562 lines
14 KiB
C
562 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* background writeback - scan btree for dirty data and write it to the backing
|
||
|
* device
|
||
|
*
|
||
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
||
|
* Copyright 2012 Google, Inc.
|
||
|
*/
|
||
|
|
||
|
#include "bcache.h"
|
||
|
#include "btree.h"
|
||
|
#include "debug.h"
|
||
|
#include "writeback.h"
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/sched/clock.h>
|
||
|
#include <trace/events/bcache.h>
|
||
|
|
||
|
/* Rate limiting */
|
||
|
|
||
|
static void __update_writeback_rate(struct cached_dev *dc)
|
||
|
{
|
||
|
struct cache_set *c = dc->disk.c;
|
||
|
uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
|
||
|
bcache_flash_devs_sectors_dirty(c);
|
||
|
uint64_t cache_dirty_target =
|
||
|
div_u64(cache_sectors * dc->writeback_percent, 100);
|
||
|
int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
|
||
|
c->cached_dev_sectors);
|
||
|
|
||
|
/*
|
||
|
* PI controller:
|
||
|
* Figures out the amount that should be written per second.
|
||
|
*
|
||
|
* First, the error (number of sectors that are dirty beyond our
|
||
|
* target) is calculated. The error is accumulated (numerically
|
||
|
* integrated).
|
||
|
*
|
||
|
* Then, the proportional value and integral value are scaled
|
||
|
* based on configured values. These are stored as inverses to
|
||
|
* avoid fixed point math and to make configuration easy-- e.g.
|
||
|
* the default value of 40 for writeback_rate_p_term_inverse
|
||
|
* attempts to write at a rate that would retire all the dirty
|
||
|
* blocks in 40 seconds.
|
||
|
*
|
||
|
* The writeback_rate_i_inverse value of 10000 means that 1/10000th
|
||
|
* of the error is accumulated in the integral term per second.
|
||
|
* This acts as a slow, long-term average that is not subject to
|
||
|
* variations in usage like the p term.
|
||
|
*/
|
||
|
int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
|
||
|
int64_t error = dirty - target;
|
||
|
int64_t proportional_scaled =
|
||
|
div_s64(error, dc->writeback_rate_p_term_inverse);
|
||
|
int64_t integral_scaled;
|
||
|
uint32_t new_rate;
|
||
|
|
||
|
if ((error < 0 && dc->writeback_rate_integral > 0) ||
|
||
|
(error > 0 && time_before64(local_clock(),
|
||
|
dc->writeback_rate.next + NSEC_PER_MSEC))) {
|
||
|
/*
|
||
|
* Only decrease the integral term if it's more than
|
||
|
* zero. Only increase the integral term if the device
|
||
|
* is keeping up. (Don't wind up the integral
|
||
|
* ineffectively in either case).
|
||
|
*
|
||
|
* It's necessary to scale this by
|
||
|
* writeback_rate_update_seconds to keep the integral
|
||
|
* term dimensioned properly.
|
||
|
*/
|
||
|
dc->writeback_rate_integral += error *
|
||
|
dc->writeback_rate_update_seconds;
|
||
|
}
|
||
|
|
||
|
integral_scaled = div_s64(dc->writeback_rate_integral,
|
||
|
dc->writeback_rate_i_term_inverse);
|
||
|
|
||
|
new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
|
||
|
dc->writeback_rate_minimum, NSEC_PER_SEC);
|
||
|
|
||
|
dc->writeback_rate_proportional = proportional_scaled;
|
||
|
dc->writeback_rate_integral_scaled = integral_scaled;
|
||
|
dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
|
||
|
dc->writeback_rate.rate = new_rate;
|
||
|
dc->writeback_rate_target = target;
|
||
|
}
|
||
|
|
||
|
static void update_writeback_rate(struct work_struct *work)
|
||
|
{
|
||
|
struct cached_dev *dc = container_of(to_delayed_work(work),
|
||
|
struct cached_dev,
|
||
|
writeback_rate_update);
|
||
|
|
||
|
down_read(&dc->writeback_lock);
|
||
|
|
||
|
if (atomic_read(&dc->has_dirty) &&
|
||
|
dc->writeback_percent)
|
||
|
__update_writeback_rate(dc);
|
||
|
|
||
|
up_read(&dc->writeback_lock);
|
||
|
|
||
|
schedule_delayed_work(&dc->writeback_rate_update,
|
||
|
dc->writeback_rate_update_seconds * HZ);
|
||
|
}
|
||
|
|
||
|
static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
|
||
|
{
|
||
|
if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
|
||
|
!dc->writeback_percent)
|
||
|
return 0;
|
||
|
|
||
|
return bch_next_delay(&dc->writeback_rate, sectors);
|
||
|
}
|
||
|
|
||
|
struct dirty_io {
|
||
|
struct closure cl;
|
||
|
struct cached_dev *dc;
|
||
|
struct bio bio;
|
||
|
};
|
||
|
|
||
|
static void dirty_init(struct keybuf_key *w)
|
||
|
{
|
||
|
struct dirty_io *io = w->private;
|
||
|
struct bio *bio = &io->bio;
|
||
|
|
||
|
bio_init(bio, bio->bi_inline_vecs,
|
||
|
DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
|
||
|
if (!io->dc->writeback_percent)
|
||
|
bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
|
||
|
|
||
|
bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
|
||
|
bio->bi_private = w;
|
||
|
bch_bio_map(bio, NULL);
|
||
|
}
|
||
|
|
||
|
static void dirty_io_destructor(struct closure *cl)
|
||
|
{
|
||
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
||
|
kfree(io);
|
||
|
}
|
||
|
|
||
|
static void write_dirty_finish(struct closure *cl)
|
||
|
{
|
||
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
||
|
struct keybuf_key *w = io->bio.bi_private;
|
||
|
struct cached_dev *dc = io->dc;
|
||
|
|
||
|
bio_free_pages(&io->bio);
|
||
|
|
||
|
/* This is kind of a dumb way of signalling errors. */
|
||
|
if (KEY_DIRTY(&w->key)) {
|
||
|
int ret;
|
||
|
unsigned i;
|
||
|
struct keylist keys;
|
||
|
|
||
|
bch_keylist_init(&keys);
|
||
|
|
||
|
bkey_copy(keys.top, &w->key);
|
||
|
SET_KEY_DIRTY(keys.top, false);
|
||
|
bch_keylist_push(&keys);
|
||
|
|
||
|
for (i = 0; i < KEY_PTRS(&w->key); i++)
|
||
|
atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
|
||
|
|
||
|
ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
|
||
|
|
||
|
if (ret)
|
||
|
trace_bcache_writeback_collision(&w->key);
|
||
|
|
||
|
atomic_long_inc(ret
|
||
|
? &dc->disk.c->writeback_keys_failed
|
||
|
: &dc->disk.c->writeback_keys_done);
|
||
|
}
|
||
|
|
||
|
bch_keybuf_del(&dc->writeback_keys, w);
|
||
|
up(&dc->in_flight);
|
||
|
|
||
|
closure_return_with_destructor(cl, dirty_io_destructor);
|
||
|
}
|
||
|
|
||
|
static void dirty_endio(struct bio *bio)
|
||
|
{
|
||
|
struct keybuf_key *w = bio->bi_private;
|
||
|
struct dirty_io *io = w->private;
|
||
|
|
||
|
if (bio->bi_status)
|
||
|
SET_KEY_DIRTY(&w->key, false);
|
||
|
|
||
|
closure_put(&io->cl);
|
||
|
}
|
||
|
|
||
|
static void write_dirty(struct closure *cl)
|
||
|
{
|
||
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
||
|
struct keybuf_key *w = io->bio.bi_private;
|
||
|
|
||
|
/*
|
||
|
* IO errors are signalled using the dirty bit on the key.
|
||
|
* If we failed to read, we should not attempt to write to the
|
||
|
* backing device. Instead, immediately go to write_dirty_finish
|
||
|
* to clean up.
|
||
|
*/
|
||
|
if (KEY_DIRTY(&w->key)) {
|
||
|
dirty_init(w);
|
||
|
bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
|
||
|
io->bio.bi_iter.bi_sector = KEY_START(&w->key);
|
||
|
bio_set_dev(&io->bio, io->dc->bdev);
|
||
|
io->bio.bi_end_io = dirty_endio;
|
||
|
|
||
|
closure_bio_submit(&io->bio, cl);
|
||
|
}
|
||
|
|
||
|
continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
|
||
|
}
|
||
|
|
||
|
static void read_dirty_endio(struct bio *bio)
|
||
|
{
|
||
|
struct keybuf_key *w = bio->bi_private;
|
||
|
struct dirty_io *io = w->private;
|
||
|
|
||
|
bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
|
||
|
bio->bi_status, "reading dirty data from cache");
|
||
|
|
||
|
dirty_endio(bio);
|
||
|
}
|
||
|
|
||
|
static void read_dirty_submit(struct closure *cl)
|
||
|
{
|
||
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
||
|
|
||
|
closure_bio_submit(&io->bio, cl);
|
||
|
|
||
|
continue_at(cl, write_dirty, io->dc->writeback_write_wq);
|
||
|
}
|
||
|
|
||
|
static void read_dirty(struct cached_dev *dc)
|
||
|
{
|
||
|
unsigned delay = 0;
|
||
|
struct keybuf_key *w;
|
||
|
struct dirty_io *io;
|
||
|
struct closure cl;
|
||
|
|
||
|
closure_init_stack(&cl);
|
||
|
|
||
|
/*
|
||
|
* XXX: if we error, background writeback just spins. Should use some
|
||
|
* mempools.
|
||
|
*/
|
||
|
|
||
|
while (!kthread_should_stop()) {
|
||
|
|
||
|
w = bch_keybuf_next(&dc->writeback_keys);
|
||
|
if (!w)
|
||
|
break;
|
||
|
|
||
|
BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
|
||
|
|
||
|
if (KEY_START(&w->key) != dc->last_read ||
|
||
|
jiffies_to_msecs(delay) > 50)
|
||
|
while (!kthread_should_stop() && delay)
|
||
|
delay = schedule_timeout_interruptible(delay);
|
||
|
|
||
|
dc->last_read = KEY_OFFSET(&w->key);
|
||
|
|
||
|
io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
|
||
|
* DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
|
||
|
GFP_KERNEL);
|
||
|
if (!io)
|
||
|
goto err;
|
||
|
|
||
|
w->private = io;
|
||
|
io->dc = dc;
|
||
|
|
||
|
dirty_init(w);
|
||
|
bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
|
||
|
io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
|
||
|
bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
|
||
|
io->bio.bi_end_io = read_dirty_endio;
|
||
|
|
||
|
if (bio_alloc_pages(&io->bio, GFP_KERNEL))
|
||
|
goto err_free;
|
||
|
|
||
|
trace_bcache_writeback(&w->key);
|
||
|
|
||
|
down(&dc->in_flight);
|
||
|
closure_call(&io->cl, read_dirty_submit, NULL, &cl);
|
||
|
|
||
|
delay = writeback_delay(dc, KEY_SIZE(&w->key));
|
||
|
}
|
||
|
|
||
|
if (0) {
|
||
|
err_free:
|
||
|
kfree(w->private);
|
||
|
err:
|
||
|
bch_keybuf_del(&dc->writeback_keys, w);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wait for outstanding writeback IOs to finish (and keybuf slots to be
|
||
|
* freed) before refilling again
|
||
|
*/
|
||
|
closure_sync(&cl);
|
||
|
}
|
||
|
|
||
|
/* Scan for dirty data */
|
||
|
|
||
|
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
|
||
|
uint64_t offset, int nr_sectors)
|
||
|
{
|
||
|
struct bcache_device *d = c->devices[inode];
|
||
|
unsigned stripe_offset, stripe, sectors_dirty;
|
||
|
|
||
|
if (!d)
|
||
|
return;
|
||
|
|
||
|
stripe = offset_to_stripe(d, offset);
|
||
|
stripe_offset = offset & (d->stripe_size - 1);
|
||
|
|
||
|
while (nr_sectors) {
|
||
|
int s = min_t(unsigned, abs(nr_sectors),
|
||
|
d->stripe_size - stripe_offset);
|
||
|
|
||
|
if (nr_sectors < 0)
|
||
|
s = -s;
|
||
|
|
||
|
if (stripe >= d->nr_stripes)
|
||
|
return;
|
||
|
|
||
|
sectors_dirty = atomic_add_return(s,
|
||
|
d->stripe_sectors_dirty + stripe);
|
||
|
if (sectors_dirty == d->stripe_size)
|
||
|
set_bit(stripe, d->full_dirty_stripes);
|
||
|
else
|
||
|
clear_bit(stripe, d->full_dirty_stripes);
|
||
|
|
||
|
nr_sectors -= s;
|
||
|
stripe_offset = 0;
|
||
|
stripe++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool dirty_pred(struct keybuf *buf, struct bkey *k)
|
||
|
{
|
||
|
struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
|
||
|
|
||
|
BUG_ON(KEY_INODE(k) != dc->disk.id);
|
||
|
|
||
|
return KEY_DIRTY(k);
|
||
|
}
|
||
|
|
||
|
static void refill_full_stripes(struct cached_dev *dc)
|
||
|
{
|
||
|
struct keybuf *buf = &dc->writeback_keys;
|
||
|
unsigned start_stripe, stripe, next_stripe;
|
||
|
bool wrapped = false;
|
||
|
|
||
|
stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
|
||
|
|
||
|
if (stripe >= dc->disk.nr_stripes)
|
||
|
stripe = 0;
|
||
|
|
||
|
start_stripe = stripe;
|
||
|
|
||
|
while (1) {
|
||
|
stripe = find_next_bit(dc->disk.full_dirty_stripes,
|
||
|
dc->disk.nr_stripes, stripe);
|
||
|
|
||
|
if (stripe == dc->disk.nr_stripes)
|
||
|
goto next;
|
||
|
|
||
|
next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
|
||
|
dc->disk.nr_stripes, stripe);
|
||
|
|
||
|
buf->last_scanned = KEY(dc->disk.id,
|
||
|
stripe * dc->disk.stripe_size, 0);
|
||
|
|
||
|
bch_refill_keybuf(dc->disk.c, buf,
|
||
|
&KEY(dc->disk.id,
|
||
|
next_stripe * dc->disk.stripe_size, 0),
|
||
|
dirty_pred);
|
||
|
|
||
|
if (array_freelist_empty(&buf->freelist))
|
||
|
return;
|
||
|
|
||
|
stripe = next_stripe;
|
||
|
next:
|
||
|
if (wrapped && stripe > start_stripe)
|
||
|
return;
|
||
|
|
||
|
if (stripe == dc->disk.nr_stripes) {
|
||
|
stripe = 0;
|
||
|
wrapped = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns true if we scanned the entire disk
|
||
|
*/
|
||
|
static bool refill_dirty(struct cached_dev *dc)
|
||
|
{
|
||
|
struct keybuf *buf = &dc->writeback_keys;
|
||
|
struct bkey start = KEY(dc->disk.id, 0, 0);
|
||
|
struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
|
||
|
struct bkey start_pos;
|
||
|
|
||
|
/*
|
||
|
* make sure keybuf pos is inside the range for this disk - at bringup
|
||
|
* we might not be attached yet so this disk's inode nr isn't
|
||
|
* initialized then
|
||
|
*/
|
||
|
if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
|
||
|
bkey_cmp(&buf->last_scanned, &end) > 0)
|
||
|
buf->last_scanned = start;
|
||
|
|
||
|
if (dc->partial_stripes_expensive) {
|
||
|
refill_full_stripes(dc);
|
||
|
if (array_freelist_empty(&buf->freelist))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
start_pos = buf->last_scanned;
|
||
|
bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
|
||
|
|
||
|
if (bkey_cmp(&buf->last_scanned, &end) < 0)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* If we get to the end start scanning again from the beginning, and
|
||
|
* only scan up to where we initially started scanning from:
|
||
|
*/
|
||
|
buf->last_scanned = start;
|
||
|
bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
|
||
|
|
||
|
return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
|
||
|
}
|
||
|
|
||
|
static int bch_writeback_thread(void *arg)
|
||
|
{
|
||
|
struct cached_dev *dc = arg;
|
||
|
bool searched_full_index;
|
||
|
|
||
|
bch_ratelimit_reset(&dc->writeback_rate);
|
||
|
|
||
|
while (!kthread_should_stop()) {
|
||
|
down_write(&dc->writeback_lock);
|
||
|
if (!atomic_read(&dc->has_dirty) ||
|
||
|
(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
|
||
|
!dc->writeback_running)) {
|
||
|
up_write(&dc->writeback_lock);
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
if (kthread_should_stop())
|
||
|
return 0;
|
||
|
|
||
|
schedule();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
searched_full_index = refill_dirty(dc);
|
||
|
|
||
|
if (searched_full_index &&
|
||
|
RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
|
||
|
atomic_set(&dc->has_dirty, 0);
|
||
|
cached_dev_put(dc);
|
||
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
|
||
|
bch_write_bdev_super(dc, NULL);
|
||
|
}
|
||
|
|
||
|
up_write(&dc->writeback_lock);
|
||
|
|
||
|
read_dirty(dc);
|
||
|
|
||
|
if (searched_full_index) {
|
||
|
unsigned delay = dc->writeback_delay * HZ;
|
||
|
|
||
|
while (delay &&
|
||
|
!kthread_should_stop() &&
|
||
|
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
|
||
|
delay = schedule_timeout_interruptible(delay);
|
||
|
|
||
|
bch_ratelimit_reset(&dc->writeback_rate);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Init */
|
||
|
|
||
|
struct sectors_dirty_init {
|
||
|
struct btree_op op;
|
||
|
unsigned inode;
|
||
|
};
|
||
|
|
||
|
static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
|
||
|
struct bkey *k)
|
||
|
{
|
||
|
struct sectors_dirty_init *op = container_of(_op,
|
||
|
struct sectors_dirty_init, op);
|
||
|
if (KEY_INODE(k) > op->inode)
|
||
|
return MAP_DONE;
|
||
|
|
||
|
if (KEY_DIRTY(k))
|
||
|
bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
|
||
|
KEY_START(k), KEY_SIZE(k));
|
||
|
|
||
|
return MAP_CONTINUE;
|
||
|
}
|
||
|
|
||
|
void bch_sectors_dirty_init(struct bcache_device *d)
|
||
|
{
|
||
|
struct sectors_dirty_init op;
|
||
|
|
||
|
bch_btree_op_init(&op.op, -1);
|
||
|
op.inode = d->id;
|
||
|
|
||
|
bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
|
||
|
sectors_dirty_init_fn, 0);
|
||
|
}
|
||
|
|
||
|
void bch_cached_dev_writeback_init(struct cached_dev *dc)
|
||
|
{
|
||
|
sema_init(&dc->in_flight, 64);
|
||
|
init_rwsem(&dc->writeback_lock);
|
||
|
bch_keybuf_init(&dc->writeback_keys);
|
||
|
|
||
|
dc->writeback_metadata = true;
|
||
|
dc->writeback_running = true;
|
||
|
dc->writeback_percent = 10;
|
||
|
dc->writeback_delay = 30;
|
||
|
dc->writeback_rate.rate = 1024;
|
||
|
dc->writeback_rate_minimum = 8;
|
||
|
|
||
|
dc->writeback_rate_update_seconds = 5;
|
||
|
dc->writeback_rate_p_term_inverse = 40;
|
||
|
dc->writeback_rate_i_term_inverse = 10000;
|
||
|
|
||
|
INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
|
||
|
}
|
||
|
|
||
|
int bch_cached_dev_writeback_start(struct cached_dev *dc)
|
||
|
{
|
||
|
dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
|
||
|
WQ_MEM_RECLAIM, 0);
|
||
|
if (!dc->writeback_write_wq)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
|
||
|
"bcache_writeback");
|
||
|
if (IS_ERR(dc->writeback_thread))
|
||
|
return PTR_ERR(dc->writeback_thread);
|
||
|
|
||
|
schedule_delayed_work(&dc->writeback_rate_update,
|
||
|
dc->writeback_rate_update_seconds * HZ);
|
||
|
|
||
|
bch_writeback_queue(dc);
|
||
|
|
||
|
return 0;
|
||
|
}
|