608 lines
15 KiB
C
608 lines
15 KiB
C
|
/*
|
||
|
* Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst)
|
||
|
*
|
||
|
* Based on bo.c which bears the following copyright notice,
|
||
|
* but is dual licensed:
|
||
|
*
|
||
|
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
|
||
|
* All Rights Reserved.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
* copy of this software and associated documentation files (the
|
||
|
* "Software"), to deal in the Software without restriction, including
|
||
|
* without limitation the rights to use, copy, modify, merge, publish,
|
||
|
* distribute, sub license, and/or sell copies of the Software, and to
|
||
|
* permit persons to whom the Software is furnished to do so, subject to
|
||
|
* the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice (including the
|
||
|
* next paragraph) shall be included in all copies or substantial portions
|
||
|
* of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
||
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
||
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
/*
|
||
|
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/reservation.h>
|
||
|
#include <linux/export.h>
|
||
|
|
||
|
/**
|
||
|
* DOC: Reservation Object Overview
|
||
|
*
|
||
|
* The reservation object provides a mechanism to manage shared and
|
||
|
* exclusive fences associated with a buffer. A reservation object
|
||
|
* can have attached one exclusive fence (normally associated with
|
||
|
* write operations) or N shared fences (read operations). The RCU
|
||
|
* mechanism is used to protect read access to fences from locked
|
||
|
* write-side updates.
|
||
|
*/
|
||
|
|
||
|
DEFINE_WW_CLASS(reservation_ww_class);
|
||
|
EXPORT_SYMBOL(reservation_ww_class);
|
||
|
|
||
|
struct lock_class_key reservation_seqcount_class;
|
||
|
EXPORT_SYMBOL(reservation_seqcount_class);
|
||
|
|
||
|
const char reservation_seqcount_string[] = "reservation_seqcount";
|
||
|
EXPORT_SYMBOL(reservation_seqcount_string);
|
||
|
|
||
|
/**
|
||
|
* reservation_object_reserve_shared - Reserve space to add a shared
|
||
|
* fence to a reservation_object.
|
||
|
* @obj: reservation object
|
||
|
*
|
||
|
* Should be called before reservation_object_add_shared_fence(). Must
|
||
|
* be called with obj->lock held.
|
||
|
*
|
||
|
* RETURNS
|
||
|
* Zero for success, or -errno
|
||
|
*/
|
||
|
int reservation_object_reserve_shared(struct reservation_object *obj)
|
||
|
{
|
||
|
struct reservation_object_list *fobj, *old;
|
||
|
u32 max;
|
||
|
|
||
|
old = reservation_object_get_list(obj);
|
||
|
|
||
|
if (old && old->shared_max) {
|
||
|
if (old->shared_count < old->shared_max) {
|
||
|
/* perform an in-place update */
|
||
|
kfree(obj->staged);
|
||
|
obj->staged = NULL;
|
||
|
return 0;
|
||
|
} else
|
||
|
max = old->shared_max * 2;
|
||
|
} else
|
||
|
max = 4;
|
||
|
|
||
|
/*
|
||
|
* resize obj->staged or allocate if it doesn't exist,
|
||
|
* noop if already correct size
|
||
|
*/
|
||
|
fobj = krealloc(obj->staged, offsetof(typeof(*fobj), shared[max]),
|
||
|
GFP_KERNEL);
|
||
|
if (!fobj)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
obj->staged = fobj;
|
||
|
fobj->shared_max = max;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(reservation_object_reserve_shared);
|
||
|
|
||
|
static void
|
||
|
reservation_object_add_shared_inplace(struct reservation_object *obj,
|
||
|
struct reservation_object_list *fobj,
|
||
|
struct dma_fence *fence)
|
||
|
{
|
||
|
u32 i;
|
||
|
|
||
|
dma_fence_get(fence);
|
||
|
|
||
|
preempt_disable();
|
||
|
write_seqcount_begin(&obj->seq);
|
||
|
|
||
|
for (i = 0; i < fobj->shared_count; ++i) {
|
||
|
struct dma_fence *old_fence;
|
||
|
|
||
|
old_fence = rcu_dereference_protected(fobj->shared[i],
|
||
|
reservation_object_held(obj));
|
||
|
|
||
|
if (old_fence->context == fence->context) {
|
||
|
/* memory barrier is added by write_seqcount_begin */
|
||
|
RCU_INIT_POINTER(fobj->shared[i], fence);
|
||
|
write_seqcount_end(&obj->seq);
|
||
|
preempt_enable();
|
||
|
|
||
|
dma_fence_put(old_fence);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* memory barrier is added by write_seqcount_begin,
|
||
|
* fobj->shared_count is protected by this lock too
|
||
|
*/
|
||
|
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
|
||
|
fobj->shared_count++;
|
||
|
|
||
|
write_seqcount_end(&obj->seq);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
reservation_object_add_shared_replace(struct reservation_object *obj,
|
||
|
struct reservation_object_list *old,
|
||
|
struct reservation_object_list *fobj,
|
||
|
struct dma_fence *fence)
|
||
|
{
|
||
|
unsigned i;
|
||
|
struct dma_fence *old_fence = NULL;
|
||
|
|
||
|
dma_fence_get(fence);
|
||
|
|
||
|
if (!old) {
|
||
|
RCU_INIT_POINTER(fobj->shared[0], fence);
|
||
|
fobj->shared_count = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* no need to bump fence refcounts, rcu_read access
|
||
|
* requires the use of kref_get_unless_zero, and the
|
||
|
* references from the old struct are carried over to
|
||
|
* the new.
|
||
|
*/
|
||
|
fobj->shared_count = old->shared_count;
|
||
|
|
||
|
for (i = 0; i < old->shared_count; ++i) {
|
||
|
struct dma_fence *check;
|
||
|
|
||
|
check = rcu_dereference_protected(old->shared[i],
|
||
|
reservation_object_held(obj));
|
||
|
|
||
|
if (!old_fence && check->context == fence->context) {
|
||
|
old_fence = check;
|
||
|
RCU_INIT_POINTER(fobj->shared[i], fence);
|
||
|
} else
|
||
|
RCU_INIT_POINTER(fobj->shared[i], check);
|
||
|
}
|
||
|
if (!old_fence) {
|
||
|
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
|
||
|
fobj->shared_count++;
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
preempt_disable();
|
||
|
write_seqcount_begin(&obj->seq);
|
||
|
/*
|
||
|
* RCU_INIT_POINTER can be used here,
|
||
|
* seqcount provides the necessary barriers
|
||
|
*/
|
||
|
RCU_INIT_POINTER(obj->fence, fobj);
|
||
|
write_seqcount_end(&obj->seq);
|
||
|
preempt_enable();
|
||
|
|
||
|
if (old)
|
||
|
kfree_rcu(old, rcu);
|
||
|
|
||
|
dma_fence_put(old_fence);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* reservation_object_add_shared_fence - Add a fence to a shared slot
|
||
|
* @obj: the reservation object
|
||
|
* @fence: the shared fence to add
|
||
|
*
|
||
|
* Add a fence to a shared slot, obj->lock must be held, and
|
||
|
* reservation_object_reserve_shared() has been called.
|
||
|
*/
|
||
|
void reservation_object_add_shared_fence(struct reservation_object *obj,
|
||
|
struct dma_fence *fence)
|
||
|
{
|
||
|
struct reservation_object_list *old, *fobj = obj->staged;
|
||
|
|
||
|
old = reservation_object_get_list(obj);
|
||
|
obj->staged = NULL;
|
||
|
|
||
|
if (!fobj) {
|
||
|
BUG_ON(old->shared_count >= old->shared_max);
|
||
|
reservation_object_add_shared_inplace(obj, old, fence);
|
||
|
} else
|
||
|
reservation_object_add_shared_replace(obj, old, fobj, fence);
|
||
|
}
|
||
|
EXPORT_SYMBOL(reservation_object_add_shared_fence);
|
||
|
|
||
|
/**
|
||
|
* reservation_object_add_excl_fence - Add an exclusive fence.
|
||
|
* @obj: the reservation object
|
||
|
* @fence: the shared fence to add
|
||
|
*
|
||
|
* Add a fence to the exclusive slot. The obj->lock must be held.
|
||
|
*/
|
||
|
void reservation_object_add_excl_fence(struct reservation_object *obj,
|
||
|
struct dma_fence *fence)
|
||
|
{
|
||
|
struct dma_fence *old_fence = reservation_object_get_excl(obj);
|
||
|
struct reservation_object_list *old;
|
||
|
u32 i = 0;
|
||
|
|
||
|
old = reservation_object_get_list(obj);
|
||
|
if (old)
|
||
|
i = old->shared_count;
|
||
|
|
||
|
if (fence)
|
||
|
dma_fence_get(fence);
|
||
|
|
||
|
preempt_disable();
|
||
|
write_seqcount_begin(&obj->seq);
|
||
|
/* write_seqcount_begin provides the necessary memory barrier */
|
||
|
RCU_INIT_POINTER(obj->fence_excl, fence);
|
||
|
if (old)
|
||
|
old->shared_count = 0;
|
||
|
write_seqcount_end(&obj->seq);
|
||
|
preempt_enable();
|
||
|
|
||
|
/* inplace update, no shared fences */
|
||
|
while (i--)
|
||
|
dma_fence_put(rcu_dereference_protected(old->shared[i],
|
||
|
reservation_object_held(obj)));
|
||
|
|
||
|
dma_fence_put(old_fence);
|
||
|
}
|
||
|
EXPORT_SYMBOL(reservation_object_add_excl_fence);
|
||
|
|
||
|
/**
|
||
|
* reservation_object_copy_fences - Copy all fences from src to dst.
|
||
|
* @dst: the destination reservation object
|
||
|
* @src: the source reservation object
|
||
|
*
|
||
|
* Copy all fences from src to dst. dst-lock must be held.
|
||
|
*/
|
||
|
int reservation_object_copy_fences(struct reservation_object *dst,
|
||
|
struct reservation_object *src)
|
||
|
{
|
||
|
struct reservation_object_list *src_list, *dst_list;
|
||
|
struct dma_fence *old, *new;
|
||
|
size_t size;
|
||
|
unsigned i;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
src_list = rcu_dereference(src->fence);
|
||
|
|
||
|
retry:
|
||
|
if (src_list) {
|
||
|
unsigned shared_count = src_list->shared_count;
|
||
|
|
||
|
size = offsetof(typeof(*src_list), shared[shared_count]);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
dst_list = kmalloc(size, GFP_KERNEL);
|
||
|
if (!dst_list)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
src_list = rcu_dereference(src->fence);
|
||
|
if (!src_list || src_list->shared_count > shared_count) {
|
||
|
kfree(dst_list);
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
dst_list->shared_count = 0;
|
||
|
dst_list->shared_max = shared_count;
|
||
|
for (i = 0; i < src_list->shared_count; ++i) {
|
||
|
struct dma_fence *fence;
|
||
|
|
||
|
fence = rcu_dereference(src_list->shared[i]);
|
||
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
|
||
|
&fence->flags))
|
||
|
continue;
|
||
|
|
||
|
if (!dma_fence_get_rcu(fence)) {
|
||
|
kfree(dst_list);
|
||
|
src_list = rcu_dereference(src->fence);
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
if (dma_fence_is_signaled(fence)) {
|
||
|
dma_fence_put(fence);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
dst_list->shared[dst_list->shared_count++] = fence;
|
||
|
}
|
||
|
} else {
|
||
|
dst_list = NULL;
|
||
|
}
|
||
|
|
||
|
new = dma_fence_get_rcu_safe(&src->fence_excl);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
kfree(dst->staged);
|
||
|
dst->staged = NULL;
|
||
|
|
||
|
src_list = reservation_object_get_list(dst);
|
||
|
old = reservation_object_get_excl(dst);
|
||
|
|
||
|
preempt_disable();
|
||
|
write_seqcount_begin(&dst->seq);
|
||
|
/* write_seqcount_begin provides the necessary memory barrier */
|
||
|
RCU_INIT_POINTER(dst->fence_excl, new);
|
||
|
RCU_INIT_POINTER(dst->fence, dst_list);
|
||
|
write_seqcount_end(&dst->seq);
|
||
|
preempt_enable();
|
||
|
|
||
|
if (src_list)
|
||
|
kfree_rcu(src_list, rcu);
|
||
|
dma_fence_put(old);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(reservation_object_copy_fences);
|
||
|
|
||
|
/**
|
||
|
* reservation_object_get_fences_rcu - Get an object's shared and exclusive
|
||
|
* fences without update side lock held
|
||
|
* @obj: the reservation object
|
||
|
* @pfence_excl: the returned exclusive fence (or NULL)
|
||
|
* @pshared_count: the number of shared fences returned
|
||
|
* @pshared: the array of shared fence ptrs returned (array is krealloc'd to
|
||
|
* the required size, and must be freed by caller)
|
||
|
*
|
||
|
* RETURNS
|
||
|
* Zero or -errno
|
||
|
*/
|
||
|
int reservation_object_get_fences_rcu(struct reservation_object *obj,
|
||
|
struct dma_fence **pfence_excl,
|
||
|
unsigned *pshared_count,
|
||
|
struct dma_fence ***pshared)
|
||
|
{
|
||
|
struct dma_fence **shared = NULL;
|
||
|
struct dma_fence *fence_excl;
|
||
|
unsigned int shared_count;
|
||
|
int ret = 1;
|
||
|
|
||
|
do {
|
||
|
struct reservation_object_list *fobj;
|
||
|
unsigned seq;
|
||
|
unsigned int i;
|
||
|
|
||
|
shared_count = i = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
seq = read_seqcount_begin(&obj->seq);
|
||
|
|
||
|
fence_excl = rcu_dereference(obj->fence_excl);
|
||
|
if (fence_excl && !dma_fence_get_rcu(fence_excl))
|
||
|
goto unlock;
|
||
|
|
||
|
fobj = rcu_dereference(obj->fence);
|
||
|
if (fobj) {
|
||
|
struct dma_fence **nshared;
|
||
|
size_t sz = sizeof(*shared) * fobj->shared_max;
|
||
|
|
||
|
nshared = krealloc(shared, sz,
|
||
|
GFP_NOWAIT | __GFP_NOWARN);
|
||
|
if (!nshared) {
|
||
|
rcu_read_unlock();
|
||
|
nshared = krealloc(shared, sz, GFP_KERNEL);
|
||
|
if (nshared) {
|
||
|
shared = nshared;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
ret = -ENOMEM;
|
||
|
break;
|
||
|
}
|
||
|
shared = nshared;
|
||
|
shared_count = fobj->shared_count;
|
||
|
|
||
|
for (i = 0; i < shared_count; ++i) {
|
||
|
shared[i] = rcu_dereference(fobj->shared[i]);
|
||
|
if (!dma_fence_get_rcu(shared[i]))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) {
|
||
|
while (i--)
|
||
|
dma_fence_put(shared[i]);
|
||
|
dma_fence_put(fence_excl);
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
ret = 0;
|
||
|
unlock:
|
||
|
rcu_read_unlock();
|
||
|
} while (ret);
|
||
|
|
||
|
if (!shared_count) {
|
||
|
kfree(shared);
|
||
|
shared = NULL;
|
||
|
}
|
||
|
|
||
|
*pshared_count = shared_count;
|
||
|
*pshared = shared;
|
||
|
*pfence_excl = fence_excl;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(reservation_object_get_fences_rcu);
|
||
|
|
||
|
/**
|
||
|
* reservation_object_wait_timeout_rcu - Wait on reservation's objects
|
||
|
* shared and/or exclusive fences.
|
||
|
* @obj: the reservation object
|
||
|
* @wait_all: if true, wait on all fences, else wait on just exclusive fence
|
||
|
* @intr: if true, do interruptible wait
|
||
|
* @timeout: timeout value in jiffies or zero to return immediately
|
||
|
*
|
||
|
* RETURNS
|
||
|
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
|
||
|
* greater than zer on success.
|
||
|
*/
|
||
|
long reservation_object_wait_timeout_rcu(struct reservation_object *obj,
|
||
|
bool wait_all, bool intr,
|
||
|
unsigned long timeout)
|
||
|
{
|
||
|
struct dma_fence *fence;
|
||
|
unsigned seq, shared_count, i = 0;
|
||
|
long ret = timeout ? timeout : 1;
|
||
|
|
||
|
retry:
|
||
|
shared_count = 0;
|
||
|
seq = read_seqcount_begin(&obj->seq);
|
||
|
rcu_read_lock();
|
||
|
|
||
|
fence = rcu_dereference(obj->fence_excl);
|
||
|
if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
||
|
if (!dma_fence_get_rcu(fence))
|
||
|
goto unlock_retry;
|
||
|
|
||
|
if (dma_fence_is_signaled(fence)) {
|
||
|
dma_fence_put(fence);
|
||
|
fence = NULL;
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
fence = NULL;
|
||
|
}
|
||
|
|
||
|
if (!fence && wait_all) {
|
||
|
struct reservation_object_list *fobj =
|
||
|
rcu_dereference(obj->fence);
|
||
|
|
||
|
if (fobj)
|
||
|
shared_count = fobj->shared_count;
|
||
|
|
||
|
for (i = 0; i < shared_count; ++i) {
|
||
|
struct dma_fence *lfence = rcu_dereference(fobj->shared[i]);
|
||
|
|
||
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
|
||
|
&lfence->flags))
|
||
|
continue;
|
||
|
|
||
|
if (!dma_fence_get_rcu(lfence))
|
||
|
goto unlock_retry;
|
||
|
|
||
|
if (dma_fence_is_signaled(lfence)) {
|
||
|
dma_fence_put(lfence);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
fence = lfence;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
if (fence) {
|
||
|
if (read_seqcount_retry(&obj->seq, seq)) {
|
||
|
dma_fence_put(fence);
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
ret = dma_fence_wait_timeout(fence, intr, ret);
|
||
|
dma_fence_put(fence);
|
||
|
if (ret > 0 && wait_all && (i + 1 < shared_count))
|
||
|
goto retry;
|
||
|
}
|
||
|
return ret;
|
||
|
|
||
|
unlock_retry:
|
||
|
rcu_read_unlock();
|
||
|
goto retry;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(reservation_object_wait_timeout_rcu);
|
||
|
|
||
|
|
||
|
static inline int
|
||
|
reservation_object_test_signaled_single(struct dma_fence *passed_fence)
|
||
|
{
|
||
|
struct dma_fence *fence, *lfence = passed_fence;
|
||
|
int ret = 1;
|
||
|
|
||
|
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) {
|
||
|
fence = dma_fence_get_rcu(lfence);
|
||
|
if (!fence)
|
||
|
return -1;
|
||
|
|
||
|
ret = !!dma_fence_is_signaled(fence);
|
||
|
dma_fence_put(fence);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* reservation_object_test_signaled_rcu - Test if a reservation object's
|
||
|
* fences have been signaled.
|
||
|
* @obj: the reservation object
|
||
|
* @test_all: if true, test all fences, otherwise only test the exclusive
|
||
|
* fence
|
||
|
*
|
||
|
* RETURNS
|
||
|
* true if all fences signaled, else false
|
||
|
*/
|
||
|
bool reservation_object_test_signaled_rcu(struct reservation_object *obj,
|
||
|
bool test_all)
|
||
|
{
|
||
|
unsigned seq, shared_count;
|
||
|
int ret;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
retry:
|
||
|
ret = true;
|
||
|
shared_count = 0;
|
||
|
seq = read_seqcount_begin(&obj->seq);
|
||
|
|
||
|
if (test_all) {
|
||
|
unsigned i;
|
||
|
|
||
|
struct reservation_object_list *fobj =
|
||
|
rcu_dereference(obj->fence);
|
||
|
|
||
|
if (fobj)
|
||
|
shared_count = fobj->shared_count;
|
||
|
|
||
|
for (i = 0; i < shared_count; ++i) {
|
||
|
struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
|
||
|
|
||
|
ret = reservation_object_test_signaled_single(fence);
|
||
|
if (ret < 0)
|
||
|
goto retry;
|
||
|
else if (!ret)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (read_seqcount_retry(&obj->seq, seq))
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
if (!shared_count) {
|
||
|
struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl);
|
||
|
|
||
|
if (fence_excl) {
|
||
|
ret = reservation_object_test_signaled_single(
|
||
|
fence_excl);
|
||
|
if (ret < 0)
|
||
|
goto retry;
|
||
|
|
||
|
if (read_seqcount_retry(&obj->seq, seq))
|
||
|
goto retry;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(reservation_object_test_signaled_rcu);
|