ubuntu-linux-kernel/drivers/gpu/drm/nouveau/nouveau_bo.c

1672 lines
42 KiB
C
Raw Permalink Normal View History

2024-04-01 15:06:58 +00:00
/*
* Copyright 2007 Dave Airlied
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Authors: Dave Airlied <airlied@linux.ie>
* Ben Skeggs <darktama@iinet.net.au>
* Jeremy Kolb <jkolb@brandeis.edu>
*/
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_fence.h"
#include "nouveau_bo.h"
#include "nouveau_ttm.h"
#include "nouveau_gem.h"
#include "nouveau_mem.h"
#include "nouveau_vmm.h"
#include <nvif/class.h>
#include <nvif/if500b.h>
#include <nvif/if900b.h>
/*
* NV10-NV40 tiling helpers
*/
static void
nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
u32 addr, u32 size, u32 pitch, u32 flags)
{
struct nouveau_drm *drm = nouveau_drm(dev);
int i = reg - drm->tile.reg;
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
struct nvkm_fb_tile *tile = &fb->tile.region[i];
nouveau_fence_unref(&reg->fence);
if (tile->pitch)
nvkm_fb_tile_fini(fb, i, tile);
if (pitch)
nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
nvkm_fb_tile_prog(fb, i, tile);
}
static struct nouveau_drm_tile *
nv10_bo_get_tile_region(struct drm_device *dev, int i)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_drm_tile *tile = &drm->tile.reg[i];
spin_lock(&drm->tile.lock);
if (!tile->used &&
(!tile->fence || nouveau_fence_done(tile->fence)))
tile->used = true;
else
tile = NULL;
spin_unlock(&drm->tile.lock);
return tile;
}
static void
nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
struct dma_fence *fence)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (tile) {
spin_lock(&drm->tile.lock);
tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
tile->used = false;
spin_unlock(&drm->tile.lock);
}
}
static struct nouveau_drm_tile *
nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
u32 size, u32 pitch, u32 zeta)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
struct nouveau_drm_tile *tile, *found = NULL;
int i;
for (i = 0; i < fb->tile.regions; i++) {
tile = nv10_bo_get_tile_region(dev, i);
if (pitch && !found) {
found = tile;
continue;
} else if (tile && fb->tile.region[i].pitch) {
/* Kill an unused tile region. */
nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
}
nv10_bo_put_tile_region(dev, tile, NULL);
}
if (found)
nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
return found;
}
static void
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
if (unlikely(nvbo->gem.filp))
DRM_ERROR("bo %p still attached to GEM object\n", bo);
WARN_ON(nvbo->pin_refcnt > 0);
nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
kfree(nvbo);
}
static inline u64
roundup_64(u64 x, u32 y)
{
x += y - 1;
do_div(x, y);
return x * y;
}
static void
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
int *align, u64 *size)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct nvif_device *device = &drm->client.device;
if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
if (nvbo->mode) {
if (device->info.chipset >= 0x40) {
*align = 65536;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x30) {
*align = 32768;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x20) {
*align = 16384;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x10) {
*align = 16384;
*size = roundup_64(*size, 32 * nvbo->mode);
}
}
} else {
*size = roundup_64(*size, (1 << nvbo->page));
*align = max((1 << nvbo->page), *align);
}
*size = roundup_64(*size, PAGE_SIZE);
}
int
nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
struct sg_table *sg, struct reservation_object *robj,
struct nouveau_bo **pnvbo)
{
struct nouveau_drm *drm = cli->drm;
struct nouveau_bo *nvbo;
struct nvif_mmu *mmu = &cli->mmu;
struct nvif_vmm *vmm = &cli->vmm.vmm;
size_t acc_size;
int type = ttm_bo_type_device;
int ret, i, pi = -1;
if (!size) {
NV_WARN(drm, "skipped size %016llx\n", size);
return -EINVAL;
}
if (sg)
type = ttm_bo_type_sg;
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
if (!nvbo)
return -ENOMEM;
INIT_LIST_HEAD(&nvbo->head);
INIT_LIST_HEAD(&nvbo->entry);
INIT_LIST_HEAD(&nvbo->vma_list);
nvbo->bo.bdev = &drm->ttm.bdev;
nvbo->cli = cli;
/* This is confusing, and doesn't actually mean we want an uncached
* mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
* into in nouveau_gem_new().
*/
if (flags & TTM_PL_FLAG_UNCACHED) {
/* Determine if we can get a cache-coherent map, forcing
* uncached mapping if we can't.
*/
if (!nouveau_drm_use_coherent_gpu_mapping(drm))
nvbo->force_coherent = true;
}
if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
kfree(nvbo);
return -EINVAL;
}
nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
} else
if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
nvbo->kind = (tile_flags & 0x00007f00) >> 8;
nvbo->comp = (tile_flags & 0x00030000) >> 16;
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
kfree(nvbo);
return -EINVAL;
}
} else {
nvbo->zeta = (tile_flags & 0x00000007);
}
nvbo->mode = tile_mode;
nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
/* Determine the desirable target GPU page size for the buffer. */
for (i = 0; i < vmm->page_nr; i++) {
/* Because we cannot currently allow VMM maps to fail
* during buffer migration, we need to determine page
* size for the buffer up-front, and pre-allocate its
* page tables.
*
* Skip page sizes that can't support needed domains.
*/
if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
(flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
continue;
if ((flags & TTM_PL_FLAG_TT) &&
(!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
continue;
/* Select this page size if it's the first that supports
* the potential memory domains, or when it's compatible
* with the requested compression settings.
*/
if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
pi = i;
/* Stop once the buffer is larger than the current page size. */
if (size >= 1ULL << vmm->page[i].shift)
break;
}
if (WARN_ON(pi < 0))
return -EINVAL;
/* Disable compression if suitable settings couldn't be found. */
if (nvbo->comp && !vmm->page[pi].comp) {
if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
nvbo->kind = mmu->kind[nvbo->kind];
nvbo->comp = 0;
}
nvbo->page = vmm->page[pi].shift;
nouveau_bo_fixup_align(nvbo, flags, &align, &size);
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
nouveau_bo_placement_set(nvbo, flags, 0);
acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
sizeof(struct nouveau_bo));
ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
type, &nvbo->placement,
align >> PAGE_SHIFT, false, NULL, acc_size, sg,
robj, nouveau_bo_del_ttm);
if (ret) {
/* ttm will call nouveau_bo_del_ttm if it fails.. */
return ret;
}
*pnvbo = nvbo;
return 0;
}
static void
set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
{
*n = 0;
if (type & TTM_PL_FLAG_VRAM)
pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
if (type & TTM_PL_FLAG_TT)
pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
if (type & TTM_PL_FLAG_SYSTEM)
pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
}
static void
set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
unsigned i, fpfn, lpfn;
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
nvbo->bo.mem.num_pages < vram_pages / 4) {
/*
* Make sure that the color and depth buffers are handled
* by independent memory controller units. Up to a 9x
* speed up when alpha-blending and depth-test are enabled
* at the same time.
*/
if (nvbo->zeta) {
fpfn = vram_pages / 2;
lpfn = ~0;
} else {
fpfn = 0;
lpfn = vram_pages / 2;
}
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = fpfn;
nvbo->placements[i].lpfn = lpfn;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = fpfn;
nvbo->busy_placements[i].lpfn = lpfn;
}
}
}
void
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
{
struct ttm_placement *pl = &nvbo->placement;
uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
TTM_PL_MASK_CACHING) |
(nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
pl->placement = nvbo->placements;
set_placement_list(nvbo->placements, &pl->num_placement,
type, flags);
pl->busy_placement = nvbo->busy_placements;
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
type | busy, flags);
set_placement_range(nvbo, type);
}
int
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
bool force = false, evict = false;
int ret;
ret = ttm_bo_reserve(bo, false, false, NULL);
if (ret)
return ret;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
memtype == TTM_PL_FLAG_VRAM && contig) {
if (!nvbo->contig) {
nvbo->contig = true;
force = true;
evict = true;
}
}
if (nvbo->pin_refcnt) {
if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
NV_ERROR(drm, "bo %p pinned elsewhere: "
"0x%08x vs 0x%08x\n", bo,
1 << bo->mem.mem_type, memtype);
ret = -EBUSY;
}
nvbo->pin_refcnt++;
goto out;
}
if (evict) {
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
}
nvbo->pin_refcnt++;
nouveau_bo_placement_set(nvbo, memtype, 0);
/* drop pin_refcnt temporarily, so we don't trip the assertion
* in nouveau_bo_move() that makes sure we're not trying to
* move a pinned buffer
*/
nvbo->pin_refcnt--;
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
nvbo->pin_refcnt++;
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available -= bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available -= bo->mem.size;
break;
default:
break;
}
out:
if (force && ret)
nvbo->contig = false;
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_unpin(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
int ret, ref;
ret = ttm_bo_reserve(bo, false, false, NULL);
if (ret)
return ret;
ref = --nvbo->pin_refcnt;
WARN_ON_ONCE(ref < 0);
if (ref)
goto out;
nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret == 0) {
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available += bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available += bo->mem.size;
break;
default:
break;
}
}
out:
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_map(struct nouveau_bo *nvbo)
{
int ret;
ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
if (ret)
return ret;
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
ttm_bo_unreserve(&nvbo->bo);
return ret;
}
void
nouveau_bo_unmap(struct nouveau_bo *nvbo)
{
if (!nvbo)
return;
ttm_bo_kunmap(&nvbo->kmap);
}
void
nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
int i;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
dma_sync_single_for_device(drm->dev->dev,
ttm_dma->dma_address[i],
PAGE_SIZE, DMA_TO_DEVICE);
}
void
nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
int i;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
PAGE_SIZE, DMA_FROM_DEVICE);
}
int
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
bool no_wait_gpu)
{
int ret;
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
interruptible, no_wait_gpu);
if (ret)
return ret;
nouveau_bo_sync_for_device(nvbo);
return 0;
}
void
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
{
bool is_iomem;
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
iowrite16_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
u32
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
return ioread32_native((void __force __iomem *)mem);
else
return *mem;
}
void
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
iowrite32_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
uint32_t page_flags, struct page *dummy_read)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bdev);
if (drm->agp.bridge) {
return ttm_agp_tt_create(bdev, drm->agp.bridge, size,
page_flags, dummy_read);
}
#endif
return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
}
static int
nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
/* We'll do this from user space. */
return 0;
}
static int
nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct nouveau_drm *drm = nouveau_bdev(bdev);
struct nvif_mmu *mmu = &drm->client.mmu;
switch (type) {
case TTM_PL_SYSTEM:
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_VRAM:
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
/* Some BARs do not support being ioremapped WC */
const u8 type = mmu->type[drm->ttm.type_vram].type;
if (type & NVIF_MEM_UNCACHED) {
man->available_caching = TTM_PL_FLAG_UNCACHED;
man->default_caching = TTM_PL_FLAG_UNCACHED;
}
man->func = &nouveau_vram_manager;
man->io_reserve_fastpath = false;
man->use_io_reserve_lru = true;
} else {
man->func = &ttm_bo_manager_func;
}
break;
case TTM_PL_TT:
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
man->func = &nouveau_gart_manager;
else
if (!drm->agp.bridge)
man->func = &nv04_gart_manager;
else
man->func = &ttm_bo_manager_func;
if (drm->agp.bridge) {
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
} else {
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
TTM_MEMTYPE_FLAG_CMA;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
TTM_PL_FLAG_SYSTEM);
break;
default:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
break;
}
*pl = nvbo->placement;
}
static int
nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 2);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle & 0x0000ffff);
FIRE_RING (chan);
}
return ret;
}
static int
nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
int ret = RING_SPACE(chan, 10);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, new_reg->num_pages);
BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
}
return ret;
}
static int
nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 2);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
}
return ret;
}
static int
nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
u64 src_offset = mem->vma[0].addr;
u64 dst_offset = mem->vma[1].addr;
u32 page_count = new_reg->num_pages;
int ret;
page_count = new_reg->num_pages;
while (page_count) {
int line_count = (page_count > 8191) ? 8191 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, line_count);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00000110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
u64 src_offset = mem->vma[0].addr;
u64 dst_offset = mem->vma[1].addr;
u32 page_count = new_reg->num_pages;
int ret;
page_count = new_reg->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00100110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
u64 src_offset = mem->vma[0].addr;
u64 dst_offset = mem->vma[1].addr;
u32 page_count = new_reg->num_pages;
int ret;
page_count = new_reg->num_pages;
while (page_count) {
int line_count = (page_count > 8191) ? 8191 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, line_count);
BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00000110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
int ret = RING_SPACE(chan, 7);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
OUT_RING (chan, 0x00000000 /* COPY */);
OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
}
return ret;
}
static int
nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
int ret = RING_SPACE(chan, 7);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
}
return ret;
}
static int
nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 6);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
OUT_RING (chan, chan->drm->ntfy.handle);
OUT_RING (chan, chan->vram.handle);
OUT_RING (chan, chan->vram.handle);
}
return ret;
}
static int
nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = nouveau_mem(old_reg);
u64 length = (new_reg->num_pages << PAGE_SHIFT);
u64 src_offset = mem->vma[0].addr;
u64 dst_offset = mem->vma[1].addr;
int src_tiled = !!mem->kind;
int dst_tiled = !!nouveau_mem(new_reg)->kind;
int ret;
while (length) {
u32 amount, stride, height;
ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
if (ret)
return ret;
amount = min(length, (u64)(4 * 1024 * 1024));
stride = 16 * 4;
height = amount / stride;
if (src_tiled) {
BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
OUT_RING (chan, 1);
}
if (dst_tiled) {
BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
OUT_RING (chan, 1);
}
BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
length -= amount;
src_offset += amount;
dst_offset += amount;
}
return 0;
}
static int
nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 4);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
OUT_RING (chan, chan->drm->ntfy.handle);
}
return ret;
}
static inline uint32_t
nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
struct nouveau_channel *chan, struct ttm_mem_reg *reg)
{
if (reg->mem_type == TTM_PL_TT)
return NvDmaTT;
return chan->vram.handle;
}
static int
nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
{
u32 src_offset = old_reg->start << PAGE_SHIFT;
u32 dst_offset = new_reg->start << PAGE_SHIFT;
u32 page_count = new_reg->num_pages;
int ret;
ret = RING_SPACE(chan, 3);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg));
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg));
page_count = new_reg->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy,
NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
OUT_RING (chan, src_offset);
OUT_RING (chan, dst_offset);
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
struct ttm_mem_reg *reg)
{
struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
struct nouveau_mem *new_mem = nouveau_mem(reg);
struct nvif_vmm *vmm = &drm->client.vmm.vmm;
int ret;
ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
old_mem->mem.size, &old_mem->vma[0]);
if (ret)
return ret;
ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
new_mem->mem.size, &old_mem->vma[1]);
if (ret)
goto done;
ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
if (ret)
goto done;
ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
done:
if (ret) {
nvif_vmm_put(vmm, &old_mem->vma[1]);
nvif_vmm_put(vmm, &old_mem->vma[0]);
}
return 0;
}
static int
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_channel *chan = drm->ttm.chan;
struct nouveau_cli *cli = (void *)chan->user.client;
struct nouveau_fence *fence;
int ret;
/* create temporary vmas for the transfer and attach them to the
* old nvkm_mem node, these will get cleaned up after ttm has
* destroyed the ttm_mem_reg
*/
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_move_prep(drm, bo, new_reg);
if (ret)
return ret;
}
mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
if (ret == 0) {
ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
if (ret == 0) {
ret = nouveau_fence_new(chan, false, &fence);
if (ret == 0) {
ret = ttm_bo_move_accel_cleanup(bo,
&fence->base,
evict,
new_reg);
nouveau_fence_unref(&fence);
}
}
}
mutex_unlock(&cli->mutex);
return ret;
}
void
nouveau_bo_move_init(struct nouveau_drm *drm)
{
static const struct {
const char *name;
int engine;
s32 oclass;
int (*exec)(struct nouveau_channel *,
struct ttm_buffer_object *,
struct ttm_mem_reg *, struct ttm_mem_reg *);
int (*init)(struct nouveau_channel *, u32 handle);
} _methods[] = {
{ "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
{ "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
{ "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
{ "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
{},
{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
}, *mthd = _methods;
const char *name = "CPU";
int ret;
do {
struct nouveau_channel *chan;
if (mthd->engine)
chan = drm->cechan;
else
chan = drm->channel;
if (chan == NULL)
continue;
ret = nvif_object_init(&chan->user,
mthd->oclass | (mthd->engine << 16),
mthd->oclass, NULL, 0,
&drm->ttm.copy);
if (ret == 0) {
ret = mthd->init(chan, drm->ttm.copy.handle);
if (ret) {
nvif_object_fini(&drm->ttm.copy);
continue;
}
drm->ttm.move = mthd->exec;
drm->ttm.chan = chan;
name = mthd->name;
break;
}
} while ((++mthd)->exec);
NV_INFO(drm, "MM: using %s for buffer copies\n", name);
}
static int
nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
{
struct ttm_place placement_memtype = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
};
struct ttm_placement placement;
struct ttm_mem_reg tmp_reg;
int ret;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_reg = *new_reg;
tmp_reg.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, intr, no_wait_gpu);
if (ret)
return ret;
ret = ttm_tt_bind(bo->ttm, &tmp_reg);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
if (ret)
goto out;
ret = ttm_bo_move_ttm(bo, intr, no_wait_gpu, new_reg);
out:
ttm_bo_mem_put(bo, &tmp_reg);
return ret;
}
static int
nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
{
struct ttm_place placement_memtype = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
};
struct ttm_placement placement;
struct ttm_mem_reg tmp_reg;
int ret;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_reg = *new_reg;
tmp_reg.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, intr, no_wait_gpu);
if (ret)
return ret;
ret = ttm_bo_move_ttm(bo, intr, no_wait_gpu, &tmp_reg);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
if (ret)
goto out;
out:
ttm_bo_mem_put(bo, &tmp_reg);
return ret;
}
static void
nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
struct ttm_mem_reg *new_reg)
{
struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nouveau_vma *vma;
/* ttm can now (stupidly) pass the driver bos it didn't create... */
if (bo->destroy != nouveau_bo_del_ttm)
return;
if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
mem->mem.page == nvbo->page) {
list_for_each_entry(vma, &nvbo->vma_list, head) {
nouveau_vma_map(vma, mem);
}
} else {
list_for_each_entry(vma, &nvbo->vma_list, head) {
WARN_ON(ttm_bo_wait(bo, false, false));
nouveau_vma_unmap(vma);
}
}
}
static int
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
struct nouveau_drm_tile **new_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
u64 offset = new_reg->start << PAGE_SHIFT;
*new_tile = NULL;
if (new_reg->mem_type != TTM_PL_VRAM)
return 0;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
nvbo->mode, nvbo->zeta);
}
return 0;
}
static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
struct nouveau_drm_tile *new_tile,
struct nouveau_drm_tile **old_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct dma_fence *fence = reservation_object_get_excl(bo->resv);
nv10_bo_put_tile_region(dev, *old_tile, fence);
*old_tile = new_tile;
}
static int
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_reg)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct ttm_mem_reg *old_reg = &bo->mem;
struct nouveau_drm_tile *new_tile = NULL;
int ret = 0;
ret = ttm_bo_wait(bo, intr, no_wait_gpu);
if (ret)
return ret;
if (nvbo->pin_refcnt)
NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
if (ret)
return ret;
}
/* Fake bo copy. */
if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
BUG_ON(bo->mem.mm_node != NULL);
bo->mem = *new_reg;
new_reg->mm_node = NULL;
goto out;
}
/* Hardware assisted copy. */
if (drm->ttm.move) {
if (new_reg->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flipd(bo, evict, intr,
no_wait_gpu, new_reg);
else if (old_reg->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flips(bo, evict, intr,
no_wait_gpu, new_reg);
else
ret = nouveau_bo_move_m2mf(bo, evict, intr,
no_wait_gpu, new_reg);
if (!ret)
goto out;
}
/* Fallback to software copy. */
ret = ttm_bo_wait(bo, intr, no_wait_gpu);
if (ret == 0)
ret = ttm_bo_move_memcpy(bo, intr, no_wait_gpu, new_reg);
out:
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
if (ret)
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
else
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
}
return ret;
}
static int
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
return drm_vma_node_verify_access(&nvbo->gem.vma_node,
filp->private_data);
}
static int
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
{
struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type];
struct nouveau_drm *drm = nouveau_bdev(bdev);
struct nvkm_device *device = nvxx_device(&drm->client.device);
struct nouveau_mem *mem = nouveau_mem(reg);
reg->bus.addr = NULL;
reg->bus.offset = 0;
reg->bus.size = reg->num_pages << PAGE_SHIFT;
reg->bus.base = 0;
reg->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (reg->mem_type) {
case TTM_PL_SYSTEM:
/* System memory */
return 0;
case TTM_PL_TT:
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
reg->bus.offset = reg->start << PAGE_SHIFT;
reg->bus.base = drm->agp.base;
reg->bus.is_iomem = !drm->agp.cma;
}
#endif
if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
/* untiled */
break;
/* fallthrough, tiled memory */
case TTM_PL_VRAM:
reg->bus.offset = reg->start << PAGE_SHIFT;
reg->bus.base = device->func->resource_addr(device, 1);
reg->bus.is_iomem = true;
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
union {
struct nv50_mem_map_v0 nv50;
struct gf100_mem_map_v0 gf100;
} args;
u64 handle, length;
u32 argc = 0;
int ret;
switch (mem->mem.object.oclass) {
case NVIF_CLASS_MEM_NV50:
args.nv50.version = 0;
args.nv50.ro = 0;
args.nv50.kind = mem->kind;
args.nv50.comp = mem->comp;
break;
case NVIF_CLASS_MEM_GF100:
args.gf100.version = 0;
args.gf100.ro = 0;
args.gf100.kind = mem->kind;
break;
default:
WARN_ON(1);
break;
}
ret = nvif_object_map_handle(&mem->mem.object,
&argc, argc,
&handle, &length);
if (ret != 1)
return ret ? ret : -EINVAL;
reg->bus.base = 0;
reg->bus.offset = handle;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
{
struct nouveau_drm *drm = nouveau_bdev(bdev);
struct nouveau_mem *mem = nouveau_mem(reg);
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
switch (reg->mem_type) {
case TTM_PL_TT:
if (mem->kind)
nvif_object_unmap_handle(&mem->mem.object);
break;
case TTM_PL_VRAM:
nvif_object_unmap_handle(&mem->mem.object);
break;
default:
break;
}
}
}
static int
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nvkm_device *device = nvxx_device(&drm->client.device);
u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
int i, ret;
/* as long as the bo isn't in vram, and isn't tiled, we've got
* nothing to do here.
*/
if (bo->mem.mem_type != TTM_PL_VRAM) {
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
!nvbo->kind)
return 0;
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
return ret;
}
return 0;
}
/* make sure bo is in mappable vram */
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
bo->mem.start + bo->mem.num_pages < mappable)
return 0;
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = 0;
nvbo->placements[i].lpfn = mappable;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = 0;
nvbo->busy_placements[i].lpfn = mappable;
}
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
return nouveau_bo_validate(nvbo, false, false);
}
static int
nouveau_ttm_tt_populate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct nouveau_drm *drm;
struct device *dev;
unsigned i;
int r;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (ttm->state != tt_unpopulated)
return 0;
if (slave && ttm->sg) {
/* make userspace faulting work */
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
ttm_dma->dma_address, ttm->num_pages);
ttm->state = tt_unbound;
return 0;
}
drm = nouveau_bdev(ttm->bdev);
dev = drm->dev->dev;
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
return ttm_agp_tt_populate(ttm);
}
#endif
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
if (swiotlb_nr_tbl()) {
return ttm_dma_populate((void *)ttm, dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
dma_addr_t addr;
addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, addr)) {
while (i--) {
dma_unmap_page(dev, ttm_dma->dma_address[i],
PAGE_SIZE, DMA_BIDIRECTIONAL);
ttm_dma->dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
ttm_dma->dma_address[i] = addr;
}
return 0;
}
static void
nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct nouveau_drm *drm;
struct device *dev;
unsigned i;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (slave)
return;
drm = nouveau_bdev(ttm->bdev);
dev = drm->dev->dev;
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
ttm_agp_tt_unpopulate(ttm);
return;
}
#endif
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate((void *)ttm, dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (ttm_dma->dma_address[i]) {
dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
void
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
{
struct reservation_object *resv = nvbo->bo.resv;
if (exclusive)
reservation_object_add_excl_fence(resv, &fence->base);
else if (fence)
reservation_object_add_shared_fence(resv, &fence->base);
}
struct ttm_bo_driver nouveau_bo_driver = {
.ttm_tt_create = &nouveau_ttm_tt_create,
.ttm_tt_populate = &nouveau_ttm_tt_populate,
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
.invalidate_caches = nouveau_bo_invalidate_caches,
.init_mem_type = nouveau_bo_init_mem_type,
.eviction_valuable = ttm_bo_eviction_valuable,
.evict_flags = nouveau_bo_evict_flags,
.move_notify = nouveau_bo_move_ntfy,
.move = nouveau_bo_move,
.verify_access = nouveau_bo_verify_access,
.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
.io_mem_free = &nouveau_ttm_io_mem_free,
.io_mem_pfn = ttm_bo_default_io_mem_pfn,
};