267 lines
5.9 KiB
C
267 lines
5.9 KiB
C
|
/*
|
||
|
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
|
||
|
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
||
|
* Licensed under the GPL
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <unistd.h>
|
||
|
#include <errno.h>
|
||
|
#include <signal.h>
|
||
|
#include <string.h>
|
||
|
#include <sys/resource.h>
|
||
|
#include <as-layout.h>
|
||
|
#include <init.h>
|
||
|
#include <kern_util.h>
|
||
|
#include <os.h>
|
||
|
#include <um_malloc.h>
|
||
|
|
||
|
#define PGD_BOUND (4 * 1024 * 1024)
|
||
|
#define STACKSIZE (8 * 1024 * 1024)
|
||
|
#define THREAD_NAME_LEN (256)
|
||
|
|
||
|
long elf_aux_hwcap;
|
||
|
|
||
|
static void set_stklim(void)
|
||
|
{
|
||
|
struct rlimit lim;
|
||
|
|
||
|
if (getrlimit(RLIMIT_STACK, &lim) < 0) {
|
||
|
perror("getrlimit");
|
||
|
exit(1);
|
||
|
}
|
||
|
if ((lim.rlim_cur == RLIM_INFINITY) || (lim.rlim_cur > STACKSIZE)) {
|
||
|
lim.rlim_cur = STACKSIZE;
|
||
|
if (setrlimit(RLIMIT_STACK, &lim) < 0) {
|
||
|
perror("setrlimit");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __init void do_uml_initcalls(void)
|
||
|
{
|
||
|
initcall_t *call;
|
||
|
|
||
|
call = &__uml_initcall_start;
|
||
|
while (call < &__uml_initcall_end) {
|
||
|
(*call)();
|
||
|
call++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void last_ditch_exit(int sig)
|
||
|
{
|
||
|
uml_cleanup();
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
static void install_fatal_handler(int sig)
|
||
|
{
|
||
|
struct sigaction action;
|
||
|
|
||
|
/* All signals are enabled in this handler ... */
|
||
|
sigemptyset(&action.sa_mask);
|
||
|
|
||
|
/*
|
||
|
* ... including the signal being handled, plus we want the
|
||
|
* handler reset to the default behavior, so that if an exit
|
||
|
* handler is hanging for some reason, the UML will just die
|
||
|
* after this signal is sent a second time.
|
||
|
*/
|
||
|
action.sa_flags = SA_RESETHAND | SA_NODEFER;
|
||
|
action.sa_restorer = NULL;
|
||
|
action.sa_handler = last_ditch_exit;
|
||
|
if (sigaction(sig, &action, NULL) < 0) {
|
||
|
os_warn("failed to install handler for signal %d "
|
||
|
"- errno = %d\n", sig, errno);
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define UML_LIB_PATH ":" OS_LIB_PATH "/uml"
|
||
|
|
||
|
static void setup_env_path(void)
|
||
|
{
|
||
|
char *new_path = NULL;
|
||
|
char *old_path = NULL;
|
||
|
int path_len = 0;
|
||
|
|
||
|
old_path = getenv("PATH");
|
||
|
/*
|
||
|
* if no PATH variable is set or it has an empty value
|
||
|
* just use the default + /usr/lib/uml
|
||
|
*/
|
||
|
if (!old_path || (path_len = strlen(old_path)) == 0) {
|
||
|
if (putenv("PATH=:/bin:/usr/bin/" UML_LIB_PATH))
|
||
|
perror("couldn't putenv");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* append /usr/lib/uml to the existing path */
|
||
|
path_len += strlen("PATH=" UML_LIB_PATH) + 1;
|
||
|
new_path = malloc(path_len);
|
||
|
if (!new_path) {
|
||
|
perror("couldn't malloc to set a new PATH");
|
||
|
return;
|
||
|
}
|
||
|
snprintf(new_path, path_len, "PATH=%s" UML_LIB_PATH, old_path);
|
||
|
if (putenv(new_path)) {
|
||
|
perror("couldn't putenv to set a new PATH");
|
||
|
free(new_path);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
extern void scan_elf_aux( char **envp);
|
||
|
|
||
|
int __init main(int argc, char **argv, char **envp)
|
||
|
{
|
||
|
char **new_argv;
|
||
|
int ret, i, err;
|
||
|
|
||
|
set_stklim();
|
||
|
|
||
|
setup_env_path();
|
||
|
|
||
|
setsid();
|
||
|
|
||
|
new_argv = malloc((argc + 1) * sizeof(char *));
|
||
|
if (new_argv == NULL) {
|
||
|
perror("Mallocing argv");
|
||
|
exit(1);
|
||
|
}
|
||
|
for (i = 0; i < argc; i++) {
|
||
|
new_argv[i] = strdup(argv[i]);
|
||
|
if (new_argv[i] == NULL) {
|
||
|
perror("Mallocing an arg");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
new_argv[argc] = NULL;
|
||
|
|
||
|
/*
|
||
|
* Allow these signals to bring down a UML if all other
|
||
|
* methods of control fail.
|
||
|
*/
|
||
|
install_fatal_handler(SIGINT);
|
||
|
install_fatal_handler(SIGTERM);
|
||
|
|
||
|
#ifdef CONFIG_ARCH_REUSE_HOST_VSYSCALL_AREA
|
||
|
scan_elf_aux(envp);
|
||
|
#endif
|
||
|
|
||
|
do_uml_initcalls();
|
||
|
change_sig(SIGPIPE, 0);
|
||
|
ret = linux_main(argc, argv);
|
||
|
|
||
|
/*
|
||
|
* Disable SIGPROF - I have no idea why libc doesn't do this or turn
|
||
|
* off the profiling time, but UML dies with a SIGPROF just before
|
||
|
* exiting when profiling is active.
|
||
|
*/
|
||
|
change_sig(SIGPROF, 0);
|
||
|
|
||
|
/*
|
||
|
* This signal stuff used to be in the reboot case. However,
|
||
|
* sometimes a timer signal can come in when we're halting (reproducably
|
||
|
* when writing out gcov information, presumably because that takes
|
||
|
* some time) and cause a segfault.
|
||
|
*/
|
||
|
|
||
|
/* stop timers and set timer signal to be ignored */
|
||
|
os_timer_disable();
|
||
|
|
||
|
/* disable SIGIO for the fds and set SIGIO to be ignored */
|
||
|
err = deactivate_all_fds();
|
||
|
if (err)
|
||
|
os_warn("deactivate_all_fds failed, errno = %d\n", -err);
|
||
|
|
||
|
/*
|
||
|
* Let any pending signals fire now. This ensures
|
||
|
* that they won't be delivered after the exec, when
|
||
|
* they are definitely not expected.
|
||
|
*/
|
||
|
unblock_signals();
|
||
|
|
||
|
os_info("\n");
|
||
|
/* Reboot */
|
||
|
if (ret) {
|
||
|
execvp(new_argv[0], new_argv);
|
||
|
perror("Failed to exec kernel");
|
||
|
ret = 1;
|
||
|
}
|
||
|
return uml_exitcode;
|
||
|
}
|
||
|
|
||
|
extern void *__real_malloc(int);
|
||
|
|
||
|
void *__wrap_malloc(int size)
|
||
|
{
|
||
|
void *ret;
|
||
|
|
||
|
if (!kmalloc_ok)
|
||
|
return __real_malloc(size);
|
||
|
else if (size <= UM_KERN_PAGE_SIZE)
|
||
|
/* finding contiguous pages can be hard*/
|
||
|
ret = uml_kmalloc(size, UM_GFP_KERNEL);
|
||
|
else ret = vmalloc(size);
|
||
|
|
||
|
/*
|
||
|
* glibc people insist that if malloc fails, errno should be
|
||
|
* set by malloc as well. So we do.
|
||
|
*/
|
||
|
if (ret == NULL)
|
||
|
errno = ENOMEM;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void *__wrap_calloc(int n, int size)
|
||
|
{
|
||
|
void *ptr = __wrap_malloc(n * size);
|
||
|
|
||
|
if (ptr == NULL)
|
||
|
return NULL;
|
||
|
memset(ptr, 0, n * size);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
extern void __real_free(void *);
|
||
|
|
||
|
extern unsigned long high_physmem;
|
||
|
|
||
|
void __wrap_free(void *ptr)
|
||
|
{
|
||
|
unsigned long addr = (unsigned long) ptr;
|
||
|
|
||
|
/*
|
||
|
* We need to know how the allocation happened, so it can be correctly
|
||
|
* freed. This is done by seeing what region of memory the pointer is
|
||
|
* in -
|
||
|
* physical memory - kmalloc/kfree
|
||
|
* kernel virtual memory - vmalloc/vfree
|
||
|
* anywhere else - malloc/free
|
||
|
* If kmalloc is not yet possible, then either high_physmem and/or
|
||
|
* end_vm are still 0 (as at startup), in which case we call free, or
|
||
|
* we have set them, but anyway addr has not been allocated from those
|
||
|
* areas. So, in both cases __real_free is called.
|
||
|
*
|
||
|
* CAN_KMALLOC is checked because it would be bad to free a buffer
|
||
|
* with kmalloc/vmalloc after they have been turned off during
|
||
|
* shutdown.
|
||
|
* XXX: However, we sometimes shutdown CAN_KMALLOC temporarily, so
|
||
|
* there is a possibility for memory leaks.
|
||
|
*/
|
||
|
|
||
|
if ((addr >= uml_physmem) && (addr < high_physmem)) {
|
||
|
if (kmalloc_ok)
|
||
|
kfree(ptr);
|
||
|
}
|
||
|
else if ((addr >= start_vm) && (addr < end_vm)) {
|
||
|
if (kmalloc_ok)
|
||
|
vfree(ptr);
|
||
|
}
|
||
|
else __real_free(ptr);
|
||
|
}
|