279 lines
7.7 KiB
C
279 lines
7.7 KiB
C
|
/*
|
||
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* DMA Coherent API Notes
|
||
|
*
|
||
|
* I/O is inherently non-coherent on ARC. So a coherent DMA buffer is
|
||
|
* implemented by accessing it using a kernel virtual address, with
|
||
|
* Cache bit off in the TLB entry.
|
||
|
*
|
||
|
* The default DMA address == Phy address which is 0x8000_0000 based.
|
||
|
*/
|
||
|
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <asm/cache.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
|
||
|
|
||
|
static void *arc_dma_alloc(struct device *dev, size_t size,
|
||
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
||
|
{
|
||
|
unsigned long order = get_order(size);
|
||
|
struct page *page;
|
||
|
phys_addr_t paddr;
|
||
|
void *kvaddr;
|
||
|
int need_coh = 1, need_kvaddr = 0;
|
||
|
|
||
|
page = alloc_pages(gfp, order);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* IOC relies on all data (even coherent DMA data) being in cache
|
||
|
* Thus allocate normal cached memory
|
||
|
*
|
||
|
* The gains with IOC are two pronged:
|
||
|
* -For streaming data, elides need for cache maintenance, saving
|
||
|
* cycles in flush code, and bus bandwidth as all the lines of a
|
||
|
* buffer need to be flushed out to memory
|
||
|
* -For coherent data, Read/Write to buffers terminate early in cache
|
||
|
* (vs. always going to memory - thus are faster)
|
||
|
*/
|
||
|
if ((is_isa_arcv2() && ioc_enable) ||
|
||
|
(attrs & DMA_ATTR_NON_CONSISTENT))
|
||
|
need_coh = 0;
|
||
|
|
||
|
/*
|
||
|
* - A coherent buffer needs MMU mapping to enforce non-cachability
|
||
|
* - A highmem page needs a virtual handle (hence MMU mapping)
|
||
|
* independent of cachability
|
||
|
*/
|
||
|
if (PageHighMem(page) || need_coh)
|
||
|
need_kvaddr = 1;
|
||
|
|
||
|
/* This is linear addr (0x8000_0000 based) */
|
||
|
paddr = page_to_phys(page);
|
||
|
|
||
|
*dma_handle = plat_phys_to_dma(dev, paddr);
|
||
|
|
||
|
/* This is kernel Virtual address (0x7000_0000 based) */
|
||
|
if (need_kvaddr) {
|
||
|
kvaddr = ioremap_nocache(paddr, size);
|
||
|
if (kvaddr == NULL) {
|
||
|
__free_pages(page, order);
|
||
|
return NULL;
|
||
|
}
|
||
|
} else {
|
||
|
kvaddr = (void *)(u32)paddr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Evict any existing L1 and/or L2 lines for the backing page
|
||
|
* in case it was used earlier as a normal "cached" page.
|
||
|
* Yeah this bit us - STAR 9000898266
|
||
|
*
|
||
|
* Although core does call flush_cache_vmap(), it gets kvaddr hence
|
||
|
* can't be used to efficiently flush L1 and/or L2 which need paddr
|
||
|
* Currently flush_cache_vmap nukes the L1 cache completely which
|
||
|
* will be optimized as a separate commit
|
||
|
*/
|
||
|
if (need_coh)
|
||
|
dma_cache_wback_inv(paddr, size);
|
||
|
|
||
|
return kvaddr;
|
||
|
}
|
||
|
|
||
|
static void arc_dma_free(struct device *dev, size_t size, void *vaddr,
|
||
|
dma_addr_t dma_handle, unsigned long attrs)
|
||
|
{
|
||
|
phys_addr_t paddr = plat_dma_to_phys(dev, dma_handle);
|
||
|
struct page *page = virt_to_page(paddr);
|
||
|
int is_non_coh = 1;
|
||
|
|
||
|
is_non_coh = (attrs & DMA_ATTR_NON_CONSISTENT) ||
|
||
|
(is_isa_arcv2() && ioc_enable);
|
||
|
|
||
|
if (PageHighMem(page) || !is_non_coh)
|
||
|
iounmap((void __force __iomem *)vaddr);
|
||
|
|
||
|
__free_pages(page, get_order(size));
|
||
|
}
|
||
|
|
||
|
static int arc_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
||
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
unsigned long user_count = vma_pages(vma);
|
||
|
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||
|
unsigned long pfn = __phys_to_pfn(plat_dma_to_phys(dev, dma_addr));
|
||
|
unsigned long off = vma->vm_pgoff;
|
||
|
int ret = -ENXIO;
|
||
|
|
||
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||
|
|
||
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
||
|
return ret;
|
||
|
|
||
|
if (off < count && user_count <= (count - off)) {
|
||
|
ret = remap_pfn_range(vma, vma->vm_start,
|
||
|
pfn + off,
|
||
|
user_count << PAGE_SHIFT,
|
||
|
vma->vm_page_prot);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* streaming DMA Mapping API...
|
||
|
* CPU accesses page via normal paddr, thus needs to explicitly made
|
||
|
* consistent before each use
|
||
|
*/
|
||
|
static void _dma_cache_sync(phys_addr_t paddr, size_t size,
|
||
|
enum dma_data_direction dir)
|
||
|
{
|
||
|
switch (dir) {
|
||
|
case DMA_FROM_DEVICE:
|
||
|
dma_cache_inv(paddr, size);
|
||
|
break;
|
||
|
case DMA_TO_DEVICE:
|
||
|
dma_cache_wback(paddr, size);
|
||
|
break;
|
||
|
case DMA_BIDIRECTIONAL:
|
||
|
dma_cache_wback_inv(paddr, size);
|
||
|
break;
|
||
|
default:
|
||
|
pr_err("Invalid DMA dir [%d] for OP @ %pa[p]\n", dir, &paddr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* arc_dma_map_page - map a portion of a page for streaming DMA
|
||
|
*
|
||
|
* Ensure that any data held in the cache is appropriately discarded
|
||
|
* or written back.
|
||
|
*
|
||
|
* The device owns this memory once this call has completed. The CPU
|
||
|
* can regain ownership by calling dma_unmap_page().
|
||
|
*
|
||
|
* Note: while it takes struct page as arg, caller can "abuse" it to pass
|
||
|
* a region larger than PAGE_SIZE, provided it is physically contiguous
|
||
|
* and this still works correctly
|
||
|
*/
|
||
|
static dma_addr_t arc_dma_map_page(struct device *dev, struct page *page,
|
||
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
phys_addr_t paddr = page_to_phys(page) + offset;
|
||
|
|
||
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
||
|
_dma_cache_sync(paddr, size, dir);
|
||
|
|
||
|
return plat_phys_to_dma(dev, paddr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* arc_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
|
||
|
*
|
||
|
* After this call, reads by the CPU to the buffer are guaranteed to see
|
||
|
* whatever the device wrote there.
|
||
|
*
|
||
|
* Note: historically this routine was not implemented for ARC
|
||
|
*/
|
||
|
static void arc_dma_unmap_page(struct device *dev, dma_addr_t handle,
|
||
|
size_t size, enum dma_data_direction dir,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
phys_addr_t paddr = plat_dma_to_phys(dev, handle);
|
||
|
|
||
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
||
|
_dma_cache_sync(paddr, size, dir);
|
||
|
}
|
||
|
|
||
|
static int arc_dma_map_sg(struct device *dev, struct scatterlist *sg,
|
||
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
||
|
{
|
||
|
struct scatterlist *s;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sg, s, nents, i)
|
||
|
s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
|
||
|
s->length, dir);
|
||
|
|
||
|
return nents;
|
||
|
}
|
||
|
|
||
|
static void arc_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
|
||
|
int nents, enum dma_data_direction dir,
|
||
|
unsigned long attrs)
|
||
|
{
|
||
|
struct scatterlist *s;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sg, s, nents, i)
|
||
|
arc_dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir,
|
||
|
attrs);
|
||
|
}
|
||
|
|
||
|
static void arc_dma_sync_single_for_cpu(struct device *dev,
|
||
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
|
||
|
{
|
||
|
_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_FROM_DEVICE);
|
||
|
}
|
||
|
|
||
|
static void arc_dma_sync_single_for_device(struct device *dev,
|
||
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
|
||
|
{
|
||
|
_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
static void arc_dma_sync_sg_for_cpu(struct device *dev,
|
||
|
struct scatterlist *sglist, int nelems,
|
||
|
enum dma_data_direction dir)
|
||
|
{
|
||
|
int i;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
for_each_sg(sglist, sg, nelems, i)
|
||
|
_dma_cache_sync(sg_phys(sg), sg->length, dir);
|
||
|
}
|
||
|
|
||
|
static void arc_dma_sync_sg_for_device(struct device *dev,
|
||
|
struct scatterlist *sglist, int nelems,
|
||
|
enum dma_data_direction dir)
|
||
|
{
|
||
|
int i;
|
||
|
struct scatterlist *sg;
|
||
|
|
||
|
for_each_sg(sglist, sg, nelems, i)
|
||
|
_dma_cache_sync(sg_phys(sg), sg->length, dir);
|
||
|
}
|
||
|
|
||
|
static int arc_dma_supported(struct device *dev, u64 dma_mask)
|
||
|
{
|
||
|
/* Support 32 bit DMA mask exclusively */
|
||
|
return dma_mask == DMA_BIT_MASK(32);
|
||
|
}
|
||
|
|
||
|
const struct dma_map_ops arc_dma_ops = {
|
||
|
.alloc = arc_dma_alloc,
|
||
|
.free = arc_dma_free,
|
||
|
.mmap = arc_dma_mmap,
|
||
|
.map_page = arc_dma_map_page,
|
||
|
.unmap_page = arc_dma_unmap_page,
|
||
|
.map_sg = arc_dma_map_sg,
|
||
|
.unmap_sg = arc_dma_unmap_sg,
|
||
|
.sync_single_for_device = arc_dma_sync_single_for_device,
|
||
|
.sync_single_for_cpu = arc_dma_sync_single_for_cpu,
|
||
|
.sync_sg_for_cpu = arc_dma_sync_sg_for_cpu,
|
||
|
.sync_sg_for_device = arc_dma_sync_sg_for_device,
|
||
|
.dma_supported = arc_dma_supported,
|
||
|
};
|
||
|
EXPORT_SYMBOL(arc_dma_ops);
|