3575 lines
107 KiB
C++
3575 lines
107 KiB
C++
// go-gcc.cc -- Go frontend to gcc IR.
|
|
// Copyright (C) 2011-2021 Free Software Foundation, Inc.
|
|
// Contributed by Ian Lance Taylor, Google.
|
|
|
|
// This file is part of GCC.
|
|
|
|
// GCC is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 3, or (at your option) any later
|
|
// version.
|
|
|
|
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
// for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with GCC; see the file COPYING3. If not see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
#include "go-system.h"
|
|
|
|
// This has to be included outside of extern "C", so we have to
|
|
// include it here before tree.h includes it later.
|
|
#include <gmp.h>
|
|
|
|
#include "tree.h"
|
|
#include "opts.h"
|
|
#include "fold-const.h"
|
|
#include "stringpool.h"
|
|
#include "stor-layout.h"
|
|
#include "varasm.h"
|
|
#include "tree-iterator.h"
|
|
#include "tm.h"
|
|
#include "function.h"
|
|
#include "cgraph.h"
|
|
#include "convert.h"
|
|
#include "gimple-expr.h"
|
|
#include "gimplify.h"
|
|
#include "langhooks.h"
|
|
#include "toplev.h"
|
|
#include "output.h"
|
|
#include "realmpfr.h"
|
|
#include "builtins.h"
|
|
|
|
#include "go-c.h"
|
|
#include "go-gcc.h"
|
|
|
|
#include "gogo.h"
|
|
#include "backend.h"
|
|
|
|
// A class wrapping a tree.
|
|
|
|
class Gcc_tree
|
|
{
|
|
public:
|
|
Gcc_tree(tree t)
|
|
: t_(t)
|
|
{ }
|
|
|
|
tree
|
|
get_tree() const
|
|
{ return this->t_; }
|
|
|
|
void
|
|
set_tree(tree t)
|
|
{ this->t_ = t; }
|
|
|
|
private:
|
|
tree t_;
|
|
};
|
|
|
|
// In gcc, types, expressions, and statements are all trees.
|
|
class Btype : public Gcc_tree
|
|
{
|
|
public:
|
|
Btype(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
class Bexpression : public Gcc_tree
|
|
{
|
|
public:
|
|
Bexpression(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
class Bstatement : public Gcc_tree
|
|
{
|
|
public:
|
|
Bstatement(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
class Bfunction : public Gcc_tree
|
|
{
|
|
public:
|
|
Bfunction(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
class Bblock : public Gcc_tree
|
|
{
|
|
public:
|
|
Bblock(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
class Blabel : public Gcc_tree
|
|
{
|
|
public:
|
|
Blabel(tree t)
|
|
: Gcc_tree(t)
|
|
{ }
|
|
};
|
|
|
|
// Bvariable is a bit more complicated, because of zero-sized types.
|
|
// The GNU linker does not permit dynamic variables with zero size.
|
|
// When we see such a variable, we generate a version of the type with
|
|
// non-zero size. However, when referring to the global variable, we
|
|
// want an expression of zero size; otherwise, if, say, the global
|
|
// variable is passed to a function, we will be passing a
|
|
// non-zero-sized value to a zero-sized value, which can lead to a
|
|
// miscompilation.
|
|
|
|
class Bvariable
|
|
{
|
|
public:
|
|
Bvariable(tree t)
|
|
: t_(t), orig_type_(NULL)
|
|
{ }
|
|
|
|
Bvariable(tree t, tree orig_type)
|
|
: t_(t), orig_type_(orig_type)
|
|
{ }
|
|
|
|
// Get the tree for use as an expression.
|
|
tree
|
|
get_tree(Location) const;
|
|
|
|
// Get the actual decl;
|
|
tree
|
|
get_decl() const
|
|
{ return this->t_; }
|
|
|
|
private:
|
|
tree t_;
|
|
tree orig_type_;
|
|
};
|
|
|
|
// Get the tree of a variable for use as an expression. If this is a
|
|
// zero-sized global, create an expression that refers to the decl but
|
|
// has zero size.
|
|
tree
|
|
Bvariable::get_tree(Location location) const
|
|
{
|
|
if (this->orig_type_ == NULL
|
|
|| this->t_ == error_mark_node
|
|
|| TREE_TYPE(this->t_) == this->orig_type_)
|
|
return this->t_;
|
|
// Return *(orig_type*)&decl. */
|
|
tree t = build_fold_addr_expr_loc(location.gcc_location(), this->t_);
|
|
t = fold_build1_loc(location.gcc_location(), NOP_EXPR,
|
|
build_pointer_type(this->orig_type_), t);
|
|
return build_fold_indirect_ref_loc(location.gcc_location(), t);
|
|
}
|
|
|
|
// This file implements the interface between the Go frontend proper
|
|
// and the gcc IR. This implements specific instantiations of
|
|
// abstract classes defined by the Go frontend proper. The Go
|
|
// frontend proper class methods of these classes to generate the
|
|
// backend representation.
|
|
|
|
class Gcc_backend : public Backend
|
|
{
|
|
public:
|
|
Gcc_backend();
|
|
|
|
// Types.
|
|
|
|
Btype*
|
|
error_type()
|
|
{ return this->make_type(error_mark_node); }
|
|
|
|
Btype*
|
|
void_type()
|
|
{ return this->make_type(void_type_node); }
|
|
|
|
Btype*
|
|
bool_type()
|
|
{ return this->make_type(boolean_type_node); }
|
|
|
|
Btype*
|
|
integer_type(bool, int);
|
|
|
|
Btype*
|
|
float_type(int);
|
|
|
|
Btype*
|
|
complex_type(int);
|
|
|
|
Btype*
|
|
pointer_type(Btype*);
|
|
|
|
Btype*
|
|
function_type(const Btyped_identifier&,
|
|
const std::vector<Btyped_identifier>&,
|
|
const std::vector<Btyped_identifier>&,
|
|
Btype*,
|
|
const Location);
|
|
|
|
Btype*
|
|
struct_type(const std::vector<Btyped_identifier>&);
|
|
|
|
Btype*
|
|
array_type(Btype*, Bexpression*);
|
|
|
|
Btype*
|
|
placeholder_pointer_type(const std::string&, Location, bool);
|
|
|
|
bool
|
|
set_placeholder_pointer_type(Btype*, Btype*);
|
|
|
|
bool
|
|
set_placeholder_function_type(Btype*, Btype*);
|
|
|
|
Btype*
|
|
placeholder_struct_type(const std::string&, Location);
|
|
|
|
bool
|
|
set_placeholder_struct_type(Btype* placeholder,
|
|
const std::vector<Btyped_identifier>&);
|
|
|
|
Btype*
|
|
placeholder_array_type(const std::string&, Location);
|
|
|
|
bool
|
|
set_placeholder_array_type(Btype*, Btype*, Bexpression*);
|
|
|
|
Btype*
|
|
named_type(const std::string&, Btype*, Location);
|
|
|
|
Btype*
|
|
circular_pointer_type(Btype*, bool);
|
|
|
|
bool
|
|
is_circular_pointer_type(Btype*);
|
|
|
|
int64_t
|
|
type_size(Btype*);
|
|
|
|
int64_t
|
|
type_alignment(Btype*);
|
|
|
|
int64_t
|
|
type_field_alignment(Btype*);
|
|
|
|
int64_t
|
|
type_field_offset(Btype*, size_t index);
|
|
|
|
// Expressions.
|
|
|
|
Bexpression*
|
|
zero_expression(Btype*);
|
|
|
|
Bexpression*
|
|
error_expression()
|
|
{ return this->make_expression(error_mark_node); }
|
|
|
|
Bexpression*
|
|
nil_pointer_expression()
|
|
{ return this->make_expression(null_pointer_node); }
|
|
|
|
Bexpression*
|
|
var_expression(Bvariable* var, Location);
|
|
|
|
Bexpression*
|
|
indirect_expression(Btype*, Bexpression* expr, bool known_valid, Location);
|
|
|
|
Bexpression*
|
|
named_constant_expression(Btype* btype, const std::string& name,
|
|
Bexpression* val, Location);
|
|
|
|
Bexpression*
|
|
integer_constant_expression(Btype* btype, mpz_t val);
|
|
|
|
Bexpression*
|
|
float_constant_expression(Btype* btype, mpfr_t val);
|
|
|
|
Bexpression*
|
|
complex_constant_expression(Btype* btype, mpc_t val);
|
|
|
|
Bexpression*
|
|
string_constant_expression(const std::string& val);
|
|
|
|
Bexpression*
|
|
boolean_constant_expression(bool val);
|
|
|
|
Bexpression*
|
|
real_part_expression(Bexpression* bcomplex, Location);
|
|
|
|
Bexpression*
|
|
imag_part_expression(Bexpression* bcomplex, Location);
|
|
|
|
Bexpression*
|
|
complex_expression(Bexpression* breal, Bexpression* bimag, Location);
|
|
|
|
Bexpression*
|
|
convert_expression(Btype* type, Bexpression* expr, Location);
|
|
|
|
Bexpression*
|
|
function_code_expression(Bfunction*, Location);
|
|
|
|
Bexpression*
|
|
address_expression(Bexpression*, Location);
|
|
|
|
Bexpression*
|
|
struct_field_expression(Bexpression*, size_t, Location);
|
|
|
|
Bexpression*
|
|
compound_expression(Bstatement*, Bexpression*, Location);
|
|
|
|
Bexpression*
|
|
conditional_expression(Bfunction*, Btype*, Bexpression*, Bexpression*,
|
|
Bexpression*, Location);
|
|
|
|
Bexpression*
|
|
unary_expression(Operator, Bexpression*, Location);
|
|
|
|
Bexpression*
|
|
binary_expression(Operator, Bexpression*, Bexpression*, Location);
|
|
|
|
Bexpression*
|
|
constructor_expression(Btype*, const std::vector<Bexpression*>&, Location);
|
|
|
|
Bexpression*
|
|
array_constructor_expression(Btype*, const std::vector<unsigned long>&,
|
|
const std::vector<Bexpression*>&, Location);
|
|
|
|
Bexpression*
|
|
pointer_offset_expression(Bexpression* base, Bexpression* offset, Location);
|
|
|
|
Bexpression*
|
|
array_index_expression(Bexpression* array, Bexpression* index, Location);
|
|
|
|
Bexpression*
|
|
call_expression(Bfunction* caller, Bexpression* fn,
|
|
const std::vector<Bexpression*>& args,
|
|
Bexpression* static_chain, Location);
|
|
|
|
// Statements.
|
|
|
|
Bstatement*
|
|
error_statement()
|
|
{ return this->make_statement(error_mark_node); }
|
|
|
|
Bstatement*
|
|
expression_statement(Bfunction*, Bexpression*);
|
|
|
|
Bstatement*
|
|
init_statement(Bfunction*, Bvariable* var, Bexpression* init);
|
|
|
|
Bstatement*
|
|
assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
|
|
Location);
|
|
|
|
Bstatement*
|
|
return_statement(Bfunction*, const std::vector<Bexpression*>&,
|
|
Location);
|
|
|
|
Bstatement*
|
|
if_statement(Bfunction*, Bexpression* condition, Bblock* then_block,
|
|
Bblock* else_block, Location);
|
|
|
|
Bstatement*
|
|
switch_statement(Bfunction* function, Bexpression* value,
|
|
const std::vector<std::vector<Bexpression*> >& cases,
|
|
const std::vector<Bstatement*>& statements,
|
|
Location);
|
|
|
|
Bstatement*
|
|
compound_statement(Bstatement*, Bstatement*);
|
|
|
|
Bstatement*
|
|
statement_list(const std::vector<Bstatement*>&);
|
|
|
|
Bstatement*
|
|
exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
|
|
Bstatement* finally_stmt, Location);
|
|
|
|
// Blocks.
|
|
|
|
Bblock*
|
|
block(Bfunction*, Bblock*, const std::vector<Bvariable*>&,
|
|
Location, Location);
|
|
|
|
void
|
|
block_add_statements(Bblock*, const std::vector<Bstatement*>&);
|
|
|
|
Bstatement*
|
|
block_statement(Bblock*);
|
|
|
|
// Variables.
|
|
|
|
Bvariable*
|
|
error_variable()
|
|
{ return new Bvariable(error_mark_node); }
|
|
|
|
Bvariable*
|
|
global_variable(const std::string& var_name,
|
|
const std::string& asm_name,
|
|
Btype* btype,
|
|
unsigned int flags,
|
|
Location location);
|
|
|
|
void
|
|
global_variable_set_init(Bvariable*, Bexpression*);
|
|
|
|
Bvariable*
|
|
local_variable(Bfunction*, const std::string&, Btype*, Bvariable*,
|
|
unsigned int, Location);
|
|
|
|
Bvariable*
|
|
parameter_variable(Bfunction*, const std::string&, Btype*, unsigned int,
|
|
Location);
|
|
|
|
Bvariable*
|
|
static_chain_variable(Bfunction*, const std::string&, Btype*, unsigned int,
|
|
Location);
|
|
|
|
Bvariable*
|
|
temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression*, unsigned int,
|
|
Location, Bstatement**);
|
|
|
|
Bvariable*
|
|
implicit_variable(const std::string&, const std::string&, Btype*,
|
|
unsigned int, int64_t);
|
|
|
|
void
|
|
implicit_variable_set_init(Bvariable*, const std::string&, Btype*,
|
|
unsigned int, Bexpression*);
|
|
|
|
Bvariable*
|
|
implicit_variable_reference(const std::string&, const std::string&, Btype*);
|
|
|
|
Bvariable*
|
|
immutable_struct(const std::string&, const std::string&,
|
|
unsigned int, Btype*, Location);
|
|
|
|
void
|
|
immutable_struct_set_init(Bvariable*, const std::string&, unsigned int,
|
|
Btype*, Location, Bexpression*);
|
|
|
|
Bvariable*
|
|
immutable_struct_reference(const std::string&, const std::string&,
|
|
Btype*, Location);
|
|
|
|
// Labels.
|
|
|
|
Blabel*
|
|
label(Bfunction*, const std::string& name, Location);
|
|
|
|
Bstatement*
|
|
label_definition_statement(Blabel*);
|
|
|
|
Bstatement*
|
|
goto_statement(Blabel*, Location);
|
|
|
|
Bexpression*
|
|
label_address(Blabel*, Location);
|
|
|
|
// Functions.
|
|
|
|
Bfunction*
|
|
error_function()
|
|
{ return this->make_function(error_mark_node); }
|
|
|
|
Bfunction*
|
|
function(Btype* fntype, const std::string& name, const std::string& asm_name,
|
|
unsigned int flags, Location);
|
|
|
|
Bstatement*
|
|
function_defer_statement(Bfunction* function, Bexpression* undefer,
|
|
Bexpression* defer, Location);
|
|
|
|
bool
|
|
function_set_parameters(Bfunction* function, const std::vector<Bvariable*>&);
|
|
|
|
bool
|
|
function_set_body(Bfunction* function, Bstatement* code_stmt);
|
|
|
|
Bfunction*
|
|
lookup_builtin(const std::string&);
|
|
|
|
void
|
|
write_global_definitions(const std::vector<Btype*>&,
|
|
const std::vector<Bexpression*>&,
|
|
const std::vector<Bfunction*>&,
|
|
const std::vector<Bvariable*>&);
|
|
|
|
void
|
|
write_export_data(const char* bytes, unsigned int size);
|
|
|
|
|
|
private:
|
|
// Make a Bexpression from a tree.
|
|
Bexpression*
|
|
make_expression(tree t)
|
|
{ return new Bexpression(t); }
|
|
|
|
// Make a Bstatement from a tree.
|
|
Bstatement*
|
|
make_statement(tree t)
|
|
{ return new Bstatement(t); }
|
|
|
|
// Make a Btype from a tree.
|
|
Btype*
|
|
make_type(tree t)
|
|
{ return new Btype(t); }
|
|
|
|
Bfunction*
|
|
make_function(tree t)
|
|
{ return new Bfunction(t); }
|
|
|
|
Btype*
|
|
fill_in_struct(Btype*, const std::vector<Btyped_identifier>&);
|
|
|
|
Btype*
|
|
fill_in_array(Btype*, Btype*, Bexpression*);
|
|
|
|
tree
|
|
non_zero_size_type(tree);
|
|
|
|
tree
|
|
convert_tree(tree, tree, Location);
|
|
|
|
private:
|
|
static const int builtin_const = 1 << 0;
|
|
static const int builtin_noreturn = 1 << 1;
|
|
static const int builtin_novops = 1 << 2;
|
|
|
|
void
|
|
define_builtin(built_in_function bcode, const char* name, const char* libname,
|
|
tree fntype, int flags);
|
|
|
|
// A mapping of the GCC built-ins exposed to GCCGo.
|
|
std::map<std::string, Bfunction*> builtin_functions_;
|
|
};
|
|
|
|
// A helper function to create a GCC identifier from a C++ string.
|
|
|
|
static inline tree
|
|
get_identifier_from_string(const std::string& str)
|
|
{
|
|
return get_identifier_with_length(str.data(), str.length());
|
|
}
|
|
|
|
// Define the built-in functions that are exposed to GCCGo.
|
|
|
|
Gcc_backend::Gcc_backend()
|
|
{
|
|
/* We need to define the fetch_and_add functions, since we use them
|
|
for ++ and --. */
|
|
tree t = this->integer_type(true, BITS_PER_UNIT)->get_tree();
|
|
tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
|
|
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1",
|
|
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
|
|
|
|
t = this->integer_type(true, BITS_PER_UNIT * 2)->get_tree();
|
|
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
|
|
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2",
|
|
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
|
|
|
|
t = this->integer_type(true, BITS_PER_UNIT * 4)->get_tree();
|
|
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
|
|
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4",
|
|
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
|
|
|
|
t = this->integer_type(true, BITS_PER_UNIT * 8)->get_tree();
|
|
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
|
|
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8",
|
|
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
|
|
|
|
// We use __builtin_expect for magic import functions.
|
|
this->define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
|
|
build_function_type_list(long_integer_type_node,
|
|
long_integer_type_node,
|
|
long_integer_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
|
|
// We use __builtin_memcmp for struct comparisons.
|
|
this->define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
|
|
build_function_type_list(integer_type_node,
|
|
const_ptr_type_node,
|
|
const_ptr_type_node,
|
|
size_type_node,
|
|
NULL_TREE),
|
|
0);
|
|
|
|
// We use __builtin_memmove for copying data.
|
|
this->define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
|
|
build_function_type_list(void_type_node,
|
|
ptr_type_node,
|
|
const_ptr_type_node,
|
|
size_type_node,
|
|
NULL_TREE),
|
|
0);
|
|
|
|
// We use __builtin_memset for zeroing data.
|
|
this->define_builtin(BUILT_IN_MEMSET, "__builtin_memset", "memset",
|
|
build_function_type_list(void_type_node,
|
|
ptr_type_node,
|
|
integer_type_node,
|
|
size_type_node,
|
|
NULL_TREE),
|
|
0);
|
|
|
|
// Used by runtime/internal/sys and math/bits.
|
|
this->define_builtin(BUILT_IN_CTZ, "__builtin_ctz", "ctz",
|
|
build_function_type_list(integer_type_node,
|
|
unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_CTZLL, "__builtin_ctzll", "ctzll",
|
|
build_function_type_list(integer_type_node,
|
|
long_long_unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_CLZ, "__builtin_clz", "clz",
|
|
build_function_type_list(integer_type_node,
|
|
unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_CLZLL, "__builtin_clzll", "clzll",
|
|
build_function_type_list(integer_type_node,
|
|
long_long_unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_POPCOUNT, "__builtin_popcount", "popcount",
|
|
build_function_type_list(integer_type_node,
|
|
unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_POPCOUNTLL, "__builtin_popcountll", "popcountll",
|
|
build_function_type_list(integer_type_node,
|
|
long_long_unsigned_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_BSWAP16, "__builtin_bswap16", "bswap16",
|
|
build_function_type_list(uint16_type_node,
|
|
uint16_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_BSWAP32, "__builtin_bswap32", "bswap32",
|
|
build_function_type_list(uint32_type_node,
|
|
uint32_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_BSWAP64, "__builtin_bswap64", "bswap64",
|
|
build_function_type_list(uint64_type_node,
|
|
uint64_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
|
|
// We provide some functions for the math library.
|
|
tree math_function_type = build_function_type_list(double_type_node,
|
|
double_type_node,
|
|
NULL_TREE);
|
|
tree math_function_type_long =
|
|
build_function_type_list(long_double_type_node, long_double_type_node,
|
|
NULL_TREE);
|
|
tree math_function_type_two = build_function_type_list(double_type_node,
|
|
double_type_node,
|
|
double_type_node,
|
|
NULL_TREE);
|
|
tree math_function_type_long_two =
|
|
build_function_type_list(long_double_type_node, long_double_type_node,
|
|
long_double_type_node, NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
|
|
math_function_type_two, builtin_const);
|
|
this->define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
|
|
math_function_type_long_two, builtin_const);
|
|
this->define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
|
|
math_function_type_two, builtin_const);
|
|
this->define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
|
|
math_function_type_long_two, builtin_const);
|
|
this->define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
|
|
build_function_type_list(double_type_node,
|
|
double_type_node,
|
|
integer_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
|
|
build_function_type_list(long_double_type_node,
|
|
long_double_type_node,
|
|
integer_type_node,
|
|
NULL_TREE),
|
|
builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
|
|
math_function_type_long, builtin_const);
|
|
this->define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
|
|
math_function_type, builtin_const);
|
|
this->define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
|
|
math_function_type_long, builtin_const);
|
|
|
|
// We use __builtin_return_address in the thunk we build for
|
|
// functions which call recover, and for runtime.getcallerpc.
|
|
t = build_function_type_list(ptr_type_node, unsigned_type_node, NULL_TREE);
|
|
this->define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address",
|
|
NULL, t, 0);
|
|
|
|
// The runtime calls __builtin_dwarf_cfa for runtime.getcallersp.
|
|
t = build_function_type_list(ptr_type_node, NULL_TREE);
|
|
this->define_builtin(BUILT_IN_DWARF_CFA, "__builtin_dwarf_cfa",
|
|
NULL, t, 0);
|
|
|
|
// The runtime calls __builtin_extract_return_addr when recording
|
|
// the address to which a function returns.
|
|
this->define_builtin(BUILT_IN_EXTRACT_RETURN_ADDR,
|
|
"__builtin_extract_return_addr", NULL,
|
|
build_function_type_list(ptr_type_node,
|
|
ptr_type_node,
|
|
NULL_TREE),
|
|
0);
|
|
|
|
// The compiler uses __builtin_trap for some exception handling
|
|
// cases.
|
|
this->define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
|
|
build_function_type(void_type_node, void_list_node),
|
|
builtin_noreturn);
|
|
|
|
// The runtime uses __builtin_prefetch.
|
|
this->define_builtin(BUILT_IN_PREFETCH, "__builtin_prefetch", NULL,
|
|
build_varargs_function_type_list(void_type_node,
|
|
const_ptr_type_node,
|
|
NULL_TREE),
|
|
builtin_novops);
|
|
|
|
// The compiler uses __builtin_unreachable for cases that cannot
|
|
// occur.
|
|
this->define_builtin(BUILT_IN_UNREACHABLE, "__builtin_unreachable", NULL,
|
|
build_function_type(void_type_node, void_list_node),
|
|
builtin_const | builtin_noreturn);
|
|
|
|
// We provide some atomic functions.
|
|
t = build_function_type_list(uint32_type_node,
|
|
ptr_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_LOAD_4, "__atomic_load_4", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(uint64_type_node,
|
|
ptr_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_LOAD_8, "__atomic_load_8", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(void_type_node,
|
|
ptr_type_node,
|
|
uint32_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_STORE_4, "__atomic_store_4", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(void_type_node,
|
|
ptr_type_node,
|
|
uint64_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_STORE_8, "__atomic_store_8", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(uint32_type_node,
|
|
ptr_type_node,
|
|
uint32_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_4, "__atomic_exchange_4", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(uint64_type_node,
|
|
ptr_type_node,
|
|
uint64_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_8, "__atomic_exchange_8", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(boolean_type_node,
|
|
ptr_type_node,
|
|
ptr_type_node,
|
|
uint32_type_node,
|
|
boolean_type_node,
|
|
integer_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4,
|
|
"__atomic_compare_exchange_4", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(boolean_type_node,
|
|
ptr_type_node,
|
|
ptr_type_node,
|
|
uint64_type_node,
|
|
boolean_type_node,
|
|
integer_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8,
|
|
"__atomic_compare_exchange_8", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(uint32_type_node,
|
|
ptr_type_node,
|
|
uint32_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_4, "__atomic_add_fetch_4", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(uint64_type_node,
|
|
ptr_type_node,
|
|
uint64_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_8, "__atomic_add_fetch_8", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(unsigned_char_type_node,
|
|
ptr_type_node,
|
|
unsigned_char_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_AND_FETCH_1, "__atomic_and_fetch_1", NULL,
|
|
t, 0);
|
|
this->define_builtin(BUILT_IN_ATOMIC_FETCH_AND_1, "__atomic_fetch_and_1", NULL,
|
|
t, 0);
|
|
|
|
t = build_function_type_list(unsigned_char_type_node,
|
|
ptr_type_node,
|
|
unsigned_char_type_node,
|
|
integer_type_node,
|
|
NULL_TREE);
|
|
this->define_builtin(BUILT_IN_ATOMIC_OR_FETCH_1, "__atomic_or_fetch_1", NULL,
|
|
t, 0);
|
|
this->define_builtin(BUILT_IN_ATOMIC_FETCH_OR_1, "__atomic_fetch_or_1", NULL,
|
|
t, 0);
|
|
}
|
|
|
|
// Get an unnamed integer type.
|
|
|
|
Btype*
|
|
Gcc_backend::integer_type(bool is_unsigned, int bits)
|
|
{
|
|
tree type;
|
|
if (is_unsigned)
|
|
{
|
|
if (bits == INT_TYPE_SIZE)
|
|
type = unsigned_type_node;
|
|
else if (bits == CHAR_TYPE_SIZE)
|
|
type = unsigned_char_type_node;
|
|
else if (bits == SHORT_TYPE_SIZE)
|
|
type = short_unsigned_type_node;
|
|
else if (bits == LONG_TYPE_SIZE)
|
|
type = long_unsigned_type_node;
|
|
else if (bits == LONG_LONG_TYPE_SIZE)
|
|
type = long_long_unsigned_type_node;
|
|
else
|
|
type = make_unsigned_type(bits);
|
|
}
|
|
else
|
|
{
|
|
if (bits == INT_TYPE_SIZE)
|
|
type = integer_type_node;
|
|
else if (bits == CHAR_TYPE_SIZE)
|
|
type = signed_char_type_node;
|
|
else if (bits == SHORT_TYPE_SIZE)
|
|
type = short_integer_type_node;
|
|
else if (bits == LONG_TYPE_SIZE)
|
|
type = long_integer_type_node;
|
|
else if (bits == LONG_LONG_TYPE_SIZE)
|
|
type = long_long_integer_type_node;
|
|
else
|
|
type = make_signed_type(bits);
|
|
}
|
|
return this->make_type(type);
|
|
}
|
|
|
|
// Get an unnamed float type.
|
|
|
|
Btype*
|
|
Gcc_backend::float_type(int bits)
|
|
{
|
|
tree type;
|
|
if (bits == FLOAT_TYPE_SIZE)
|
|
type = float_type_node;
|
|
else if (bits == DOUBLE_TYPE_SIZE)
|
|
type = double_type_node;
|
|
else if (bits == LONG_DOUBLE_TYPE_SIZE)
|
|
type = long_double_type_node;
|
|
else
|
|
{
|
|
type = make_node(REAL_TYPE);
|
|
TYPE_PRECISION(type) = bits;
|
|
layout_type(type);
|
|
}
|
|
return this->make_type(type);
|
|
}
|
|
|
|
// Get an unnamed complex type.
|
|
|
|
Btype*
|
|
Gcc_backend::complex_type(int bits)
|
|
{
|
|
tree type;
|
|
if (bits == FLOAT_TYPE_SIZE * 2)
|
|
type = complex_float_type_node;
|
|
else if (bits == DOUBLE_TYPE_SIZE * 2)
|
|
type = complex_double_type_node;
|
|
else if (bits == LONG_DOUBLE_TYPE_SIZE * 2)
|
|
type = complex_long_double_type_node;
|
|
else
|
|
{
|
|
type = make_node(REAL_TYPE);
|
|
TYPE_PRECISION(type) = bits / 2;
|
|
layout_type(type);
|
|
type = build_complex_type(type);
|
|
}
|
|
return this->make_type(type);
|
|
}
|
|
|
|
// Get a pointer type.
|
|
|
|
Btype*
|
|
Gcc_backend::pointer_type(Btype* to_type)
|
|
{
|
|
tree to_type_tree = to_type->get_tree();
|
|
if (to_type_tree == error_mark_node)
|
|
return this->error_type();
|
|
tree type = build_pointer_type(to_type_tree);
|
|
return this->make_type(type);
|
|
}
|
|
|
|
// Make a function type.
|
|
|
|
Btype*
|
|
Gcc_backend::function_type(const Btyped_identifier& receiver,
|
|
const std::vector<Btyped_identifier>& parameters,
|
|
const std::vector<Btyped_identifier>& results,
|
|
Btype* result_struct,
|
|
Location)
|
|
{
|
|
tree args = NULL_TREE;
|
|
tree* pp = &args;
|
|
if (receiver.btype != NULL)
|
|
{
|
|
tree t = receiver.btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_type();
|
|
*pp = tree_cons(NULL_TREE, t, NULL_TREE);
|
|
pp = &TREE_CHAIN(*pp);
|
|
}
|
|
|
|
for (std::vector<Btyped_identifier>::const_iterator p = parameters.begin();
|
|
p != parameters.end();
|
|
++p)
|
|
{
|
|
tree t = p->btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_type();
|
|
*pp = tree_cons(NULL_TREE, t, NULL_TREE);
|
|
pp = &TREE_CHAIN(*pp);
|
|
}
|
|
|
|
// Varargs is handled entirely at the Go level. When converted to
|
|
// GENERIC functions are not varargs.
|
|
*pp = void_list_node;
|
|
|
|
tree result;
|
|
if (results.empty())
|
|
result = void_type_node;
|
|
else if (results.size() == 1)
|
|
result = results.front().btype->get_tree();
|
|
else
|
|
{
|
|
gcc_assert(result_struct != NULL);
|
|
result = result_struct->get_tree();
|
|
}
|
|
if (result == error_mark_node)
|
|
return this->error_type();
|
|
|
|
// The libffi library cannot represent a zero-sized object. To
|
|
// avoid causing confusion on 32-bit SPARC, we treat a function that
|
|
// returns a zero-sized value as returning void. That should do no
|
|
// harm since there is no actual value to be returned. See
|
|
// https://gcc.gnu.org/PR72814 for details.
|
|
if (result != void_type_node && int_size_in_bytes(result) == 0)
|
|
result = void_type_node;
|
|
|
|
tree fntype = build_function_type(result, args);
|
|
if (fntype == error_mark_node)
|
|
return this->error_type();
|
|
|
|
return this->make_type(build_pointer_type(fntype));
|
|
}
|
|
|
|
// Make a struct type.
|
|
|
|
Btype*
|
|
Gcc_backend::struct_type(const std::vector<Btyped_identifier>& fields)
|
|
{
|
|
return this->fill_in_struct(this->make_type(make_node(RECORD_TYPE)), fields);
|
|
}
|
|
|
|
// Fill in the fields of a struct type.
|
|
|
|
Btype*
|
|
Gcc_backend::fill_in_struct(Btype* fill,
|
|
const std::vector<Btyped_identifier>& fields)
|
|
{
|
|
tree fill_tree = fill->get_tree();
|
|
tree field_trees = NULL_TREE;
|
|
tree* pp = &field_trees;
|
|
for (std::vector<Btyped_identifier>::const_iterator p = fields.begin();
|
|
p != fields.end();
|
|
++p)
|
|
{
|
|
tree name_tree = get_identifier_from_string(p->name);
|
|
tree type_tree = p->btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_type();
|
|
tree field = build_decl(p->location.gcc_location(), FIELD_DECL, name_tree,
|
|
type_tree);
|
|
DECL_CONTEXT(field) = fill_tree;
|
|
*pp = field;
|
|
pp = &DECL_CHAIN(field);
|
|
}
|
|
TYPE_FIELDS(fill_tree) = field_trees;
|
|
layout_type(fill_tree);
|
|
|
|
// Because Go permits converting between named struct types and
|
|
// equivalent struct types, for which we use VIEW_CONVERT_EXPR, and
|
|
// because we don't try to maintain TYPE_CANONICAL for struct types,
|
|
// we need to tell the middle-end to use structural equality.
|
|
SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
|
|
|
|
return fill;
|
|
}
|
|
|
|
// Make an array type.
|
|
|
|
Btype*
|
|
Gcc_backend::array_type(Btype* element_btype, Bexpression* length)
|
|
{
|
|
return this->fill_in_array(this->make_type(make_node(ARRAY_TYPE)),
|
|
element_btype, length);
|
|
}
|
|
|
|
// Fill in an array type.
|
|
|
|
Btype*
|
|
Gcc_backend::fill_in_array(Btype* fill, Btype* element_type,
|
|
Bexpression* length)
|
|
{
|
|
tree element_type_tree = element_type->get_tree();
|
|
tree length_tree = length->get_tree();
|
|
if (element_type_tree == error_mark_node || length_tree == error_mark_node)
|
|
return this->error_type();
|
|
|
|
gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
|
|
|
|
length_tree = fold_convert(sizetype, length_tree);
|
|
|
|
// build_index_type takes the maximum index, which is one less than
|
|
// the length.
|
|
tree index_type_tree = build_index_type(fold_build2(MINUS_EXPR, sizetype,
|
|
length_tree,
|
|
size_one_node));
|
|
|
|
tree fill_tree = fill->get_tree();
|
|
TREE_TYPE(fill_tree) = element_type_tree;
|
|
TYPE_DOMAIN(fill_tree) = index_type_tree;
|
|
TYPE_ADDR_SPACE(fill_tree) = TYPE_ADDR_SPACE(element_type_tree);
|
|
layout_type(fill_tree);
|
|
|
|
if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree))
|
|
SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
|
|
else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
|
|
|| TYPE_CANONICAL(index_type_tree) != index_type_tree)
|
|
TYPE_CANONICAL(fill_tree) =
|
|
build_array_type(TYPE_CANONICAL(element_type_tree),
|
|
TYPE_CANONICAL(index_type_tree));
|
|
|
|
return fill;
|
|
}
|
|
|
|
// Create a placeholder for a pointer type.
|
|
|
|
Btype*
|
|
Gcc_backend::placeholder_pointer_type(const std::string& name,
|
|
Location location, bool)
|
|
{
|
|
tree ret = build_distinct_type_copy(ptr_type_node);
|
|
if (!name.empty())
|
|
{
|
|
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
|
|
get_identifier_from_string(name),
|
|
ret);
|
|
TYPE_NAME(ret) = decl;
|
|
}
|
|
return this->make_type(ret);
|
|
}
|
|
|
|
// Set the real target type for a placeholder pointer type.
|
|
|
|
bool
|
|
Gcc_backend::set_placeholder_pointer_type(Btype* placeholder,
|
|
Btype* to_type)
|
|
{
|
|
tree pt = placeholder->get_tree();
|
|
if (pt == error_mark_node)
|
|
return false;
|
|
gcc_assert(TREE_CODE(pt) == POINTER_TYPE);
|
|
tree tt = to_type->get_tree();
|
|
if (tt == error_mark_node)
|
|
{
|
|
placeholder->set_tree(error_mark_node);
|
|
return false;
|
|
}
|
|
gcc_assert(TREE_CODE(tt) == POINTER_TYPE);
|
|
TREE_TYPE(pt) = TREE_TYPE(tt);
|
|
TYPE_CANONICAL(pt) = TYPE_CANONICAL(tt);
|
|
if (TYPE_NAME(pt) != NULL_TREE)
|
|
{
|
|
// Build the data structure gcc wants to see for a typedef.
|
|
tree copy = build_variant_type_copy(pt);
|
|
TYPE_NAME(copy) = NULL_TREE;
|
|
DECL_ORIGINAL_TYPE(TYPE_NAME(pt)) = copy;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Set the real values for a placeholder function type.
|
|
|
|
bool
|
|
Gcc_backend::set_placeholder_function_type(Btype* placeholder, Btype* ft)
|
|
{
|
|
return this->set_placeholder_pointer_type(placeholder, ft);
|
|
}
|
|
|
|
// Create a placeholder for a struct type.
|
|
|
|
Btype*
|
|
Gcc_backend::placeholder_struct_type(const std::string& name,
|
|
Location location)
|
|
{
|
|
tree ret = make_node(RECORD_TYPE);
|
|
if (!name.empty())
|
|
{
|
|
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
|
|
get_identifier_from_string(name),
|
|
ret);
|
|
TYPE_NAME(ret) = decl;
|
|
|
|
// The struct type that eventually replaces this placeholder will require
|
|
// structural equality. The placeholder must too, so that the requirement
|
|
// for structural equality propagates to references that are constructed
|
|
// before the replacement occurs.
|
|
SET_TYPE_STRUCTURAL_EQUALITY(ret);
|
|
}
|
|
return this->make_type(ret);
|
|
}
|
|
|
|
// Fill in the fields of a placeholder struct type.
|
|
|
|
bool
|
|
Gcc_backend::set_placeholder_struct_type(
|
|
Btype* placeholder,
|
|
const std::vector<Btyped_identifier>& fields)
|
|
{
|
|
tree t = placeholder->get_tree();
|
|
gcc_assert(TREE_CODE(t) == RECORD_TYPE && TYPE_FIELDS(t) == NULL_TREE);
|
|
Btype* r = this->fill_in_struct(placeholder, fields);
|
|
|
|
if (TYPE_NAME(t) != NULL_TREE)
|
|
{
|
|
// Build the data structure gcc wants to see for a typedef.
|
|
tree copy = build_distinct_type_copy(t);
|
|
TYPE_NAME(copy) = NULL_TREE;
|
|
DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
|
|
TYPE_SIZE(copy) = NULL_TREE;
|
|
Btype* bc = this->make_type(copy);
|
|
this->fill_in_struct(bc, fields);
|
|
delete bc;
|
|
}
|
|
|
|
return r->get_tree() != error_mark_node;
|
|
}
|
|
|
|
// Create a placeholder for an array type.
|
|
|
|
Btype*
|
|
Gcc_backend::placeholder_array_type(const std::string& name,
|
|
Location location)
|
|
{
|
|
tree ret = make_node(ARRAY_TYPE);
|
|
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
|
|
get_identifier_from_string(name),
|
|
ret);
|
|
TYPE_NAME(ret) = decl;
|
|
return this->make_type(ret);
|
|
}
|
|
|
|
// Fill in the fields of a placeholder array type.
|
|
|
|
bool
|
|
Gcc_backend::set_placeholder_array_type(Btype* placeholder,
|
|
Btype* element_btype,
|
|
Bexpression* length)
|
|
{
|
|
tree t = placeholder->get_tree();
|
|
gcc_assert(TREE_CODE(t) == ARRAY_TYPE && TREE_TYPE(t) == NULL_TREE);
|
|
Btype* r = this->fill_in_array(placeholder, element_btype, length);
|
|
|
|
// Build the data structure gcc wants to see for a typedef.
|
|
tree copy = build_distinct_type_copy(t);
|
|
TYPE_NAME(copy) = NULL_TREE;
|
|
DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
|
|
|
|
return r->get_tree() != error_mark_node;
|
|
}
|
|
|
|
// Return a named version of a type.
|
|
|
|
Btype*
|
|
Gcc_backend::named_type(const std::string& name, Btype* btype,
|
|
Location location)
|
|
{
|
|
tree type = btype->get_tree();
|
|
if (type == error_mark_node)
|
|
return this->error_type();
|
|
|
|
// The middle-end expects a basic type to have a name. In Go every
|
|
// basic type will have a name. The first time we see a basic type,
|
|
// give it whatever Go name we have at this point.
|
|
if (TYPE_NAME(type) == NULL_TREE
|
|
&& location.gcc_location() == BUILTINS_LOCATION
|
|
&& (TREE_CODE(type) == INTEGER_TYPE
|
|
|| TREE_CODE(type) == REAL_TYPE
|
|
|| TREE_CODE(type) == COMPLEX_TYPE
|
|
|| TREE_CODE(type) == BOOLEAN_TYPE))
|
|
{
|
|
tree decl = build_decl(BUILTINS_LOCATION, TYPE_DECL,
|
|
get_identifier_from_string(name),
|
|
type);
|
|
TYPE_NAME(type) = decl;
|
|
return this->make_type(type);
|
|
}
|
|
|
|
tree copy = build_variant_type_copy(type);
|
|
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
|
|
get_identifier_from_string(name),
|
|
copy);
|
|
DECL_ORIGINAL_TYPE(decl) = type;
|
|
TYPE_NAME(copy) = decl;
|
|
return this->make_type(copy);
|
|
}
|
|
|
|
// Return a pointer type used as a marker for a circular type.
|
|
|
|
Btype*
|
|
Gcc_backend::circular_pointer_type(Btype*, bool)
|
|
{
|
|
return this->make_type(ptr_type_node);
|
|
}
|
|
|
|
// Return whether we might be looking at a circular type.
|
|
|
|
bool
|
|
Gcc_backend::is_circular_pointer_type(Btype* btype)
|
|
{
|
|
return btype->get_tree() == ptr_type_node;
|
|
}
|
|
|
|
// Return the size of a type.
|
|
|
|
int64_t
|
|
Gcc_backend::type_size(Btype* btype)
|
|
{
|
|
tree t = btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return 1;
|
|
if (t == void_type_node)
|
|
return 0;
|
|
t = TYPE_SIZE_UNIT(t);
|
|
gcc_assert(tree_fits_uhwi_p (t));
|
|
unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(t);
|
|
int64_t ret = static_cast<int64_t>(val_wide);
|
|
if (ret < 0 || static_cast<unsigned HOST_WIDE_INT>(ret) != val_wide)
|
|
return -1;
|
|
return ret;
|
|
}
|
|
|
|
// Return the alignment of a type.
|
|
|
|
int64_t
|
|
Gcc_backend::type_alignment(Btype* btype)
|
|
{
|
|
tree t = btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return 1;
|
|
return TYPE_ALIGN_UNIT(t);
|
|
}
|
|
|
|
// Return the alignment of a struct field of type BTYPE.
|
|
|
|
int64_t
|
|
Gcc_backend::type_field_alignment(Btype* btype)
|
|
{
|
|
tree t = btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return 1;
|
|
return go_field_alignment(t);
|
|
}
|
|
|
|
// Return the offset of a field in a struct.
|
|
|
|
int64_t
|
|
Gcc_backend::type_field_offset(Btype* btype, size_t index)
|
|
{
|
|
tree struct_tree = btype->get_tree();
|
|
if (struct_tree == error_mark_node)
|
|
return 0;
|
|
gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
|
|
tree field = TYPE_FIELDS(struct_tree);
|
|
for (; index > 0; --index)
|
|
{
|
|
field = DECL_CHAIN(field);
|
|
gcc_assert(field != NULL_TREE);
|
|
}
|
|
HOST_WIDE_INT offset_wide = int_byte_position(field);
|
|
int64_t ret = static_cast<int64_t>(offset_wide);
|
|
gcc_assert(ret == offset_wide);
|
|
return ret;
|
|
}
|
|
|
|
// Return the zero value for a type.
|
|
|
|
Bexpression*
|
|
Gcc_backend::zero_expression(Btype* btype)
|
|
{
|
|
tree t = btype->get_tree();
|
|
tree ret;
|
|
if (t == error_mark_node)
|
|
ret = error_mark_node;
|
|
else
|
|
ret = build_zero_cst(t);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// An expression that references a variable.
|
|
|
|
Bexpression*
|
|
Gcc_backend::var_expression(Bvariable* var, Location location)
|
|
{
|
|
tree ret = var->get_tree(location);
|
|
if (ret == error_mark_node)
|
|
return this->error_expression();
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// An expression that indirectly references an expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::indirect_expression(Btype* btype, Bexpression* expr,
|
|
bool known_valid, Location location)
|
|
{
|
|
tree expr_tree = expr->get_tree();
|
|
tree type_tree = btype->get_tree();
|
|
if (expr_tree == error_mark_node || type_tree == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
// If the type of EXPR is a recursive pointer type, then we
|
|
// need to insert a cast before indirecting.
|
|
tree target_type_tree = TREE_TYPE(TREE_TYPE(expr_tree));
|
|
if (VOID_TYPE_P(target_type_tree))
|
|
expr_tree = fold_convert_loc(location.gcc_location(),
|
|
build_pointer_type(type_tree), expr_tree);
|
|
|
|
tree ret = build_fold_indirect_ref_loc(location.gcc_location(),
|
|
expr_tree);
|
|
if (known_valid)
|
|
TREE_THIS_NOTRAP(ret) = 1;
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression that declares a constant named NAME with the
|
|
// constant value VAL in BTYPE.
|
|
|
|
Bexpression*
|
|
Gcc_backend::named_constant_expression(Btype* btype, const std::string& name,
|
|
Bexpression* val, Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
tree const_val = val->get_tree();
|
|
if (type_tree == error_mark_node || const_val == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree name_tree = get_identifier_from_string(name);
|
|
tree decl = build_decl(location.gcc_location(), CONST_DECL, name_tree,
|
|
type_tree);
|
|
DECL_INITIAL(decl) = const_val;
|
|
TREE_CONSTANT(decl) = 1;
|
|
TREE_READONLY(decl) = 1;
|
|
|
|
go_preserve_from_gc(decl);
|
|
return this->make_expression(decl);
|
|
}
|
|
|
|
// Return a typed value as a constant integer.
|
|
|
|
Bexpression*
|
|
Gcc_backend::integer_constant_expression(Btype* btype, mpz_t val)
|
|
{
|
|
tree t = btype->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree ret = double_int_to_tree(t, mpz_get_double_int(t, val, true));
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return a typed value as a constant floating-point number.
|
|
|
|
Bexpression*
|
|
Gcc_backend::float_constant_expression(Btype* btype, mpfr_t val)
|
|
{
|
|
tree t = btype->get_tree();
|
|
tree ret;
|
|
if (t == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
REAL_VALUE_TYPE r1;
|
|
real_from_mpfr(&r1, val, t, GMP_RNDN);
|
|
REAL_VALUE_TYPE r2;
|
|
real_convert(&r2, TYPE_MODE(t), &r1);
|
|
ret = build_real(t, r2);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return a typed real and imaginary value as a constant complex number.
|
|
|
|
Bexpression*
|
|
Gcc_backend::complex_constant_expression(Btype* btype, mpc_t val)
|
|
{
|
|
tree t = btype->get_tree();
|
|
tree ret;
|
|
if (t == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
REAL_VALUE_TYPE r1;
|
|
real_from_mpfr(&r1, mpc_realref(val), TREE_TYPE(t), GMP_RNDN);
|
|
REAL_VALUE_TYPE r2;
|
|
real_convert(&r2, TYPE_MODE(TREE_TYPE(t)), &r1);
|
|
|
|
REAL_VALUE_TYPE r3;
|
|
real_from_mpfr(&r3, mpc_imagref(val), TREE_TYPE(t), GMP_RNDN);
|
|
REAL_VALUE_TYPE r4;
|
|
real_convert(&r4, TYPE_MODE(TREE_TYPE(t)), &r3);
|
|
|
|
ret = build_complex(t, build_real(TREE_TYPE(t), r2),
|
|
build_real(TREE_TYPE(t), r4));
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Make a constant string expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::string_constant_expression(const std::string& val)
|
|
{
|
|
tree index_type = build_index_type(size_int(val.length()));
|
|
tree const_char_type = build_qualified_type(unsigned_char_type_node,
|
|
TYPE_QUAL_CONST);
|
|
tree string_type = build_array_type(const_char_type, index_type);
|
|
TYPE_STRING_FLAG(string_type) = 1;
|
|
tree string_val = build_string(val.length(), val.data());
|
|
TREE_TYPE(string_val) = string_type;
|
|
|
|
return this->make_expression(string_val);
|
|
}
|
|
|
|
// Make a constant boolean expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::boolean_constant_expression(bool val)
|
|
{
|
|
tree bool_cst = val ? boolean_true_node : boolean_false_node;
|
|
return this->make_expression(bool_cst);
|
|
}
|
|
|
|
// Return the real part of a complex expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::real_part_expression(Bexpression* bcomplex, Location location)
|
|
{
|
|
tree complex_tree = bcomplex->get_tree();
|
|
if (complex_tree == error_mark_node)
|
|
return this->error_expression();
|
|
gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
|
|
tree ret = fold_build1_loc(location.gcc_location(), REALPART_EXPR,
|
|
TREE_TYPE(TREE_TYPE(complex_tree)),
|
|
complex_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return the imaginary part of a complex expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::imag_part_expression(Bexpression* bcomplex, Location location)
|
|
{
|
|
tree complex_tree = bcomplex->get_tree();
|
|
if (complex_tree == error_mark_node)
|
|
return this->error_expression();
|
|
gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
|
|
tree ret = fold_build1_loc(location.gcc_location(), IMAGPART_EXPR,
|
|
TREE_TYPE(TREE_TYPE(complex_tree)),
|
|
complex_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Make a complex expression given its real and imaginary parts.
|
|
|
|
Bexpression*
|
|
Gcc_backend::complex_expression(Bexpression* breal, Bexpression* bimag,
|
|
Location location)
|
|
{
|
|
tree real_tree = breal->get_tree();
|
|
tree imag_tree = bimag->get_tree();
|
|
if (real_tree == error_mark_node || imag_tree == error_mark_node)
|
|
return this->error_expression();
|
|
gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(real_tree))
|
|
== TYPE_MAIN_VARIANT(TREE_TYPE(imag_tree)));
|
|
gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(real_tree)));
|
|
tree ret = fold_build2_loc(location.gcc_location(), COMPLEX_EXPR,
|
|
build_complex_type(TREE_TYPE(real_tree)),
|
|
real_tree, imag_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// An expression that converts an expression to a different type.
|
|
|
|
Bexpression*
|
|
Gcc_backend::convert_expression(Btype* type, Bexpression* expr,
|
|
Location location)
|
|
{
|
|
tree type_tree = type->get_tree();
|
|
tree expr_tree = expr->get_tree();
|
|
if (type_tree == error_mark_node
|
|
|| expr_tree == error_mark_node
|
|
|| TREE_TYPE(expr_tree) == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree ret;
|
|
if (this->type_size(type) == 0
|
|
|| TREE_TYPE(expr_tree) == void_type_node)
|
|
{
|
|
// Do not convert zero-sized types.
|
|
ret = expr_tree;
|
|
}
|
|
else if (TREE_CODE(type_tree) == INTEGER_TYPE)
|
|
ret = fold(convert_to_integer(type_tree, expr_tree));
|
|
else if (TREE_CODE(type_tree) == REAL_TYPE)
|
|
ret = fold(convert_to_real(type_tree, expr_tree));
|
|
else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
|
|
ret = fold(convert_to_complex(type_tree, expr_tree));
|
|
else if (TREE_CODE(type_tree) == POINTER_TYPE
|
|
&& TREE_CODE(TREE_TYPE(expr_tree)) == INTEGER_TYPE)
|
|
ret = fold(convert_to_pointer(type_tree, expr_tree));
|
|
else if (TREE_CODE(type_tree) == RECORD_TYPE
|
|
|| TREE_CODE(type_tree) == ARRAY_TYPE)
|
|
ret = fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
|
|
type_tree, expr_tree);
|
|
else
|
|
ret = fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
|
|
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Get the address of a function.
|
|
|
|
Bexpression*
|
|
Gcc_backend::function_code_expression(Bfunction* bfunc, Location location)
|
|
{
|
|
tree func = bfunc->get_tree();
|
|
if (func == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree ret = build_fold_addr_expr_loc(location.gcc_location(), func);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Get the address of an expression.
|
|
|
|
Bexpression*
|
|
Gcc_backend::address_expression(Bexpression* bexpr, Location location)
|
|
{
|
|
tree expr = bexpr->get_tree();
|
|
if (expr == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree ret = build_fold_addr_expr_loc(location.gcc_location(), expr);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression for the field at INDEX in BSTRUCT.
|
|
|
|
Bexpression*
|
|
Gcc_backend::struct_field_expression(Bexpression* bstruct, size_t index,
|
|
Location location)
|
|
{
|
|
tree struct_tree = bstruct->get_tree();
|
|
if (struct_tree == error_mark_node
|
|
|| TREE_TYPE(struct_tree) == error_mark_node)
|
|
return this->error_expression();
|
|
gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
|
|
tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
|
|
if (field == NULL_TREE)
|
|
{
|
|
// This can happen for a type which refers to itself indirectly
|
|
// and then turns out to be erroneous.
|
|
return this->error_expression();
|
|
}
|
|
for (unsigned int i = index; i > 0; --i)
|
|
{
|
|
field = DECL_CHAIN(field);
|
|
gcc_assert(field != NULL_TREE);
|
|
}
|
|
if (TREE_TYPE(field) == error_mark_node)
|
|
return this->error_expression();
|
|
tree ret = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
|
|
TREE_TYPE(field), struct_tree, field,
|
|
NULL_TREE);
|
|
if (TREE_CONSTANT(struct_tree))
|
|
TREE_CONSTANT(ret) = 1;
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression that executes BSTAT before BEXPR.
|
|
|
|
Bexpression*
|
|
Gcc_backend::compound_expression(Bstatement* bstat, Bexpression* bexpr,
|
|
Location location)
|
|
{
|
|
tree stat = bstat->get_tree();
|
|
tree expr = bexpr->get_tree();
|
|
if (stat == error_mark_node || expr == error_mark_node)
|
|
return this->error_expression();
|
|
tree ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
|
|
TREE_TYPE(expr), stat, expr);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression that executes THEN_EXPR if CONDITION is true, or
|
|
// ELSE_EXPR otherwise.
|
|
|
|
Bexpression*
|
|
Gcc_backend::conditional_expression(Bfunction*, Btype* btype,
|
|
Bexpression* condition,
|
|
Bexpression* then_expr,
|
|
Bexpression* else_expr, Location location)
|
|
{
|
|
tree type_tree = btype == NULL ? void_type_node : btype->get_tree();
|
|
tree cond_tree = condition->get_tree();
|
|
tree then_tree = then_expr->get_tree();
|
|
tree else_tree = else_expr == NULL ? NULL_TREE : else_expr->get_tree();
|
|
if (type_tree == error_mark_node
|
|
|| cond_tree == error_mark_node
|
|
|| then_tree == error_mark_node
|
|
|| else_tree == error_mark_node)
|
|
return this->error_expression();
|
|
tree ret = build3_loc(location.gcc_location(), COND_EXPR, type_tree,
|
|
cond_tree, then_tree, else_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression for the unary operation OP EXPR.
|
|
|
|
Bexpression*
|
|
Gcc_backend::unary_expression(Operator op, Bexpression* expr, Location location)
|
|
{
|
|
tree expr_tree = expr->get_tree();
|
|
if (expr_tree == error_mark_node
|
|
|| TREE_TYPE(expr_tree) == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree type_tree = TREE_TYPE(expr_tree);
|
|
enum tree_code code;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_MINUS:
|
|
{
|
|
tree computed_type = excess_precision_type(type_tree);
|
|
if (computed_type != NULL_TREE)
|
|
{
|
|
expr_tree = convert(computed_type, expr_tree);
|
|
type_tree = computed_type;
|
|
}
|
|
code = NEGATE_EXPR;
|
|
break;
|
|
}
|
|
case OPERATOR_NOT:
|
|
code = TRUTH_NOT_EXPR;
|
|
break;
|
|
case OPERATOR_XOR:
|
|
code = BIT_NOT_EXPR;
|
|
break;
|
|
default:
|
|
gcc_unreachable();
|
|
break;
|
|
}
|
|
|
|
tree ret = fold_build1_loc(location.gcc_location(), code, type_tree,
|
|
expr_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Convert a gofrontend operator to an equivalent tree_code.
|
|
|
|
static enum tree_code
|
|
operator_to_tree_code(Operator op, tree type)
|
|
{
|
|
enum tree_code code;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_EQEQ:
|
|
code = EQ_EXPR;
|
|
break;
|
|
case OPERATOR_NOTEQ:
|
|
code = NE_EXPR;
|
|
break;
|
|
case OPERATOR_LT:
|
|
code = LT_EXPR;
|
|
break;
|
|
case OPERATOR_LE:
|
|
code = LE_EXPR;
|
|
break;
|
|
case OPERATOR_GT:
|
|
code = GT_EXPR;
|
|
break;
|
|
case OPERATOR_GE:
|
|
code = GE_EXPR;
|
|
break;
|
|
case OPERATOR_OROR:
|
|
code = TRUTH_ORIF_EXPR;
|
|
break;
|
|
case OPERATOR_ANDAND:
|
|
code = TRUTH_ANDIF_EXPR;
|
|
break;
|
|
case OPERATOR_PLUS:
|
|
code = PLUS_EXPR;
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
code = MINUS_EXPR;
|
|
break;
|
|
case OPERATOR_OR:
|
|
code = BIT_IOR_EXPR;
|
|
break;
|
|
case OPERATOR_XOR:
|
|
code = BIT_XOR_EXPR;
|
|
break;
|
|
case OPERATOR_MULT:
|
|
code = MULT_EXPR;
|
|
break;
|
|
case OPERATOR_DIV:
|
|
if (TREE_CODE(type) == REAL_TYPE || TREE_CODE(type) == COMPLEX_TYPE)
|
|
code = RDIV_EXPR;
|
|
else
|
|
code = TRUNC_DIV_EXPR;
|
|
break;
|
|
case OPERATOR_MOD:
|
|
code = TRUNC_MOD_EXPR;
|
|
break;
|
|
case OPERATOR_LSHIFT:
|
|
code = LSHIFT_EXPR;
|
|
break;
|
|
case OPERATOR_RSHIFT:
|
|
code = RSHIFT_EXPR;
|
|
break;
|
|
case OPERATOR_AND:
|
|
code = BIT_AND_EXPR;
|
|
break;
|
|
case OPERATOR_BITCLEAR:
|
|
code = BIT_AND_EXPR;
|
|
break;
|
|
default:
|
|
gcc_unreachable();
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
// Return an expression for the binary operation LEFT OP RIGHT.
|
|
|
|
Bexpression*
|
|
Gcc_backend::binary_expression(Operator op, Bexpression* left,
|
|
Bexpression* right, Location location)
|
|
{
|
|
tree left_tree = left->get_tree();
|
|
tree right_tree = right->get_tree();
|
|
if (left_tree == error_mark_node
|
|
|| right_tree == error_mark_node)
|
|
return this->error_expression();
|
|
enum tree_code code = operator_to_tree_code(op, TREE_TYPE(left_tree));
|
|
|
|
bool use_left_type = op != OPERATOR_OROR && op != OPERATOR_ANDAND;
|
|
tree type_tree = use_left_type ? TREE_TYPE(left_tree) : TREE_TYPE(right_tree);
|
|
tree computed_type = excess_precision_type(type_tree);
|
|
if (computed_type != NULL_TREE)
|
|
{
|
|
left_tree = convert(computed_type, left_tree);
|
|
right_tree = convert(computed_type, right_tree);
|
|
type_tree = computed_type;
|
|
}
|
|
|
|
// For comparison operators, the resulting type should be boolean.
|
|
switch (op)
|
|
{
|
|
case OPERATOR_EQEQ:
|
|
case OPERATOR_NOTEQ:
|
|
case OPERATOR_LT:
|
|
case OPERATOR_LE:
|
|
case OPERATOR_GT:
|
|
case OPERATOR_GE:
|
|
type_tree = boolean_type_node;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
tree ret = fold_build2_loc(location.gcc_location(), code, type_tree,
|
|
left_tree, right_tree);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression that constructs BTYPE with VALS.
|
|
|
|
Bexpression*
|
|
Gcc_backend::constructor_expression(Btype* btype,
|
|
const std::vector<Bexpression*>& vals,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
vec<constructor_elt, va_gc> *init;
|
|
vec_alloc(init, vals.size());
|
|
|
|
tree sink = NULL_TREE;
|
|
bool is_constant = true;
|
|
tree field = TYPE_FIELDS(type_tree);
|
|
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
|
|
p != vals.end();
|
|
++p, field = DECL_CHAIN(field))
|
|
{
|
|
gcc_assert(field != NULL_TREE);
|
|
tree val = (*p)->get_tree();
|
|
if (TREE_TYPE(field) == error_mark_node
|
|
|| val == error_mark_node
|
|
|| TREE_TYPE(val) == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
if (int_size_in_bytes(TREE_TYPE(field)) == 0)
|
|
{
|
|
// GIMPLE cannot represent indices of zero-sized types so
|
|
// trying to construct a map with zero-sized keys might lead
|
|
// to errors. Instead, we evaluate each expression that
|
|
// would have been added as a map element for its
|
|
// side-effects and construct an empty map.
|
|
append_to_statement_list(val, &sink);
|
|
continue;
|
|
}
|
|
|
|
constructor_elt empty = {NULL, NULL};
|
|
constructor_elt* elt = init->quick_push(empty);
|
|
elt->index = field;
|
|
elt->value = this->convert_tree(TREE_TYPE(field), val, location);
|
|
if (!TREE_CONSTANT(elt->value))
|
|
is_constant = false;
|
|
}
|
|
gcc_assert(field == NULL_TREE);
|
|
tree ret = build_constructor(type_tree, init);
|
|
if (is_constant)
|
|
TREE_CONSTANT(ret) = 1;
|
|
if (sink != NULL_TREE)
|
|
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
|
|
type_tree, sink, ret);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
Bexpression*
|
|
Gcc_backend::array_constructor_expression(
|
|
Btype* array_btype, const std::vector<unsigned long>& indexes,
|
|
const std::vector<Bexpression*>& vals, Location location)
|
|
{
|
|
tree type_tree = array_btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
gcc_assert(indexes.size() == vals.size());
|
|
|
|
tree element_type = TREE_TYPE(type_tree);
|
|
HOST_WIDE_INT element_size = int_size_in_bytes(element_type);
|
|
vec<constructor_elt, va_gc> *init;
|
|
vec_alloc(init, element_size == 0 ? 0 : vals.size());
|
|
|
|
tree sink = NULL_TREE;
|
|
bool is_constant = true;
|
|
for (size_t i = 0; i < vals.size(); ++i)
|
|
{
|
|
tree index = size_int(indexes[i]);
|
|
tree val = (vals[i])->get_tree();
|
|
|
|
if (index == error_mark_node
|
|
|| val == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
if (element_size == 0)
|
|
{
|
|
// GIMPLE cannot represent arrays of zero-sized types so trying
|
|
// to construct an array of zero-sized values might lead to errors.
|
|
// Instead, we evaluate each expression that would have been added as
|
|
// an array value for its side-effects and construct an empty array.
|
|
append_to_statement_list(val, &sink);
|
|
continue;
|
|
}
|
|
|
|
if (!TREE_CONSTANT(val))
|
|
is_constant = false;
|
|
|
|
constructor_elt empty = {NULL, NULL};
|
|
constructor_elt* elt = init->quick_push(empty);
|
|
elt->index = index;
|
|
elt->value = val;
|
|
}
|
|
|
|
tree ret = build_constructor(type_tree, init);
|
|
if (is_constant)
|
|
TREE_CONSTANT(ret) = 1;
|
|
if (sink != NULL_TREE)
|
|
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
|
|
type_tree, sink, ret);
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Return an expression for the address of BASE[INDEX].
|
|
|
|
Bexpression*
|
|
Gcc_backend::pointer_offset_expression(Bexpression* base, Bexpression* index,
|
|
Location location)
|
|
{
|
|
tree base_tree = base->get_tree();
|
|
tree index_tree = index->get_tree();
|
|
tree element_type_tree = TREE_TYPE(TREE_TYPE(base_tree));
|
|
if (base_tree == error_mark_node
|
|
|| TREE_TYPE(base_tree) == error_mark_node
|
|
|| index_tree == error_mark_node
|
|
|| element_type_tree == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
tree element_size = TYPE_SIZE_UNIT(element_type_tree);
|
|
index_tree = fold_convert_loc(location.gcc_location(), sizetype, index_tree);
|
|
tree offset = fold_build2_loc(location.gcc_location(), MULT_EXPR, sizetype,
|
|
index_tree, element_size);
|
|
tree ptr = fold_build2_loc(location.gcc_location(), POINTER_PLUS_EXPR,
|
|
TREE_TYPE(base_tree), base_tree, offset);
|
|
return this->make_expression(ptr);
|
|
}
|
|
|
|
// Return an expression representing ARRAY[INDEX]
|
|
|
|
Bexpression*
|
|
Gcc_backend::array_index_expression(Bexpression* array, Bexpression* index,
|
|
Location location)
|
|
{
|
|
tree array_tree = array->get_tree();
|
|
tree index_tree = index->get_tree();
|
|
if (array_tree == error_mark_node
|
|
|| TREE_TYPE(array_tree) == error_mark_node
|
|
|| index_tree == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
// A function call that returns a zero sized object will have been
|
|
// changed to return void. If we see void here, assume we are
|
|
// dealing with a zero sized type and just evaluate the operands.
|
|
tree ret;
|
|
if (TREE_TYPE(array_tree) != void_type_node)
|
|
ret = build4_loc(location.gcc_location(), ARRAY_REF,
|
|
TREE_TYPE(TREE_TYPE(array_tree)), array_tree,
|
|
index_tree, NULL_TREE, NULL_TREE);
|
|
else
|
|
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
|
|
void_type_node, array_tree, index_tree);
|
|
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Create an expression for a call to FN_EXPR with FN_ARGS.
|
|
Bexpression*
|
|
Gcc_backend::call_expression(Bfunction*, // containing fcn for call
|
|
Bexpression* fn_expr,
|
|
const std::vector<Bexpression*>& fn_args,
|
|
Bexpression* chain_expr,
|
|
Location location)
|
|
{
|
|
tree fn = fn_expr->get_tree();
|
|
if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
|
|
return this->error_expression();
|
|
|
|
gcc_assert(FUNCTION_POINTER_TYPE_P(TREE_TYPE(fn)));
|
|
tree rettype = TREE_TYPE(TREE_TYPE(TREE_TYPE(fn)));
|
|
|
|
size_t nargs = fn_args.size();
|
|
tree* args = nargs == 0 ? NULL : new tree[nargs];
|
|
for (size_t i = 0; i < nargs; ++i)
|
|
{
|
|
args[i] = fn_args.at(i)->get_tree();
|
|
if (args[i] == error_mark_node)
|
|
return this->error_expression();
|
|
}
|
|
|
|
tree fndecl = fn;
|
|
if (TREE_CODE(fndecl) == ADDR_EXPR)
|
|
fndecl = TREE_OPERAND(fndecl, 0);
|
|
|
|
// This is to support builtin math functions when using 80387 math.
|
|
tree excess_type = NULL_TREE;
|
|
if (optimize
|
|
&& TREE_CODE(fndecl) == FUNCTION_DECL
|
|
&& fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
|
|
&& DECL_IS_UNDECLARED_BUILTIN (fndecl)
|
|
&& nargs > 0
|
|
&& ((SCALAR_FLOAT_TYPE_P(rettype)
|
|
&& SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
|
|
|| (COMPLEX_FLOAT_TYPE_P(rettype)
|
|
&& COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
|
|
{
|
|
excess_type = excess_precision_type(TREE_TYPE(args[0]));
|
|
if (excess_type != NULL_TREE)
|
|
{
|
|
tree excess_fndecl = mathfn_built_in(excess_type,
|
|
DECL_FUNCTION_CODE(fndecl));
|
|
if (excess_fndecl == NULL_TREE)
|
|
excess_type = NULL_TREE;
|
|
else
|
|
{
|
|
fn = build_fold_addr_expr_loc(location.gcc_location(),
|
|
excess_fndecl);
|
|
for (size_t i = 0; i < nargs; ++i)
|
|
{
|
|
if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i]))
|
|
|| COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i])))
|
|
args[i] = ::convert(excess_type, args[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
tree ret =
|
|
build_call_array_loc(location.gcc_location(),
|
|
excess_type != NULL_TREE ? excess_type : rettype,
|
|
fn, nargs, args);
|
|
|
|
if (chain_expr)
|
|
CALL_EXPR_STATIC_CHAIN (ret) = chain_expr->get_tree();
|
|
|
|
if (excess_type != NULL_TREE)
|
|
{
|
|
// Calling convert here can undo our excess precision change.
|
|
// That may or may not be a bug in convert_to_real.
|
|
ret = build1_loc(location.gcc_location(), NOP_EXPR, rettype, ret);
|
|
}
|
|
|
|
delete[] args;
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// An expression as a statement.
|
|
|
|
Bstatement*
|
|
Gcc_backend::expression_statement(Bfunction*, Bexpression* expr)
|
|
{
|
|
return this->make_statement(expr->get_tree());
|
|
}
|
|
|
|
// Variable initialization.
|
|
|
|
Bstatement*
|
|
Gcc_backend::init_statement(Bfunction*, Bvariable* var, Bexpression* init)
|
|
{
|
|
tree var_tree = var->get_decl();
|
|
tree init_tree = init->get_tree();
|
|
if (var_tree == error_mark_node || init_tree == error_mark_node)
|
|
return this->error_statement();
|
|
gcc_assert(TREE_CODE(var_tree) == VAR_DECL);
|
|
|
|
// To avoid problems with GNU ld, we don't make zero-sized
|
|
// externally visible variables. That might lead us to doing an
|
|
// initialization of a zero-sized expression to a non-zero sized
|
|
// variable, or vice-versa. Avoid crashes by omitting the
|
|
// initializer. Such initializations don't mean anything anyhow.
|
|
if (int_size_in_bytes(TREE_TYPE(var_tree)) != 0
|
|
&& init_tree != NULL_TREE
|
|
&& TREE_TYPE(init_tree) != void_type_node
|
|
&& int_size_in_bytes(TREE_TYPE(init_tree)) != 0)
|
|
{
|
|
DECL_INITIAL(var_tree) = init_tree;
|
|
init_tree = NULL_TREE;
|
|
}
|
|
|
|
tree ret = build1_loc(DECL_SOURCE_LOCATION(var_tree), DECL_EXPR,
|
|
void_type_node, var_tree);
|
|
if (init_tree != NULL_TREE)
|
|
ret = build2_loc(DECL_SOURCE_LOCATION(var_tree), COMPOUND_EXPR,
|
|
void_type_node, init_tree, ret);
|
|
|
|
return this->make_statement(ret);
|
|
}
|
|
|
|
// Assignment.
|
|
|
|
Bstatement*
|
|
Gcc_backend::assignment_statement(Bfunction* bfn, Bexpression* lhs,
|
|
Bexpression* rhs, Location location)
|
|
{
|
|
tree lhs_tree = lhs->get_tree();
|
|
tree rhs_tree = rhs->get_tree();
|
|
if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
|
|
return this->error_statement();
|
|
|
|
// To avoid problems with GNU ld, we don't make zero-sized
|
|
// externally visible variables. That might lead us to doing an
|
|
// assignment of a zero-sized expression to a non-zero sized
|
|
// expression; avoid crashes here by avoiding assignments of
|
|
// zero-sized expressions. Such assignments don't really mean
|
|
// anything anyhow.
|
|
if (TREE_TYPE(lhs_tree) == void_type_node
|
|
|| int_size_in_bytes(TREE_TYPE(lhs_tree)) == 0
|
|
|| TREE_TYPE(rhs_tree) == void_type_node
|
|
|| int_size_in_bytes(TREE_TYPE(rhs_tree)) == 0)
|
|
return this->compound_statement(this->expression_statement(bfn, lhs),
|
|
this->expression_statement(bfn, rhs));
|
|
|
|
rhs_tree = this->convert_tree(TREE_TYPE(lhs_tree), rhs_tree, location);
|
|
|
|
return this->make_statement(fold_build2_loc(location.gcc_location(),
|
|
MODIFY_EXPR,
|
|
void_type_node,
|
|
lhs_tree, rhs_tree));
|
|
}
|
|
|
|
// Return.
|
|
|
|
Bstatement*
|
|
Gcc_backend::return_statement(Bfunction* bfunction,
|
|
const std::vector<Bexpression*>& vals,
|
|
Location location)
|
|
{
|
|
tree fntree = bfunction->get_tree();
|
|
if (fntree == error_mark_node)
|
|
return this->error_statement();
|
|
tree result = DECL_RESULT(fntree);
|
|
if (result == error_mark_node)
|
|
return this->error_statement();
|
|
|
|
// If the result size is zero bytes, we have set the function type
|
|
// to have a result type of void, so don't return anything.
|
|
// See the function_type method.
|
|
tree res_type = TREE_TYPE(result);
|
|
if (res_type == void_type_node || int_size_in_bytes(res_type) == 0)
|
|
{
|
|
tree stmt_list = NULL_TREE;
|
|
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
|
|
p != vals.end();
|
|
p++)
|
|
{
|
|
tree val = (*p)->get_tree();
|
|
if (val == error_mark_node)
|
|
return this->error_statement();
|
|
append_to_statement_list(val, &stmt_list);
|
|
}
|
|
tree ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
|
|
void_type_node, NULL_TREE);
|
|
append_to_statement_list(ret, &stmt_list);
|
|
return this->make_statement(stmt_list);
|
|
}
|
|
|
|
tree ret;
|
|
if (vals.empty())
|
|
ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, void_type_node,
|
|
NULL_TREE);
|
|
else if (vals.size() == 1)
|
|
{
|
|
tree val = vals.front()->get_tree();
|
|
if (val == error_mark_node)
|
|
return this->error_statement();
|
|
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
|
|
void_type_node, result,
|
|
vals.front()->get_tree());
|
|
ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
|
|
void_type_node, set);
|
|
}
|
|
else
|
|
{
|
|
// To return multiple values, copy the values into a temporary
|
|
// variable of the right structure type, and then assign the
|
|
// temporary variable to the DECL_RESULT in the return
|
|
// statement.
|
|
tree stmt_list = NULL_TREE;
|
|
tree rettype = TREE_TYPE(result);
|
|
|
|
if (DECL_STRUCT_FUNCTION(fntree) == NULL)
|
|
push_struct_function(fntree);
|
|
else
|
|
push_cfun(DECL_STRUCT_FUNCTION(fntree));
|
|
tree rettmp = create_tmp_var(rettype, "RESULT");
|
|
pop_cfun();
|
|
|
|
tree field = TYPE_FIELDS(rettype);
|
|
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
|
|
p != vals.end();
|
|
p++, field = DECL_CHAIN(field))
|
|
{
|
|
gcc_assert(field != NULL_TREE);
|
|
tree ref = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
|
|
TREE_TYPE(field), rettmp, field,
|
|
NULL_TREE);
|
|
tree val = (*p)->get_tree();
|
|
if (val == error_mark_node)
|
|
return this->error_statement();
|
|
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
|
|
void_type_node,
|
|
ref, (*p)->get_tree());
|
|
append_to_statement_list(set, &stmt_list);
|
|
}
|
|
gcc_assert(field == NULL_TREE);
|
|
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
|
|
void_type_node,
|
|
result, rettmp);
|
|
tree ret_expr = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
|
|
void_type_node, set);
|
|
append_to_statement_list(ret_expr, &stmt_list);
|
|
ret = stmt_list;
|
|
}
|
|
return this->make_statement(ret);
|
|
}
|
|
|
|
// Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if an
|
|
// error occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and if not
|
|
// NULL, it will always be executed. This is used for handling defers in Go
|
|
// functions. In C++, the resulting code is of this form:
|
|
// try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
|
|
|
|
Bstatement*
|
|
Gcc_backend::exception_handler_statement(Bstatement* bstat,
|
|
Bstatement* except_stmt,
|
|
Bstatement* finally_stmt,
|
|
Location location)
|
|
{
|
|
tree stat_tree = bstat->get_tree();
|
|
tree except_tree = except_stmt == NULL ? NULL_TREE : except_stmt->get_tree();
|
|
tree finally_tree = finally_stmt == NULL
|
|
? NULL_TREE
|
|
: finally_stmt->get_tree();
|
|
|
|
if (stat_tree == error_mark_node
|
|
|| except_tree == error_mark_node
|
|
|| finally_tree == error_mark_node)
|
|
return this->error_statement();
|
|
|
|
if (except_tree != NULL_TREE)
|
|
stat_tree = build2_loc(location.gcc_location(), TRY_CATCH_EXPR,
|
|
void_type_node, stat_tree,
|
|
build2_loc(location.gcc_location(), CATCH_EXPR,
|
|
void_type_node, NULL, except_tree));
|
|
if (finally_tree != NULL_TREE)
|
|
stat_tree = build2_loc(location.gcc_location(), TRY_FINALLY_EXPR,
|
|
void_type_node, stat_tree, finally_tree);
|
|
return this->make_statement(stat_tree);
|
|
}
|
|
|
|
// If.
|
|
|
|
Bstatement*
|
|
Gcc_backend::if_statement(Bfunction*, Bexpression* condition,
|
|
Bblock* then_block, Bblock* else_block,
|
|
Location location)
|
|
{
|
|
tree cond_tree = condition->get_tree();
|
|
tree then_tree = then_block->get_tree();
|
|
tree else_tree = else_block == NULL ? NULL_TREE : else_block->get_tree();
|
|
if (cond_tree == error_mark_node
|
|
|| then_tree == error_mark_node
|
|
|| else_tree == error_mark_node)
|
|
return this->error_statement();
|
|
tree ret = build3_loc(location.gcc_location(), COND_EXPR, void_type_node,
|
|
cond_tree, then_tree, else_tree);
|
|
return this->make_statement(ret);
|
|
}
|
|
|
|
// Switch.
|
|
|
|
Bstatement*
|
|
Gcc_backend::switch_statement(
|
|
Bfunction* function,
|
|
Bexpression* value,
|
|
const std::vector<std::vector<Bexpression*> >& cases,
|
|
const std::vector<Bstatement*>& statements,
|
|
Location switch_location)
|
|
{
|
|
gcc_assert(cases.size() == statements.size());
|
|
|
|
tree decl = function->get_tree();
|
|
if (DECL_STRUCT_FUNCTION(decl) == NULL)
|
|
push_struct_function(decl);
|
|
else
|
|
push_cfun(DECL_STRUCT_FUNCTION(decl));
|
|
|
|
tree stmt_list = NULL_TREE;
|
|
std::vector<std::vector<Bexpression*> >::const_iterator pc = cases.begin();
|
|
for (std::vector<Bstatement*>::const_iterator ps = statements.begin();
|
|
ps != statements.end();
|
|
++ps, ++pc)
|
|
{
|
|
if (pc->empty())
|
|
{
|
|
location_t loc = (*ps != NULL
|
|
? EXPR_LOCATION((*ps)->get_tree())
|
|
: UNKNOWN_LOCATION);
|
|
tree label = create_artificial_label(loc);
|
|
tree c = build_case_label(NULL_TREE, NULL_TREE, label);
|
|
append_to_statement_list(c, &stmt_list);
|
|
}
|
|
else
|
|
{
|
|
for (std::vector<Bexpression*>::const_iterator pcv = pc->begin();
|
|
pcv != pc->end();
|
|
++pcv)
|
|
{
|
|
tree t = (*pcv)->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_statement();
|
|
location_t loc = EXPR_LOCATION(t);
|
|
tree label = create_artificial_label(loc);
|
|
tree c = build_case_label((*pcv)->get_tree(), NULL_TREE, label);
|
|
append_to_statement_list(c, &stmt_list);
|
|
}
|
|
}
|
|
|
|
if (*ps != NULL)
|
|
{
|
|
tree t = (*ps)->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_statement();
|
|
append_to_statement_list(t, &stmt_list);
|
|
}
|
|
}
|
|
pop_cfun();
|
|
|
|
tree tv = value->get_tree();
|
|
if (tv == error_mark_node)
|
|
return this->error_statement();
|
|
tree t = build2_loc(switch_location.gcc_location(), SWITCH_EXPR,
|
|
NULL_TREE, tv, stmt_list);
|
|
return this->make_statement(t);
|
|
}
|
|
|
|
// Pair of statements.
|
|
|
|
Bstatement*
|
|
Gcc_backend::compound_statement(Bstatement* s1, Bstatement* s2)
|
|
{
|
|
tree stmt_list = NULL_TREE;
|
|
tree t = s1->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_statement();
|
|
append_to_statement_list(t, &stmt_list);
|
|
t = s2->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_statement();
|
|
append_to_statement_list(t, &stmt_list);
|
|
|
|
// If neither statement has any side effects, stmt_list can be NULL
|
|
// at this point.
|
|
if (stmt_list == NULL_TREE)
|
|
stmt_list = integer_zero_node;
|
|
|
|
return this->make_statement(stmt_list);
|
|
}
|
|
|
|
// List of statements.
|
|
|
|
Bstatement*
|
|
Gcc_backend::statement_list(const std::vector<Bstatement*>& statements)
|
|
{
|
|
tree stmt_list = NULL_TREE;
|
|
for (std::vector<Bstatement*>::const_iterator p = statements.begin();
|
|
p != statements.end();
|
|
++p)
|
|
{
|
|
tree t = (*p)->get_tree();
|
|
if (t == error_mark_node)
|
|
return this->error_statement();
|
|
append_to_statement_list(t, &stmt_list);
|
|
}
|
|
return this->make_statement(stmt_list);
|
|
}
|
|
|
|
// Make a block. For some reason gcc uses a dual structure for
|
|
// blocks: BLOCK tree nodes and BIND_EXPR tree nodes. Since the
|
|
// BIND_EXPR node points to the BLOCK node, we store the BIND_EXPR in
|
|
// the Bblock.
|
|
|
|
Bblock*
|
|
Gcc_backend::block(Bfunction* function, Bblock* enclosing,
|
|
const std::vector<Bvariable*>& vars,
|
|
Location start_location,
|
|
Location)
|
|
{
|
|
tree block_tree = make_node(BLOCK);
|
|
if (enclosing == NULL)
|
|
{
|
|
tree fndecl = function->get_tree();
|
|
gcc_assert(fndecl != NULL_TREE);
|
|
|
|
// We may have already created a block for local variables when
|
|
// we take the address of a parameter.
|
|
if (DECL_INITIAL(fndecl) == NULL_TREE)
|
|
{
|
|
BLOCK_SUPERCONTEXT(block_tree) = fndecl;
|
|
DECL_INITIAL(fndecl) = block_tree;
|
|
}
|
|
else
|
|
{
|
|
tree superblock_tree = DECL_INITIAL(fndecl);
|
|
BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
|
|
tree* pp;
|
|
for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
|
|
*pp != NULL_TREE;
|
|
pp = &BLOCK_CHAIN(*pp))
|
|
;
|
|
*pp = block_tree;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree superbind_tree = enclosing->get_tree();
|
|
tree superblock_tree = BIND_EXPR_BLOCK(superbind_tree);
|
|
gcc_assert(TREE_CODE(superblock_tree) == BLOCK);
|
|
|
|
BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
|
|
tree* pp;
|
|
for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
|
|
*pp != NULL_TREE;
|
|
pp = &BLOCK_CHAIN(*pp))
|
|
;
|
|
*pp = block_tree;
|
|
}
|
|
|
|
tree* pp = &BLOCK_VARS(block_tree);
|
|
for (std::vector<Bvariable*>::const_iterator pv = vars.begin();
|
|
pv != vars.end();
|
|
++pv)
|
|
{
|
|
*pp = (*pv)->get_decl();
|
|
if (*pp != error_mark_node)
|
|
pp = &DECL_CHAIN(*pp);
|
|
}
|
|
*pp = NULL_TREE;
|
|
|
|
TREE_USED(block_tree) = 1;
|
|
|
|
tree bind_tree = build3_loc(start_location.gcc_location(), BIND_EXPR,
|
|
void_type_node, BLOCK_VARS(block_tree),
|
|
NULL_TREE, block_tree);
|
|
TREE_SIDE_EFFECTS(bind_tree) = 1;
|
|
return new Bblock(bind_tree);
|
|
}
|
|
|
|
// Add statements to a block.
|
|
|
|
void
|
|
Gcc_backend::block_add_statements(Bblock* bblock,
|
|
const std::vector<Bstatement*>& statements)
|
|
{
|
|
tree stmt_list = NULL_TREE;
|
|
for (std::vector<Bstatement*>::const_iterator p = statements.begin();
|
|
p != statements.end();
|
|
++p)
|
|
{
|
|
tree s = (*p)->get_tree();
|
|
if (s != error_mark_node)
|
|
append_to_statement_list(s, &stmt_list);
|
|
}
|
|
|
|
tree bind_tree = bblock->get_tree();
|
|
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
|
|
BIND_EXPR_BODY(bind_tree) = stmt_list;
|
|
}
|
|
|
|
// Return a block as a statement.
|
|
|
|
Bstatement*
|
|
Gcc_backend::block_statement(Bblock* bblock)
|
|
{
|
|
tree bind_tree = bblock->get_tree();
|
|
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
|
|
return this->make_statement(bind_tree);
|
|
}
|
|
|
|
// This is not static because we declare it with GTY(()) in go-c.h.
|
|
tree go_non_zero_struct;
|
|
|
|
// Return a type corresponding to TYPE with non-zero size.
|
|
|
|
tree
|
|
Gcc_backend::non_zero_size_type(tree type)
|
|
{
|
|
if (int_size_in_bytes(type) != 0)
|
|
return type;
|
|
|
|
switch (TREE_CODE(type))
|
|
{
|
|
case RECORD_TYPE:
|
|
if (TYPE_FIELDS(type) != NULL_TREE)
|
|
{
|
|
tree ns = make_node(RECORD_TYPE);
|
|
tree field_trees = NULL_TREE;
|
|
tree *pp = &field_trees;
|
|
for (tree field = TYPE_FIELDS(type);
|
|
field != NULL_TREE;
|
|
field = DECL_CHAIN(field))
|
|
{
|
|
tree ft = TREE_TYPE(field);
|
|
if (field == TYPE_FIELDS(type))
|
|
ft = non_zero_size_type(ft);
|
|
tree f = build_decl(DECL_SOURCE_LOCATION(field), FIELD_DECL,
|
|
DECL_NAME(field), ft);
|
|
DECL_CONTEXT(f) = ns;
|
|
*pp = f;
|
|
pp = &DECL_CHAIN(f);
|
|
}
|
|
TYPE_FIELDS(ns) = field_trees;
|
|
layout_type(ns);
|
|
return ns;
|
|
}
|
|
|
|
if (go_non_zero_struct == NULL_TREE)
|
|
{
|
|
type = make_node(RECORD_TYPE);
|
|
tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL,
|
|
get_identifier("dummy"),
|
|
boolean_type_node);
|
|
DECL_CONTEXT(field) = type;
|
|
TYPE_FIELDS(type) = field;
|
|
layout_type(type);
|
|
go_non_zero_struct = type;
|
|
}
|
|
return go_non_zero_struct;
|
|
|
|
case ARRAY_TYPE:
|
|
{
|
|
tree element_type = non_zero_size_type(TREE_TYPE(type));
|
|
return build_array_type_nelts(element_type, 1);
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable();
|
|
}
|
|
|
|
gcc_unreachable();
|
|
}
|
|
|
|
// Convert EXPR_TREE to TYPE_TREE. Sometimes the same unnamed Go type
|
|
// can be created multiple times and thus have multiple tree
|
|
// representations. Make sure this does not confuse the middle-end.
|
|
|
|
tree
|
|
Gcc_backend::convert_tree(tree type_tree, tree expr_tree, Location location)
|
|
{
|
|
if (type_tree == TREE_TYPE(expr_tree))
|
|
return expr_tree;
|
|
|
|
if (type_tree == error_mark_node
|
|
|| expr_tree == error_mark_node
|
|
|| TREE_TYPE(expr_tree) == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
gcc_assert(TREE_CODE(type_tree) == TREE_CODE(TREE_TYPE(expr_tree)));
|
|
if (POINTER_TYPE_P(type_tree)
|
|
|| INTEGRAL_TYPE_P(type_tree)
|
|
|| SCALAR_FLOAT_TYPE_P(type_tree)
|
|
|| COMPLEX_FLOAT_TYPE_P(type_tree))
|
|
return fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
|
|
else if (TREE_CODE(type_tree) == RECORD_TYPE
|
|
|| TREE_CODE(type_tree) == ARRAY_TYPE)
|
|
{
|
|
gcc_assert(int_size_in_bytes(type_tree)
|
|
== int_size_in_bytes(TREE_TYPE(expr_tree)));
|
|
if (TYPE_MAIN_VARIANT(type_tree)
|
|
== TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
|
|
return fold_build1_loc(location.gcc_location(), NOP_EXPR,
|
|
type_tree, expr_tree);
|
|
return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
|
|
type_tree, expr_tree);
|
|
}
|
|
|
|
gcc_unreachable();
|
|
}
|
|
|
|
// Make a global variable.
|
|
|
|
Bvariable*
|
|
Gcc_backend::global_variable(const std::string& var_name,
|
|
const std::string& asm_name,
|
|
Btype* btype,
|
|
unsigned int flags,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
|
|
// The GNU linker does not like dynamic variables with zero size.
|
|
tree orig_type_tree = type_tree;
|
|
bool is_external = (flags & variable_is_external) != 0;
|
|
bool is_hidden = (flags & variable_is_hidden) != 0;
|
|
if ((is_external || !is_hidden) && int_size_in_bytes(type_tree) == 0)
|
|
type_tree = this->non_zero_size_type(type_tree);
|
|
|
|
tree decl = build_decl(location.gcc_location(), VAR_DECL,
|
|
get_identifier_from_string(var_name),
|
|
type_tree);
|
|
if ((flags & variable_is_external) != 0)
|
|
{
|
|
DECL_EXTERNAL(decl) = 1;
|
|
flags &=~ variable_is_external;
|
|
}
|
|
else
|
|
TREE_STATIC(decl) = 1;
|
|
|
|
if ((flags & variable_is_hidden) == 0)
|
|
TREE_PUBLIC(decl) = 1;
|
|
else
|
|
flags &=~ variable_is_hidden;
|
|
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
|
|
// We take the address in Bvariable::get_tree if orig_type_tree is
|
|
// different from type_tree.
|
|
if (orig_type_tree != type_tree)
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
|
|
TREE_USED(decl) = 1;
|
|
|
|
if ((flags & variable_in_unique_section) != 0)
|
|
{
|
|
resolve_unique_section (decl, 0, 1);
|
|
flags &=~ variable_in_unique_section;
|
|
}
|
|
|
|
gcc_assert(flags == 0);
|
|
|
|
go_preserve_from_gc(decl);
|
|
|
|
return new Bvariable(decl, orig_type_tree);
|
|
}
|
|
|
|
// Set the initial value of a global variable.
|
|
|
|
void
|
|
Gcc_backend::global_variable_set_init(Bvariable* var, Bexpression* expr)
|
|
{
|
|
tree expr_tree = expr->get_tree();
|
|
if (expr_tree == error_mark_node)
|
|
return;
|
|
gcc_assert(TREE_CONSTANT(expr_tree));
|
|
tree var_decl = var->get_decl();
|
|
if (var_decl == error_mark_node)
|
|
return;
|
|
DECL_INITIAL(var_decl) = expr_tree;
|
|
|
|
// If this variable goes in a unique section, it may need to go into
|
|
// a different one now that DECL_INITIAL is set.
|
|
if (symtab_node::get(var_decl)
|
|
&& symtab_node::get(var_decl)->implicit_section)
|
|
{
|
|
set_decl_section_name (var_decl, (const char *) NULL);
|
|
resolve_unique_section (var_decl,
|
|
compute_reloc_for_constant (expr_tree),
|
|
1);
|
|
}
|
|
}
|
|
|
|
// Make a local variable.
|
|
|
|
Bvariable*
|
|
Gcc_backend::local_variable(Bfunction* function, const std::string& name,
|
|
Btype* btype, Bvariable* decl_var,
|
|
unsigned int flags, Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
tree decl = build_decl(location.gcc_location(), VAR_DECL,
|
|
get_identifier_from_string(name),
|
|
type_tree);
|
|
DECL_CONTEXT(decl) = function->get_tree();
|
|
TREE_USED(decl) = 1;
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
if (decl_var != NULL)
|
|
{
|
|
DECL_HAS_VALUE_EXPR_P(decl) = 1;
|
|
SET_DECL_VALUE_EXPR(decl, decl_var->get_decl());
|
|
}
|
|
go_assert(flags == 0);
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Make a function parameter variable.
|
|
|
|
Bvariable*
|
|
Gcc_backend::parameter_variable(Bfunction* function, const std::string& name,
|
|
Btype* btype, unsigned int flags,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
tree decl = build_decl(location.gcc_location(), PARM_DECL,
|
|
get_identifier_from_string(name),
|
|
type_tree);
|
|
DECL_CONTEXT(decl) = function->get_tree();
|
|
DECL_ARG_TYPE(decl) = type_tree;
|
|
TREE_USED(decl) = 1;
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
go_assert(flags == 0);
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Make a static chain variable.
|
|
|
|
Bvariable*
|
|
Gcc_backend::static_chain_variable(Bfunction* function, const std::string& name,
|
|
Btype* btype, unsigned int flags,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
tree decl = build_decl(location.gcc_location(), PARM_DECL,
|
|
get_identifier_from_string(name), type_tree);
|
|
tree fndecl = function->get_tree();
|
|
DECL_CONTEXT(decl) = fndecl;
|
|
DECL_ARG_TYPE(decl) = type_tree;
|
|
TREE_USED(decl) = 1;
|
|
DECL_ARTIFICIAL(decl) = 1;
|
|
DECL_IGNORED_P(decl) = 1;
|
|
TREE_READONLY(decl) = 1;
|
|
|
|
struct function *f = DECL_STRUCT_FUNCTION(fndecl);
|
|
if (f == NULL)
|
|
{
|
|
push_struct_function(fndecl);
|
|
pop_cfun();
|
|
f = DECL_STRUCT_FUNCTION(fndecl);
|
|
}
|
|
gcc_assert(f->static_chain_decl == NULL);
|
|
f->static_chain_decl = decl;
|
|
DECL_STATIC_CHAIN(fndecl) = 1;
|
|
go_assert(flags == 0);
|
|
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Make a temporary variable.
|
|
|
|
Bvariable*
|
|
Gcc_backend::temporary_variable(Bfunction* function, Bblock* bblock,
|
|
Btype* btype, Bexpression* binit,
|
|
unsigned int flags,
|
|
Location location,
|
|
Bstatement** pstatement)
|
|
{
|
|
gcc_assert(function != NULL);
|
|
tree decl = function->get_tree();
|
|
tree type_tree = btype->get_tree();
|
|
tree init_tree = binit == NULL ? NULL_TREE : binit->get_tree();
|
|
if (type_tree == error_mark_node
|
|
|| init_tree == error_mark_node
|
|
|| decl == error_mark_node)
|
|
{
|
|
*pstatement = this->error_statement();
|
|
return this->error_variable();
|
|
}
|
|
|
|
tree var;
|
|
// We can only use create_tmp_var if the type is not addressable.
|
|
if (!TREE_ADDRESSABLE(type_tree))
|
|
{
|
|
if (DECL_STRUCT_FUNCTION(decl) == NULL)
|
|
push_struct_function(decl);
|
|
else
|
|
push_cfun(DECL_STRUCT_FUNCTION(decl));
|
|
|
|
var = create_tmp_var(type_tree, "GOTMP");
|
|
pop_cfun();
|
|
}
|
|
else
|
|
{
|
|
gcc_assert(bblock != NULL);
|
|
var = build_decl(location.gcc_location(), VAR_DECL,
|
|
create_tmp_var_name("GOTMP"),
|
|
type_tree);
|
|
DECL_ARTIFICIAL(var) = 1;
|
|
DECL_IGNORED_P(var) = 1;
|
|
TREE_USED(var) = 1;
|
|
DECL_CONTEXT(var) = decl;
|
|
|
|
// We have to add this variable to the BLOCK and the BIND_EXPR.
|
|
tree bind_tree = bblock->get_tree();
|
|
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
|
|
tree block_tree = BIND_EXPR_BLOCK(bind_tree);
|
|
gcc_assert(TREE_CODE(block_tree) == BLOCK);
|
|
DECL_CHAIN(var) = BLOCK_VARS(block_tree);
|
|
BLOCK_VARS(block_tree) = var;
|
|
BIND_EXPR_VARS(bind_tree) = BLOCK_VARS(block_tree);
|
|
}
|
|
|
|
if (this->type_size(btype) != 0
|
|
&& init_tree != NULL_TREE
|
|
&& TREE_TYPE(init_tree) != void_type_node)
|
|
DECL_INITIAL(var) = this->convert_tree(type_tree, init_tree, location);
|
|
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(var) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
|
|
gcc_assert(flags == 0);
|
|
|
|
*pstatement = this->make_statement(build1_loc(location.gcc_location(),
|
|
DECL_EXPR,
|
|
void_type_node, var));
|
|
|
|
// For a zero sized type, don't initialize VAR with BINIT, but still
|
|
// evaluate BINIT for its side effects.
|
|
if (init_tree != NULL_TREE
|
|
&& (this->type_size(btype) == 0
|
|
|| TREE_TYPE(init_tree) == void_type_node))
|
|
*pstatement =
|
|
this->compound_statement(this->expression_statement(function, binit),
|
|
*pstatement);
|
|
|
|
return new Bvariable(var);
|
|
}
|
|
|
|
// Create an implicit variable that is compiler-defined. This is used when
|
|
// generating GC root variables and storing the values of a slice initializer.
|
|
|
|
Bvariable*
|
|
Gcc_backend::implicit_variable(const std::string& name,
|
|
const std::string& asm_name,
|
|
Btype* type, unsigned int flags,
|
|
int64_t alignment)
|
|
{
|
|
tree type_tree = type->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
|
|
tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
|
|
get_identifier_from_string(name), type_tree);
|
|
DECL_EXTERNAL(decl) = 0;
|
|
if ((flags & variable_is_hidden) != 0)
|
|
flags &=~ variable_is_hidden;
|
|
else
|
|
TREE_PUBLIC(decl) = 1;
|
|
TREE_STATIC(decl) = 1;
|
|
TREE_USED(decl) = 1;
|
|
DECL_ARTIFICIAL(decl) = 1;
|
|
if ((flags & variable_is_common) != 0)
|
|
{
|
|
DECL_COMMON(decl) = 1;
|
|
|
|
// When the initializer for one implicit_variable refers to another,
|
|
// it needs to know the visibility of the referenced struct so that
|
|
// compute_reloc_for_constant will return the right value. On many
|
|
// systems calling make_decl_one_only will mark the decl as weak,
|
|
// which will change the return value of compute_reloc_for_constant.
|
|
// We can't reliably call make_decl_one_only yet, because we don't
|
|
// yet know the initializer. This issue doesn't arise in C because
|
|
// Go initializers, unlike C initializers, can be indirectly
|
|
// recursive. To ensure that compute_reloc_for_constant computes
|
|
// the right value if some other initializer refers to this one, we
|
|
// mark this symbol as weak here. We undo that below in
|
|
// immutable_struct_set_init before calling mark_decl_one_only.
|
|
DECL_WEAK(decl) = 1;
|
|
|
|
flags &=~ variable_is_common;
|
|
}
|
|
if ((flags & variable_is_constant) != 0)
|
|
{
|
|
TREE_READONLY(decl) = 1;
|
|
TREE_CONSTANT(decl) = 1;
|
|
flags &=~ variable_is_constant;
|
|
}
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
if (alignment != 0)
|
|
{
|
|
SET_DECL_ALIGN(decl, alignment * BITS_PER_UNIT);
|
|
DECL_USER_ALIGN(decl) = 1;
|
|
}
|
|
if (! asm_name.empty())
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
gcc_assert(flags == 0);
|
|
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Set the initalizer for a variable created by implicit_variable.
|
|
// This is where we finish compiling the variable.
|
|
|
|
void
|
|
Gcc_backend::implicit_variable_set_init(Bvariable* var, const std::string&,
|
|
Btype*, unsigned int flags,
|
|
Bexpression* init)
|
|
{
|
|
tree decl = var->get_decl();
|
|
tree init_tree;
|
|
if (init == NULL)
|
|
init_tree = NULL_TREE;
|
|
else
|
|
init_tree = init->get_tree();
|
|
if (decl == error_mark_node || init_tree == error_mark_node)
|
|
return;
|
|
|
|
DECL_INITIAL(decl) = init_tree;
|
|
|
|
// Now that DECL_INITIAL is set, we can't call make_decl_one_only.
|
|
// See the comment where DECL_WEAK is set in implicit_variable.
|
|
if ((flags & variable_is_common) != 0)
|
|
{
|
|
DECL_WEAK(decl) = 0;
|
|
make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
|
|
}
|
|
|
|
resolve_unique_section(decl, 2, 1);
|
|
|
|
rest_of_decl_compilation(decl, 1, 0);
|
|
}
|
|
|
|
// Return a reference to an implicit variable defined in another package.
|
|
|
|
Bvariable*
|
|
Gcc_backend::implicit_variable_reference(const std::string& name,
|
|
const std::string& asm_name,
|
|
Btype* btype)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
|
|
tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
|
|
get_identifier_from_string(name), type_tree);
|
|
DECL_EXTERNAL(decl) = 1;
|
|
TREE_PUBLIC(decl) = 1;
|
|
TREE_STATIC(decl) = 0;
|
|
DECL_ARTIFICIAL(decl) = 1;
|
|
if (! asm_name.empty())
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Create a named immutable initialized data structure.
|
|
|
|
Bvariable*
|
|
Gcc_backend::immutable_struct(const std::string& name,
|
|
const std::string& asm_name,
|
|
unsigned int flags, Btype* btype,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
|
|
tree decl = build_decl(location.gcc_location(), VAR_DECL,
|
|
get_identifier_from_string(name),
|
|
build_qualified_type(type_tree, TYPE_QUAL_CONST));
|
|
TREE_STATIC(decl) = 1;
|
|
TREE_USED(decl) = 1;
|
|
TREE_READONLY(decl) = 1;
|
|
TREE_CONSTANT(decl) = 1;
|
|
DECL_ARTIFICIAL(decl) = 1;
|
|
if ((flags & variable_is_hidden) != 0)
|
|
flags &=~ variable_is_hidden;
|
|
else
|
|
TREE_PUBLIC(decl) = 1;
|
|
if (! asm_name.empty())
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
if ((flags & variable_address_is_taken) != 0)
|
|
{
|
|
TREE_ADDRESSABLE(decl) = 1;
|
|
flags &=~ variable_address_is_taken;
|
|
}
|
|
|
|
// When the initializer for one immutable_struct refers to another,
|
|
// it needs to know the visibility of the referenced struct so that
|
|
// compute_reloc_for_constant will return the right value. On many
|
|
// systems calling make_decl_one_only will mark the decl as weak,
|
|
// which will change the return value of compute_reloc_for_constant.
|
|
// We can't reliably call make_decl_one_only yet, because we don't
|
|
// yet know the initializer. This issue doesn't arise in C because
|
|
// Go initializers, unlike C initializers, can be indirectly
|
|
// recursive. To ensure that compute_reloc_for_constant computes
|
|
// the right value if some other initializer refers to this one, we
|
|
// mark this symbol as weak here. We undo that below in
|
|
// immutable_struct_set_init before calling mark_decl_one_only.
|
|
if ((flags & variable_is_common) != 0)
|
|
{
|
|
DECL_WEAK(decl) = 1;
|
|
flags &=~ variable_is_common;
|
|
}
|
|
|
|
gcc_assert(flags == 0);
|
|
|
|
// We don't call rest_of_decl_compilation until we have the
|
|
// initializer.
|
|
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Set the initializer for a variable created by immutable_struct.
|
|
// This is where we finish compiling the variable.
|
|
|
|
void
|
|
Gcc_backend::immutable_struct_set_init(Bvariable* var, const std::string&,
|
|
unsigned int flags, Btype*, Location,
|
|
Bexpression* initializer)
|
|
{
|
|
tree decl = var->get_decl();
|
|
tree init_tree = initializer->get_tree();
|
|
if (decl == error_mark_node || init_tree == error_mark_node)
|
|
return;
|
|
|
|
DECL_INITIAL(decl) = init_tree;
|
|
|
|
// Now that DECL_INITIAL is set, we can't call make_decl_one_only.
|
|
// See the comment where DECL_WEAK is set in immutable_struct.
|
|
if ((flags & variable_is_common) != 0)
|
|
{
|
|
DECL_WEAK(decl) = 0;
|
|
make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
|
|
}
|
|
|
|
// These variables are often unneeded in the final program, so put
|
|
// them in their own section so that linker GC can discard them.
|
|
resolve_unique_section(decl,
|
|
compute_reloc_for_constant (init_tree),
|
|
1);
|
|
|
|
rest_of_decl_compilation(decl, 1, 0);
|
|
}
|
|
|
|
// Return a reference to an immutable initialized data structure
|
|
// defined in another package.
|
|
|
|
Bvariable*
|
|
Gcc_backend::immutable_struct_reference(const std::string& name,
|
|
const std::string& asm_name,
|
|
Btype* btype,
|
|
Location location)
|
|
{
|
|
tree type_tree = btype->get_tree();
|
|
if (type_tree == error_mark_node)
|
|
return this->error_variable();
|
|
gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
|
|
tree decl = build_decl(location.gcc_location(), VAR_DECL,
|
|
get_identifier_from_string(name),
|
|
build_qualified_type(type_tree, TYPE_QUAL_CONST));
|
|
TREE_READONLY(decl) = 1;
|
|
TREE_CONSTANT(decl) = 1;
|
|
DECL_ARTIFICIAL(decl) = 1;
|
|
TREE_PUBLIC(decl) = 1;
|
|
DECL_EXTERNAL(decl) = 1;
|
|
if (! asm_name.empty())
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
go_preserve_from_gc(decl);
|
|
return new Bvariable(decl);
|
|
}
|
|
|
|
// Make a label.
|
|
|
|
Blabel*
|
|
Gcc_backend::label(Bfunction* function, const std::string& name,
|
|
Location location)
|
|
{
|
|
tree decl;
|
|
if (name.empty())
|
|
{
|
|
tree func_tree = function->get_tree();
|
|
if (DECL_STRUCT_FUNCTION(func_tree) == NULL)
|
|
push_struct_function(func_tree);
|
|
else
|
|
push_cfun(DECL_STRUCT_FUNCTION(func_tree));
|
|
|
|
decl = create_artificial_label(location.gcc_location());
|
|
|
|
pop_cfun();
|
|
}
|
|
else
|
|
{
|
|
tree id = get_identifier_from_string(name);
|
|
decl = build_decl(location.gcc_location(), LABEL_DECL, id,
|
|
void_type_node);
|
|
DECL_CONTEXT(decl) = function->get_tree();
|
|
}
|
|
return new Blabel(decl);
|
|
}
|
|
|
|
// Make a statement which defines a label.
|
|
|
|
Bstatement*
|
|
Gcc_backend::label_definition_statement(Blabel* label)
|
|
{
|
|
tree lab = label->get_tree();
|
|
tree ret = fold_build1_loc(DECL_SOURCE_LOCATION(lab), LABEL_EXPR,
|
|
void_type_node, lab);
|
|
return this->make_statement(ret);
|
|
}
|
|
|
|
// Make a goto statement.
|
|
|
|
Bstatement*
|
|
Gcc_backend::goto_statement(Blabel* label, Location location)
|
|
{
|
|
tree lab = label->get_tree();
|
|
tree ret = fold_build1_loc(location.gcc_location(), GOTO_EXPR, void_type_node,
|
|
lab);
|
|
return this->make_statement(ret);
|
|
}
|
|
|
|
// Get the address of a label.
|
|
|
|
Bexpression*
|
|
Gcc_backend::label_address(Blabel* label, Location location)
|
|
{
|
|
tree lab = label->get_tree();
|
|
TREE_USED(lab) = 1;
|
|
TREE_ADDRESSABLE(lab) = 1;
|
|
tree ret = fold_convert_loc(location.gcc_location(), ptr_type_node,
|
|
build_fold_addr_expr_loc(location.gcc_location(),
|
|
lab));
|
|
return this->make_expression(ret);
|
|
}
|
|
|
|
// Declare or define a new function.
|
|
|
|
Bfunction*
|
|
Gcc_backend::function(Btype* fntype, const std::string& name,
|
|
const std::string& asm_name, unsigned int flags,
|
|
Location location)
|
|
{
|
|
tree functype = fntype->get_tree();
|
|
if (functype != error_mark_node)
|
|
{
|
|
gcc_assert(FUNCTION_POINTER_TYPE_P(functype));
|
|
functype = TREE_TYPE(functype);
|
|
}
|
|
tree id = get_identifier_from_string(name);
|
|
if (functype == error_mark_node || id == error_mark_node)
|
|
return this->error_function();
|
|
|
|
tree decl = build_decl(location.gcc_location(), FUNCTION_DECL, id, functype);
|
|
if (! asm_name.empty())
|
|
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
|
|
if ((flags & function_is_visible) != 0)
|
|
TREE_PUBLIC(decl) = 1;
|
|
if ((flags & function_is_declaration) != 0)
|
|
DECL_EXTERNAL(decl) = 1;
|
|
else
|
|
{
|
|
tree restype = TREE_TYPE(functype);
|
|
tree resdecl =
|
|
build_decl(location.gcc_location(), RESULT_DECL, NULL_TREE, restype);
|
|
DECL_ARTIFICIAL(resdecl) = 1;
|
|
DECL_IGNORED_P(resdecl) = 1;
|
|
DECL_CONTEXT(resdecl) = decl;
|
|
DECL_RESULT(decl) = resdecl;
|
|
}
|
|
if ((flags & function_is_inlinable) == 0)
|
|
DECL_UNINLINABLE(decl) = 1;
|
|
if ((flags & function_no_split_stack) != 0)
|
|
{
|
|
tree attr = get_identifier ("no_split_stack");
|
|
DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
|
|
}
|
|
if ((flags & function_does_not_return) != 0)
|
|
TREE_THIS_VOLATILE(decl) = 1;
|
|
if ((flags & function_in_unique_section) != 0)
|
|
resolve_unique_section(decl, 0, 1);
|
|
if ((flags & function_only_inline) != 0)
|
|
{
|
|
TREE_PUBLIC (decl) = 1;
|
|
DECL_EXTERNAL(decl) = 1;
|
|
DECL_DECLARED_INLINE_P(decl) = 1;
|
|
}
|
|
|
|
// Optimize thunk functions for size. A thunk created for a defer
|
|
// statement that may call recover looks like:
|
|
// if runtime.setdeferretaddr(L1) {
|
|
// goto L1
|
|
// }
|
|
// realfn()
|
|
// L1:
|
|
// The idea is that L1 should be the address to which realfn
|
|
// returns. This only works if this little function is not over
|
|
// optimized. At some point GCC started duplicating the epilogue in
|
|
// the basic-block reordering pass, breaking this assumption.
|
|
// Optimizing the function for size avoids duplicating the epilogue.
|
|
// This optimization shouldn't matter for any thunk since all thunks
|
|
// are small.
|
|
size_t pos = name.find("..thunk");
|
|
if (pos != std::string::npos)
|
|
{
|
|
for (pos += 7; pos < name.length(); ++pos)
|
|
{
|
|
if (name[pos] < '0' || name[pos] > '9')
|
|
break;
|
|
}
|
|
if (pos == name.length())
|
|
{
|
|
struct cl_optimization cur_opts;
|
|
cl_optimization_save(&cur_opts, &global_options,
|
|
&global_options_set);
|
|
global_options.x_optimize_size = 1;
|
|
global_options.x_optimize_fast = 0;
|
|
global_options.x_optimize_debug = 0;
|
|
DECL_FUNCTION_SPECIFIC_OPTIMIZATION(decl) =
|
|
build_optimization_node(&global_options, &global_options_set);
|
|
cl_optimization_restore(&global_options, &global_options_set,
|
|
&cur_opts);
|
|
}
|
|
}
|
|
|
|
go_preserve_from_gc(decl);
|
|
return new Bfunction(decl);
|
|
}
|
|
|
|
// Create a statement that runs all deferred calls for FUNCTION. This should
|
|
// be a statement that looks like this in C++:
|
|
// finish:
|
|
// try { UNDEFER; } catch { CHECK_DEFER; goto finish; }
|
|
|
|
Bstatement*
|
|
Gcc_backend::function_defer_statement(Bfunction* function, Bexpression* undefer,
|
|
Bexpression* defer, Location location)
|
|
{
|
|
tree undefer_tree = undefer->get_tree();
|
|
tree defer_tree = defer->get_tree();
|
|
tree fntree = function->get_tree();
|
|
|
|
if (undefer_tree == error_mark_node
|
|
|| defer_tree == error_mark_node
|
|
|| fntree == error_mark_node)
|
|
return this->error_statement();
|
|
|
|
if (DECL_STRUCT_FUNCTION(fntree) == NULL)
|
|
push_struct_function(fntree);
|
|
else
|
|
push_cfun(DECL_STRUCT_FUNCTION(fntree));
|
|
|
|
tree stmt_list = NULL;
|
|
Blabel* blabel = this->label(function, "", location);
|
|
Bstatement* label_def = this->label_definition_statement(blabel);
|
|
append_to_statement_list(label_def->get_tree(), &stmt_list);
|
|
|
|
Bstatement* jump_stmt = this->goto_statement(blabel, location);
|
|
tree jump = jump_stmt->get_tree();
|
|
tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer_tree, jump);
|
|
catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
|
|
tree try_catch =
|
|
build2(TRY_CATCH_EXPR, void_type_node, undefer_tree, catch_body);
|
|
append_to_statement_list(try_catch, &stmt_list);
|
|
pop_cfun();
|
|
|
|
return this->make_statement(stmt_list);
|
|
}
|
|
|
|
// Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
|
|
// This will only be called for a function definition.
|
|
|
|
bool
|
|
Gcc_backend::function_set_parameters(Bfunction* function,
|
|
const std::vector<Bvariable*>& param_vars)
|
|
{
|
|
tree func_tree = function->get_tree();
|
|
if (func_tree == error_mark_node)
|
|
return false;
|
|
|
|
tree params = NULL_TREE;
|
|
tree *pp = ¶ms;
|
|
for (std::vector<Bvariable*>::const_iterator pv = param_vars.begin();
|
|
pv != param_vars.end();
|
|
++pv)
|
|
{
|
|
*pp = (*pv)->get_decl();
|
|
gcc_assert(*pp != error_mark_node);
|
|
pp = &DECL_CHAIN(*pp);
|
|
}
|
|
*pp = NULL_TREE;
|
|
DECL_ARGUMENTS(func_tree) = params;
|
|
return true;
|
|
}
|
|
|
|
// Set the function body for FUNCTION using the code in CODE_BLOCK.
|
|
|
|
bool
|
|
Gcc_backend::function_set_body(Bfunction* function, Bstatement* code_stmt)
|
|
{
|
|
tree func_tree = function->get_tree();
|
|
tree code = code_stmt->get_tree();
|
|
|
|
if (func_tree == error_mark_node || code == error_mark_node)
|
|
return false;
|
|
DECL_SAVED_TREE(func_tree) = code;
|
|
return true;
|
|
}
|
|
|
|
// Look up a named built-in function in the current backend implementation.
|
|
// Returns NULL if no built-in function by that name exists.
|
|
|
|
Bfunction*
|
|
Gcc_backend::lookup_builtin(const std::string& name)
|
|
{
|
|
if (this->builtin_functions_.count(name) != 0)
|
|
return this->builtin_functions_[name];
|
|
return NULL;
|
|
}
|
|
|
|
// Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
|
|
// FUNCTION_DECLS, and VARIABLE_DECLS declared globally, as well as
|
|
// emit early debugging information.
|
|
|
|
void
|
|
Gcc_backend::write_global_definitions(
|
|
const std::vector<Btype*>& type_decls,
|
|
const std::vector<Bexpression*>& constant_decls,
|
|
const std::vector<Bfunction*>& function_decls,
|
|
const std::vector<Bvariable*>& variable_decls)
|
|
{
|
|
size_t count_definitions = type_decls.size() + constant_decls.size()
|
|
+ function_decls.size() + variable_decls.size();
|
|
|
|
tree* defs = new tree[count_definitions];
|
|
|
|
// Convert all non-erroneous declarations into Gimple form.
|
|
size_t i = 0;
|
|
for (std::vector<Bvariable*>::const_iterator p = variable_decls.begin();
|
|
p != variable_decls.end();
|
|
++p)
|
|
{
|
|
tree v = (*p)->get_decl();
|
|
if (v != error_mark_node)
|
|
{
|
|
defs[i] = v;
|
|
go_preserve_from_gc(defs[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
for (std::vector<Btype*>::const_iterator p = type_decls.begin();
|
|
p != type_decls.end();
|
|
++p)
|
|
{
|
|
tree type_tree = (*p)->get_tree();
|
|
if (type_tree != error_mark_node
|
|
&& IS_TYPE_OR_DECL_P(type_tree))
|
|
{
|
|
defs[i] = TYPE_NAME(type_tree);
|
|
gcc_assert(defs[i] != NULL);
|
|
go_preserve_from_gc(defs[i]);
|
|
++i;
|
|
}
|
|
}
|
|
for (std::vector<Bexpression*>::const_iterator p = constant_decls.begin();
|
|
p != constant_decls.end();
|
|
++p)
|
|
{
|
|
if ((*p)->get_tree() != error_mark_node)
|
|
{
|
|
defs[i] = (*p)->get_tree();
|
|
go_preserve_from_gc(defs[i]);
|
|
++i;
|
|
}
|
|
}
|
|
for (std::vector<Bfunction*>::const_iterator p = function_decls.begin();
|
|
p != function_decls.end();
|
|
++p)
|
|
{
|
|
tree decl = (*p)->get_tree();
|
|
if (decl != error_mark_node)
|
|
{
|
|
go_preserve_from_gc(decl);
|
|
if (DECL_STRUCT_FUNCTION(decl) == NULL)
|
|
allocate_struct_function(decl, false);
|
|
cgraph_node::finalize_function(decl, true);
|
|
|
|
defs[i] = decl;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// Pass everything back to the middle-end.
|
|
|
|
wrapup_global_declarations(defs, i);
|
|
|
|
delete[] defs;
|
|
}
|
|
|
|
void
|
|
Gcc_backend::write_export_data(const char* bytes, unsigned int size)
|
|
{
|
|
go_write_export_data(bytes, size);
|
|
}
|
|
|
|
|
|
// Define a builtin function. BCODE is the builtin function code
|
|
// defined by builtins.def. NAME is the name of the builtin function.
|
|
// LIBNAME is the name of the corresponding library function, and is
|
|
// NULL if there isn't one. FNTYPE is the type of the function.
|
|
// CONST_P is true if the function has the const attribute.
|
|
// NORETURN_P is true if the function has the noreturn attribute.
|
|
|
|
void
|
|
Gcc_backend::define_builtin(built_in_function bcode, const char* name,
|
|
const char* libname, tree fntype, int flags)
|
|
{
|
|
tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
|
|
libname, NULL_TREE);
|
|
if ((flags & builtin_const) != 0)
|
|
TREE_READONLY(decl) = 1;
|
|
if ((flags & builtin_noreturn) != 0)
|
|
TREE_THIS_VOLATILE(decl) = 1;
|
|
if ((flags & builtin_novops) != 0)
|
|
DECL_IS_NOVOPS(decl) = 1;
|
|
set_builtin_decl(bcode, decl, true);
|
|
this->builtin_functions_[name] = this->make_function(decl);
|
|
if (libname != NULL)
|
|
{
|
|
decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
|
|
NULL, NULL_TREE);
|
|
if ((flags & builtin_const) != 0)
|
|
TREE_READONLY(decl) = 1;
|
|
if ((flags & builtin_noreturn) != 0)
|
|
TREE_THIS_VOLATILE(decl) = 1;
|
|
if ((flags & builtin_novops) != 0)
|
|
DECL_IS_NOVOPS(decl) = 1;
|
|
this->builtin_functions_[libname] = this->make_function(decl);
|
|
}
|
|
}
|
|
|
|
// Return the backend generator.
|
|
|
|
Backend*
|
|
go_get_backend()
|
|
{
|
|
return new Gcc_backend();
|
|
}
|