = &dw_mci_edmac_ops;
dev_info(host->dev, "Using external DMA controller.\n");
}
if (host->dma_ops->init && host->dma_ops->start &&
host->dma_ops->stop && host->dma_ops->cleanup) {
if (host->dma_ops->init(host)) {
dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
__func__);
goto no_dma;
}
} else {
dev_err(host->dev, "DMA initialization not found.\n");
goto no_dma;
}
return;
no_dma:
dev_info(host->dev, "Using PIO mode.\n");
host->use_dma = TRANS_MODE_PIO;
}
static void dw_mci_cmd11_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cmd11_timer);
if (host->state != STATE_SENDING_CMD11) {
dev_warn(host->dev, "Unexpected CMD11 timeout\n");
return;
}
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
static void dw_mci_cto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* If somehow we have very bad interrupt latency it's remotely possible
* that the timer could fire while the interrupt is still pending or
* while the interrupt is midway through running. Let's be paranoid
* and detect those two cases. Note that this is paranoia is somewhat
* justified because in this function we don't actually cancel the
* pending command in the controller--we just assume it will never come.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "CTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
case STATE_SENDING_STOP:
/*
* If CMD_DONE interrupt does NOT come in sending command
* state, we should notify the driver to terminate current
* transfer and report a command timeout to the core.
*/
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
break;
default:
dev_warn(host->dev, "Unexpected command timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_dto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, dto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* The DTO timer is much longer than the CTO timer, so it's even less
* likely that we'll these cases, but it pays to be paranoid.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & SDMMC_INT_DATA_OVER) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected data interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "DTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_DATA:
case STATE_DATA_BUSY:
/*
* If DTO interrupt does NOT come in sending data state,
* we should notify the driver to terminate current transfer
* and report a data timeout to the core.
*/
host->data_status = SDMMC_INT_DRTO;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
break;
default:
dev_warn(host->dev, "Unexpected data timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
#ifdef CONFIG_OF
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
struct dw_mci_board *pdata;
struct device *dev = host->dev;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int ret;
u32 clock_frequency;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
/* find reset controller when exist */
pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
if (IS_ERR(pdata->rstc)) {
if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
return ERR_PTR(-EPROBE_DEFER);
}
/* find out number of slots supported */
if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
dev_info(dev, "'num-slots' was deprecated.\n");
if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
dev_info(dev,
"fifo-depth property not found, using value of FIFOTH register as default\n");
device_property_read_u32(dev, "card-detect-delay",
&pdata->detect_delay_ms);
device_property_read_u32(dev, "data-addr", &host->data_addr_override);
if (device_property_present(dev, "fifo-watermark-aligned"))
host->wm_aligned = true;
if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
pdata->bus_hz = clock_frequency;
if (drv_data && drv_data->parse_dt) {
ret = drv_data->parse_dt(host);
if (ret)
return ERR_PTR(ret);
}
return pdata;
}
#else /* CONFIG_OF */
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
return ERR_PTR(-EINVAL);
}
#endif /* CONFIG_OF */
static void dw_mci_enable_cd(struct dw_mci *host)
{
unsigned long irqflags;
u32 temp;
/*
* No need for CD if all slots have a non-error GPIO
* as well as broken card detection is found.
*/
if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
return;
if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_CD;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
}
int dw_mci_probe(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int width, i, ret = 0;
u32 fifo_size;
if (!host->pdata) {
host->pdata = dw_mci_parse_dt(host);
if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
return -EPROBE_DEFER;
} else if (IS_ERR(host->pdata)) {
dev_err(host->dev, "platform data not available\n");
return -EINVAL;
}
}
host->biu_clk = devm_clk_get(host->dev, "biu");
if (IS_ERR(host->biu_clk)) {
dev_dbg(host->dev, "biu clock not available\n");
} else {
ret = clk_prepare_enable(host->biu_clk);
if (ret) {
dev_err(host->dev, "failed to enable biu clock\n");
return ret;
}
}
host->ciu_clk = devm_clk_get(host->dev, "ciu");
if (IS_ERR(host->ciu_clk)) {
dev_dbg(host->dev, "ciu clock not available\n");
host->bus_hz = host->pdata->bus_hz;
} else {
ret = clk_prepare_enable(host->ciu_clk);
if (ret) {
dev_err(host->dev, "failed to enable ciu clock\n");
goto err_clk_biu;
}
if (host->pdata->bus_hz) {
ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
if (ret)
dev_warn(host->dev,
"Unable to set bus rate to %uHz\n",
host->pdata->bus_hz);
}
host->bus_hz = clk_get_rate(host->ciu_clk);
}
if (!host->bus_hz) {
dev_err(host->dev,
"Platform data must supply bus speed\n");
ret = -ENODEV;
goto err_clk_ciu;
}
if (!IS_ERR(host->pdata->rstc)) {
reset_control_assert(host->pdata->rstc);
usleep_range(10, 50);
reset_control_deassert(host->pdata->rstc);
}
if (drv_data && drv_data->init) {
ret = drv_data->init(host);
if (ret) {
dev_err(host->dev,
"implementation specific init failed\n");
goto err_clk_ciu;
}
}
timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
spin_lock_init(&host->lock);
spin_lock_init(&host->irq_lock);
INIT_LIST_HEAD(&host->queue);
/*
* Get the host data width - this assumes that HCON has been set with
* the correct values.
*/
i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
if (!i) {
host->push_data = dw_mci_push_data16;
host->pull_data = dw_mci_pull_data16;
width = 16;
host->data_shift = 1;
} else if (i == 2) {
host->push_data = dw_mci_push_data64;
host->pull_data = dw_mci_pull_data64;
width = 64;
host->data_shift = 3;
} else {
/* Check for a reserved value, and warn if it is */
WARN((i != 1),
"HCON reports a reserved host data width!\n"
"Defaulting to 32-bit access.\n");
host->push_data = dw_mci_push_data32;
host->pull_data = dw_mci_pull_data32;
width = 32;
host->data_shift = 2;
}
/* Reset all blocks */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
ret = -ENODEV;
goto err_clk_ciu;
}
host->dma_ops = host->pdata->dma_ops;
dw_mci_init_dma(host);
/* Clear the interrupts for the host controller */
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
/*
* FIFO threshold settings RxMark = fifo_size / 2 - 1,
* Tx Mark = fifo_size / 2 DMA Size = 8
*/
if (!host->pdata->fifo_depth) {
/*
* Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
* have been overwritten by the bootloader, just like we're
* about to do, so if you know the value for your hardware, you
* should put it in the platform data.
*/
fifo_size = mci_readl(host, FIFOTH);
fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
} else {
fifo_size = host->pdata->fifo_depth;
}
host->fifo_depth = fifo_size;
host->fifoth_val =
SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
mci_writel(host, FIFOTH, host->fifoth_val);
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/*
* In 2.40a spec, Data offset is changed.
* Need to check the version-id and set data-offset for DATA register.
*/
host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
dev_info(host->dev, "Version ID is %04x\n", host->verid);
if (host->data_addr_override)
host->fifo_reg = host->regs + host->data_addr_override;
else if (host->verid < DW_MMC_240A)
host->fifo_reg = host->regs + DATA_OFFSET;
else
host->fifo_reg = host->regs + DATA_240A_OFFSET;
tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
host->irq_flags, "dw-mci", host);
if (ret)
goto err_dmaunmap;
/*
* Enable interrupts for command done, data over, data empty,
* receive ready and error such as transmit, receive timeout, crc error
*/
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
/* Enable mci interrupt */
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
dev_info(host->dev,
"DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
host->irq, width, fifo_size);
/* We need at least one slot to succeed */
ret = dw_mci_init_slot(host);
if (ret) {
dev_dbg(host->dev, "slot %d init failed\n", i);
goto err_dmaunmap;
}
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err_dmaunmap:
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
if (!IS_ERR(host->pdata->rstc))
reset_control_assert(host->pdata->rstc);
err_clk_ciu:
clk_disable_unprepare(host->ciu_clk);
err_clk_biu:
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_probe);
void dw_mci_remove(struct dw_mci *host)
{
dev_dbg(host->dev, "remove slot\n");
if (host->slot)
dw_mci_cleanup_slot(host->slot);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
if (!IS_ERR(host->pdata->rstc))
reset_control_assert(host->pdata->rstc);
clk_disable_unprepare(host->ciu_clk);
clk_disable_unprepare(host->biu_clk);
}
EXPORT_SYMBOL(dw_mci_remove);
#ifdef CONFIG_PM
int dw_mci_runtime_suspend(struct device *dev)
{
struct dw_mci *host = dev_get_drvdata(dev);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
clk_disable_unprepare(host->ciu_clk);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return 0;
}
EXPORT_SYMBOL(dw_mci_runtime_suspend);
int dw_mci_runtime_resume(struct device *dev)
{
int ret = 0;
struct dw_mci *host = dev_get_drvdata(dev);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc))) {
ret = clk_prepare_enable(host->biu_clk);
if (ret)
return ret;
}
ret = clk_prepare_enable(host->ciu_clk);
if (ret)
goto err;
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
clk_disable_unprepare(host->ciu_clk);
ret = -ENODEV;
goto err;
}
if (host->use_dma && host->dma_ops->init)
host->dma_ops->init(host);
/*
* Restore the initial value at FIFOTH register
* And Invalidate the prev_blksz with zero
*/
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
/* Force setup bus to guarantee available clock output */
dw_mci_setup_bus(host->slot, true);
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err:
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_runtime_resume);
#endif /* CONFIG_PM */
static int __init dw_mci_init(void)
{
pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
return 0;
}
static void __exit dw_mci_exit(void)
{
}
module_init(dw_mci_init);
module_exit(dw_mci_exit);
MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
MODULE_AUTHOR("NXP Semiconductor VietNam");
MODULE_AUTHOR("Imagination Technologies Ltd");
MODULE_LICENSE("GPL v2");