3052 lines
100 KiB
Ada
3052 lines
100 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- P A R _ S C O --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 2009-2020, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Aspects; use Aspects;
|
|
with Atree; use Atree;
|
|
with Debug; use Debug;
|
|
with Errout; use Errout;
|
|
with Lib; use Lib;
|
|
with Lib.Util; use Lib.Util;
|
|
with Namet; use Namet;
|
|
with Nlists; use Nlists;
|
|
with Opt; use Opt;
|
|
with Output; use Output;
|
|
with Put_SCOs;
|
|
with SCOs; use SCOs;
|
|
with Sem; use Sem;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sinfo; use Sinfo;
|
|
with Sinput; use Sinput;
|
|
with Snames; use Snames;
|
|
with Table;
|
|
|
|
with GNAT.HTable; use GNAT.HTable;
|
|
with GNAT.Heap_Sort_G;
|
|
|
|
package body Par_SCO is
|
|
|
|
--------------------------
|
|
-- First-pass SCO table --
|
|
--------------------------
|
|
|
|
-- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
|
|
-- in source code while the ones used with booleans will be interpreted as
|
|
-- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
|
|
-- meaning of these operators is known only after the semantic analysis.
|
|
|
|
-- However, decision SCOs include short circuit operators only. The SCO
|
|
-- information generation pass must be done before expansion, hence before
|
|
-- the semantic analysis. Because of this, the SCO information generation
|
|
-- is done in two passes.
|
|
|
|
-- The first one (SCO_Record_Raw, before semantic analysis) completes the
|
|
-- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
|
|
-- Then, the semantic analysis determines which operators are promoted to
|
|
-- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
|
|
-- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
|
|
-- remaining AND/OR operators and of adjusting decisions accordingly
|
|
-- (splitting decisions, removing empty ones, etc.).
|
|
|
|
type SCO_Generation_State_Type is (None, Raw, Filtered);
|
|
SCO_Generation_State : SCO_Generation_State_Type := None;
|
|
-- Keep track of the SCO generation state: this will prevent us from
|
|
-- running some steps multiple times (the second pass has to be started
|
|
-- from multiple places).
|
|
|
|
package SCO_Raw_Table is new Table.Table
|
|
(Table_Component_Type => SCO_Table_Entry,
|
|
Table_Index_Type => Nat,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 500,
|
|
Table_Increment => 300,
|
|
Table_Name => "Raw_Table");
|
|
|
|
-----------------------
|
|
-- Unit Number Table --
|
|
-----------------------
|
|
|
|
-- This table parallels the SCO_Unit_Table, keeping track of the unit
|
|
-- numbers corresponding to the entries made in this table, so that before
|
|
-- writing out the SCO information to the ALI file, we can fill in the
|
|
-- proper dependency numbers and file names.
|
|
|
|
-- Note that the zeroth entry is here for convenience in sorting the table;
|
|
-- the real lower bound is 1.
|
|
|
|
package SCO_Unit_Number_Table is new Table.Table
|
|
(Table_Component_Type => Unit_Number_Type,
|
|
Table_Index_Type => SCO_Unit_Index,
|
|
Table_Low_Bound => 0, -- see note above on sort
|
|
Table_Initial => 20,
|
|
Table_Increment => 200,
|
|
Table_Name => "SCO_Unit_Number_Entry");
|
|
|
|
------------------------------------------
|
|
-- Condition/Operator/Pragma Hash Table --
|
|
------------------------------------------
|
|
|
|
-- We need to be able to get to conditions quickly for handling the calls
|
|
-- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
|
|
-- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
|
|
-- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
|
|
-- operators and pragmas in the table by their starting sloc, and use this
|
|
-- hash table to map from these sloc values to SCO_Table indexes.
|
|
|
|
type Header_Num is new Integer range 0 .. 996;
|
|
-- Type for hash table headers
|
|
|
|
function Hash (F : Source_Ptr) return Header_Num;
|
|
-- Function to Hash source pointer value
|
|
|
|
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
|
|
-- Function to test two keys for equality
|
|
|
|
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
|
|
-- Function to test for source locations order
|
|
|
|
package SCO_Raw_Hash_Table is new Simple_HTable
|
|
(Header_Num, Int, 0, Source_Ptr, Hash, Equal);
|
|
-- The actual hash table
|
|
|
|
--------------------------
|
|
-- Internal Subprograms --
|
|
--------------------------
|
|
|
|
function Has_Decision (N : Node_Id) return Boolean;
|
|
-- N is the node for a subexpression. Returns True if the subexpression
|
|
-- contains a nested decision (i.e. either is a logical operator, or
|
|
-- contains a logical operator in its subtree).
|
|
--
|
|
-- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
|
|
-- operators are considered as short circuit, just in case the
|
|
-- Short_Circuit_And_Or pragma is used: only real short circuit operations
|
|
-- will be kept in the secord pass.
|
|
|
|
type Tristate is (False, True, Unknown);
|
|
|
|
function Is_Logical_Operator (N : Node_Id) return Tristate;
|
|
-- N is the node for a subexpression. This procedure determines whether N
|
|
-- is a logical operator: True for short circuit conditions, Unknown for OR
|
|
-- and AND (the Short_Circuit_And_Or pragma may be used) and False
|
|
-- otherwise. Note that in cases where True is returned, callers assume
|
|
-- Nkind (N) in N_Op.
|
|
|
|
function To_Source_Location (S : Source_Ptr) return Source_Location;
|
|
-- Converts Source_Ptr value to Source_Location (line/col) format
|
|
|
|
procedure Process_Decisions
|
|
(N : Node_Id;
|
|
T : Character;
|
|
Pragma_Sloc : Source_Ptr);
|
|
-- If N is Empty, has no effect. Otherwise scans the tree for the node N,
|
|
-- to output any decisions it contains. T is one of IEGPWX (for context of
|
|
-- expression: if/exit when/entry guard/pragma/while/expression). If T is
|
|
-- other than X, the node N is the if expression involved, and a decision
|
|
-- is always present (at the very least a simple decision is present at the
|
|
-- top level).
|
|
|
|
procedure Process_Decisions
|
|
(L : List_Id;
|
|
T : Character;
|
|
Pragma_Sloc : Source_Ptr);
|
|
-- Calls above procedure for each element of the list L
|
|
|
|
procedure Set_Raw_Table_Entry
|
|
(C1 : Character;
|
|
C2 : Character;
|
|
From : Source_Ptr;
|
|
To : Source_Ptr;
|
|
Last : Boolean;
|
|
Pragma_Sloc : Source_Ptr := No_Location;
|
|
Pragma_Aspect_Name : Name_Id := No_Name);
|
|
-- Append an entry to SCO_Raw_Table with fields set as per arguments
|
|
|
|
type Dominant_Info is record
|
|
K : Character;
|
|
-- F/T/S/E for a valid dominance marker, or ' ' for no dominant
|
|
|
|
N : Node_Id;
|
|
-- Node providing the Sloc(s) for the dominance marker
|
|
end record;
|
|
No_Dominant : constant Dominant_Info := (' ', Empty);
|
|
|
|
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
|
|
-- Add one entry from the instance table to the corresponding SCO table
|
|
|
|
procedure Traverse_Declarations_Or_Statements
|
|
(L : List_Id;
|
|
D : Dominant_Info := No_Dominant;
|
|
P : Node_Id := Empty);
|
|
-- Process L, a list of statements or declarations dominated by D. If P is
|
|
-- present, it is processed as though it had been prepended to L.
|
|
|
|
function Traverse_Declarations_Or_Statements
|
|
(L : List_Id;
|
|
D : Dominant_Info := No_Dominant;
|
|
P : Node_Id := Empty) return Dominant_Info;
|
|
-- Same as above, and returns dominant information corresponding to the
|
|
-- last node with SCO in L.
|
|
|
|
-- The following Traverse_* routines perform appropriate calls to
|
|
-- Traverse_Declarations_Or_Statements to traverse specific node kinds.
|
|
-- Parameter D, when present, indicates the dominant of the first
|
|
-- declaration or statement within N.
|
|
|
|
-- Why is Traverse_Sync_Definition commented specifically, whereas
|
|
-- the others are not???
|
|
|
|
procedure Traverse_Generic_Package_Declaration (N : Node_Id);
|
|
|
|
procedure Traverse_Handled_Statement_Sequence
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant);
|
|
|
|
procedure Traverse_Package_Body (N : Node_Id);
|
|
|
|
procedure Traverse_Package_Declaration
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant);
|
|
|
|
procedure Traverse_Subprogram_Or_Task_Body
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant);
|
|
|
|
procedure Traverse_Sync_Definition (N : Node_Id);
|
|
-- Traverse a protected definition or task definition
|
|
|
|
-- Note regarding traversals: In a few cases where an Alternatives list is
|
|
-- involved, pragmas such as "pragma Page" may show up before the first
|
|
-- alternative. We skip them because we're out of statement or declaration
|
|
-- context, so these can't be pragmas of interest for SCO purposes, and
|
|
-- the regular alternative processing typically involves attribute queries
|
|
-- which aren't valid for a pragma.
|
|
|
|
procedure Write_SCOs_To_ALI_File is new Put_SCOs;
|
|
-- Write SCO information to the ALI file using routines in Lib.Util
|
|
|
|
----------
|
|
-- dsco --
|
|
----------
|
|
|
|
procedure dsco is
|
|
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
|
|
-- Dump a SCO table entry
|
|
|
|
----------------
|
|
-- Dump_Entry --
|
|
----------------
|
|
|
|
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
|
|
begin
|
|
Write_Str (" ");
|
|
Write_Int (Index);
|
|
Write_Char ('.');
|
|
|
|
if T.C1 /= ' ' then
|
|
Write_Str (" C1 = '");
|
|
Write_Char (T.C1);
|
|
Write_Char (''');
|
|
end if;
|
|
|
|
if T.C2 /= ' ' then
|
|
Write_Str (" C2 = '");
|
|
Write_Char (T.C2);
|
|
Write_Char (''');
|
|
end if;
|
|
|
|
if T.From /= No_Source_Location then
|
|
Write_Str (" From = ");
|
|
Write_Int (Int (T.From.Line));
|
|
Write_Char (':');
|
|
Write_Int (Int (T.From.Col));
|
|
end if;
|
|
|
|
if T.To /= No_Source_Location then
|
|
Write_Str (" To = ");
|
|
Write_Int (Int (T.To.Line));
|
|
Write_Char (':');
|
|
Write_Int (Int (T.To.Col));
|
|
end if;
|
|
|
|
if T.Last then
|
|
Write_Str (" True");
|
|
else
|
|
Write_Str (" False");
|
|
end if;
|
|
|
|
Write_Eol;
|
|
end Dump_Entry;
|
|
|
|
-- Start of processing for dsco
|
|
|
|
begin
|
|
-- Dump SCO unit table
|
|
|
|
Write_Line ("SCO Unit Table");
|
|
Write_Line ("--------------");
|
|
|
|
for Index in 1 .. SCO_Unit_Table.Last loop
|
|
declare
|
|
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
|
|
|
|
begin
|
|
Write_Str (" ");
|
|
Write_Int (Int (Index));
|
|
Write_Str (" Dep_Num = ");
|
|
Write_Int (Int (UTE.Dep_Num));
|
|
Write_Str (" From = ");
|
|
Write_Int (Int (UTE.From));
|
|
Write_Str (" To = ");
|
|
Write_Int (Int (UTE.To));
|
|
|
|
Write_Str (" File_Name = """);
|
|
|
|
if UTE.File_Name /= null then
|
|
Write_Str (UTE.File_Name.all);
|
|
end if;
|
|
|
|
Write_Char ('"');
|
|
Write_Eol;
|
|
end;
|
|
end loop;
|
|
|
|
-- Dump SCO Unit number table if it contains any entries
|
|
|
|
if SCO_Unit_Number_Table.Last >= 1 then
|
|
Write_Eol;
|
|
Write_Line ("SCO Unit Number Table");
|
|
Write_Line ("---------------------");
|
|
|
|
for Index in 1 .. SCO_Unit_Number_Table.Last loop
|
|
Write_Str (" ");
|
|
Write_Int (Int (Index));
|
|
Write_Str (". Unit_Number = ");
|
|
Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
|
|
Write_Eol;
|
|
end loop;
|
|
end if;
|
|
|
|
-- Dump SCO raw-table
|
|
|
|
Write_Eol;
|
|
Write_Line ("SCO Raw Table");
|
|
Write_Line ("---------");
|
|
|
|
if SCO_Generation_State = Filtered then
|
|
Write_Line ("Empty (free'd after second pass)");
|
|
else
|
|
for Index in 1 .. SCO_Raw_Table.Last loop
|
|
Dump_Entry (Index, SCO_Raw_Table.Table (Index));
|
|
end loop;
|
|
end if;
|
|
|
|
-- Dump SCO table itself
|
|
|
|
Write_Eol;
|
|
Write_Line ("SCO Filtered Table");
|
|
Write_Line ("---------");
|
|
|
|
for Index in 1 .. SCO_Table.Last loop
|
|
Dump_Entry (Index, SCO_Table.Table (Index));
|
|
end loop;
|
|
end dsco;
|
|
|
|
-----------
|
|
-- Equal --
|
|
-----------
|
|
|
|
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
|
|
begin
|
|
return F1 = F2;
|
|
end Equal;
|
|
|
|
-------
|
|
-- < --
|
|
-------
|
|
|
|
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
|
|
begin
|
|
return S1.Line < S2.Line
|
|
or else (S1.Line = S2.Line and then S1.Col < S2.Col);
|
|
end "<";
|
|
|
|
------------------
|
|
-- Has_Decision --
|
|
------------------
|
|
|
|
function Has_Decision (N : Node_Id) return Boolean is
|
|
function Check_Node (N : Node_Id) return Traverse_Result;
|
|
-- Determine if Nkind (N) indicates the presence of a decision (i.e. N
|
|
-- is a logical operator, which is a decision in itself, or an
|
|
-- IF-expression whose Condition attribute is a decision).
|
|
|
|
----------------
|
|
-- Check_Node --
|
|
----------------
|
|
|
|
function Check_Node (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
-- If we are not sure this is a logical operator (AND and OR may be
|
|
-- turned into logical operators with the Short_Circuit_And_Or
|
|
-- pragma), assume it is. Putative decisions will be discarded if
|
|
-- needed in the secord pass.
|
|
|
|
if Is_Logical_Operator (N) /= False
|
|
or else Nkind (N) = N_If_Expression
|
|
then
|
|
return Abandon;
|
|
else
|
|
return OK;
|
|
end if;
|
|
end Check_Node;
|
|
|
|
function Traverse is new Traverse_Func (Check_Node);
|
|
|
|
-- Start of processing for Has_Decision
|
|
|
|
begin
|
|
return Traverse (N) = Abandon;
|
|
end Has_Decision;
|
|
|
|
----------
|
|
-- Hash --
|
|
----------
|
|
|
|
function Hash (F : Source_Ptr) return Header_Num is
|
|
begin
|
|
return Header_Num (Nat (F) mod 997);
|
|
end Hash;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
SCO_Unit_Number_Table.Init;
|
|
|
|
-- The SCO_Unit_Number_Table entry with index 0 is intentionally set
|
|
-- aside to be used as temporary for sorting.
|
|
|
|
SCO_Unit_Number_Table.Increment_Last;
|
|
end Initialize;
|
|
|
|
-------------------------
|
|
-- Is_Logical_Operator --
|
|
-------------------------
|
|
|
|
function Is_Logical_Operator (N : Node_Id) return Tristate is
|
|
begin
|
|
if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
|
|
return True;
|
|
elsif Nkind (N) in N_Op_And | N_Op_Or then
|
|
return Unknown;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Logical_Operator;
|
|
|
|
-----------------------
|
|
-- Process_Decisions --
|
|
-----------------------
|
|
|
|
-- Version taking a list
|
|
|
|
procedure Process_Decisions
|
|
(L : List_Id;
|
|
T : Character;
|
|
Pragma_Sloc : Source_Ptr)
|
|
is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
if L /= No_List then
|
|
N := First (L);
|
|
while Present (N) loop
|
|
Process_Decisions (N, T, Pragma_Sloc);
|
|
Next (N);
|
|
end loop;
|
|
end if;
|
|
end Process_Decisions;
|
|
|
|
-- Version taking a node
|
|
|
|
Current_Pragma_Sloc : Source_Ptr := No_Location;
|
|
-- While processing a pragma, this is set to the sloc of the N_Pragma node
|
|
|
|
procedure Process_Decisions
|
|
(N : Node_Id;
|
|
T : Character;
|
|
Pragma_Sloc : Source_Ptr)
|
|
is
|
|
Mark : Nat;
|
|
-- This is used to mark the location of a decision sequence in the SCO
|
|
-- table. We use it for backing out a simple decision in an expression
|
|
-- context that contains only NOT operators.
|
|
|
|
Mark_Hash : Nat;
|
|
-- Likewise for the putative SCO_Raw_Hash_Table entries: see below
|
|
|
|
type Hash_Entry is record
|
|
Sloc : Source_Ptr;
|
|
SCO_Index : Nat;
|
|
end record;
|
|
-- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
|
|
-- However we cannot register them in the same time we are adding the
|
|
-- corresponding SCO entries to the raw table since we may discard them
|
|
-- later on. So instead we put all putative conditions into Hash_Entries
|
|
-- (see below) and register them once we are sure we keep them.
|
|
--
|
|
-- This data structure holds the conditions/pragmas to register in
|
|
-- SCO_Raw_Hash_Table.
|
|
|
|
package Hash_Entries is new Table.Table
|
|
(Table_Component_Type => Hash_Entry,
|
|
Table_Index_Type => Nat,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 10,
|
|
Table_Increment => 10,
|
|
Table_Name => "Hash_Entries");
|
|
-- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
|
|
-- they are registered in SCO_Raw_Hash_Table.
|
|
|
|
X_Not_Decision : Boolean;
|
|
-- This flag keeps track of whether a decision sequence in the SCO table
|
|
-- contains only NOT operators, and is for an expression context (T=X).
|
|
-- The flag will be set False if T is other than X, or if an operator
|
|
-- other than NOT is in the sequence.
|
|
|
|
procedure Output_Decision_Operand (N : Node_Id);
|
|
-- The node N is the top level logical operator of a decision, or it is
|
|
-- one of the operands of a logical operator belonging to a single
|
|
-- complex decision. This routine outputs the sequence of table entries
|
|
-- corresponding to the node. Note that we do not process the sub-
|
|
-- operands to look for further decisions, that processing is done in
|
|
-- Process_Decision_Operand, because we can't get decisions mixed up in
|
|
-- the global table. Call has no effect if N is Empty.
|
|
|
|
procedure Output_Element (N : Node_Id);
|
|
-- Node N is an operand of a logical operator that is not itself a
|
|
-- logical operator, or it is a simple decision. This routine outputs
|
|
-- the table entry for the element, with C1 set to ' '. Last is set
|
|
-- False, and an entry is made in the condition hash table.
|
|
|
|
procedure Output_Header (T : Character);
|
|
-- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
|
|
-- PRAGMA, and 'X' for the expression case.
|
|
|
|
procedure Process_Decision_Operand (N : Node_Id);
|
|
-- This is called on node N, the top level node of a decision, or on one
|
|
-- of its operands or suboperands after generating the full output for
|
|
-- the complex decision. It process the suboperands of the decision
|
|
-- looking for nested decisions.
|
|
|
|
function Process_Node (N : Node_Id) return Traverse_Result;
|
|
-- Processes one node in the traversal, looking for logical operators,
|
|
-- and if one is found, outputs the appropriate table entries.
|
|
|
|
-----------------------------
|
|
-- Output_Decision_Operand --
|
|
-----------------------------
|
|
|
|
procedure Output_Decision_Operand (N : Node_Id) is
|
|
C1 : Character;
|
|
C2 : Character;
|
|
-- C1 holds a character that identifies the operation while C2
|
|
-- indicates whether we are sure (' ') or not ('?') this operation
|
|
-- belongs to the decision. '?' entries will be filtered out in the
|
|
-- second (SCO_Record_Filtered) pass.
|
|
|
|
L : Node_Id;
|
|
T : Tristate;
|
|
|
|
begin
|
|
if No (N) then
|
|
return;
|
|
end if;
|
|
|
|
T := Is_Logical_Operator (N);
|
|
|
|
-- Logical operator
|
|
|
|
if T /= False then
|
|
if Nkind (N) = N_Op_Not then
|
|
C1 := '!';
|
|
L := Empty;
|
|
|
|
else
|
|
L := Left_Opnd (N);
|
|
|
|
if Nkind (N) in N_Op_Or | N_Or_Else then
|
|
C1 := '|';
|
|
else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
|
|
C1 := '&';
|
|
end if;
|
|
end if;
|
|
|
|
if T = True then
|
|
C2 := ' ';
|
|
else
|
|
C2 := '?';
|
|
end if;
|
|
|
|
Set_Raw_Table_Entry
|
|
(C1 => C1,
|
|
C2 => C2,
|
|
From => Sloc (N),
|
|
To => No_Location,
|
|
Last => False);
|
|
|
|
Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
|
|
|
|
Output_Decision_Operand (L);
|
|
Output_Decision_Operand (Right_Opnd (N));
|
|
|
|
-- Not a logical operator
|
|
|
|
else
|
|
Output_Element (N);
|
|
end if;
|
|
end Output_Decision_Operand;
|
|
|
|
--------------------
|
|
-- Output_Element --
|
|
--------------------
|
|
|
|
procedure Output_Element (N : Node_Id) is
|
|
FSloc : Source_Ptr;
|
|
LSloc : Source_Ptr;
|
|
begin
|
|
Sloc_Range (N, FSloc, LSloc);
|
|
Set_Raw_Table_Entry
|
|
(C1 => ' ',
|
|
C2 => 'c',
|
|
From => FSloc,
|
|
To => LSloc,
|
|
Last => False);
|
|
Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
|
|
end Output_Element;
|
|
|
|
-------------------
|
|
-- Output_Header --
|
|
-------------------
|
|
|
|
procedure Output_Header (T : Character) is
|
|
Loc : Source_Ptr := No_Location;
|
|
-- Node whose Sloc is used for the decision
|
|
|
|
Nam : Name_Id := No_Name;
|
|
-- For the case of an aspect, aspect name
|
|
|
|
begin
|
|
case T is
|
|
when 'I' | 'E' | 'W' | 'a' | 'A' =>
|
|
|
|
-- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
|
|
-- the parent of the expression.
|
|
|
|
Loc := Sloc (Parent (N));
|
|
|
|
if T = 'a' or else T = 'A' then
|
|
Nam := Chars (Identifier (Parent (N)));
|
|
end if;
|
|
|
|
when 'G' | 'P' =>
|
|
|
|
-- For entry guard, the token sloc is from the N_Entry_Body.
|
|
-- For PRAGMA, we must get the location from the pragma node.
|
|
-- Argument N is the pragma argument, and we have to go up
|
|
-- two levels (through the pragma argument association) to
|
|
-- get to the pragma node itself. For the guard on a select
|
|
-- alternative, we do not have access to the token location for
|
|
-- the WHEN, so we use the first sloc of the condition itself
|
|
-- (note: we use First_Sloc, not Sloc, because this is what is
|
|
-- referenced by dominance markers).
|
|
|
|
-- Doesn't this requirement of using First_Sloc need to be
|
|
-- documented in the spec ???
|
|
|
|
if Nkind (Parent (N)) in N_Accept_Alternative
|
|
| N_Delay_Alternative
|
|
| N_Terminate_Alternative
|
|
then
|
|
Loc := First_Sloc (N);
|
|
else
|
|
Loc := Sloc (Parent (Parent (N)));
|
|
end if;
|
|
|
|
when 'X' =>
|
|
|
|
-- For an expression, no Sloc
|
|
|
|
null;
|
|
|
|
-- No other possibilities
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
Set_Raw_Table_Entry
|
|
(C1 => T,
|
|
C2 => ' ',
|
|
From => Loc,
|
|
To => No_Location,
|
|
Last => False,
|
|
Pragma_Sloc => Pragma_Sloc,
|
|
Pragma_Aspect_Name => Nam);
|
|
|
|
-- For an aspect specification, which will be rewritten into a
|
|
-- pragma, enter a hash table entry now.
|
|
|
|
if T = 'a' then
|
|
Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
|
|
end if;
|
|
end Output_Header;
|
|
|
|
------------------------------
|
|
-- Process_Decision_Operand --
|
|
------------------------------
|
|
|
|
procedure Process_Decision_Operand (N : Node_Id) is
|
|
begin
|
|
if Is_Logical_Operator (N) /= False then
|
|
if Nkind (N) /= N_Op_Not then
|
|
Process_Decision_Operand (Left_Opnd (N));
|
|
X_Not_Decision := False;
|
|
end if;
|
|
|
|
Process_Decision_Operand (Right_Opnd (N));
|
|
|
|
else
|
|
Process_Decisions (N, 'X', Pragma_Sloc);
|
|
end if;
|
|
end Process_Decision_Operand;
|
|
|
|
------------------
|
|
-- Process_Node --
|
|
------------------
|
|
|
|
function Process_Node (N : Node_Id) return Traverse_Result is
|
|
begin
|
|
case Nkind (N) is
|
|
|
|
-- Logical operators, output table entries and then process
|
|
-- operands recursively to deal with nested conditions.
|
|
|
|
when N_And_Then
|
|
| N_Op_And
|
|
| N_Op_Not
|
|
| N_Op_Or
|
|
| N_Or_Else
|
|
=>
|
|
declare
|
|
T : Character;
|
|
|
|
begin
|
|
-- If outer level, then type comes from call, otherwise it
|
|
-- is more deeply nested and counts as X for expression.
|
|
|
|
if N = Process_Decisions.N then
|
|
T := Process_Decisions.T;
|
|
else
|
|
T := 'X';
|
|
end if;
|
|
|
|
-- Output header for sequence
|
|
|
|
X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
|
|
Mark := SCO_Raw_Table.Last;
|
|
Mark_Hash := Hash_Entries.Last;
|
|
Output_Header (T);
|
|
|
|
-- Output the decision
|
|
|
|
Output_Decision_Operand (N);
|
|
|
|
-- If the decision was in an expression context (T = 'X')
|
|
-- and contained only NOT operators, then we don't output
|
|
-- it, so delete it.
|
|
|
|
if X_Not_Decision then
|
|
SCO_Raw_Table.Set_Last (Mark);
|
|
Hash_Entries.Set_Last (Mark_Hash);
|
|
|
|
-- Otherwise, set Last in last table entry to mark end
|
|
|
|
else
|
|
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
|
|
end if;
|
|
|
|
-- Process any embedded decisions
|
|
|
|
Process_Decision_Operand (N);
|
|
return Skip;
|
|
end;
|
|
|
|
-- Case expression
|
|
|
|
-- Really hard to believe this is correct given the special
|
|
-- handling for if expressions below ???
|
|
|
|
when N_Case_Expression =>
|
|
return OK; -- ???
|
|
|
|
-- If expression, processed like an if statement
|
|
|
|
when N_If_Expression =>
|
|
declare
|
|
Cond : constant Node_Id := First (Expressions (N));
|
|
Thnx : constant Node_Id := Next (Cond);
|
|
Elsx : constant Node_Id := Next (Thnx);
|
|
|
|
begin
|
|
Process_Decisions (Cond, 'I', Pragma_Sloc);
|
|
Process_Decisions (Thnx, 'X', Pragma_Sloc);
|
|
Process_Decisions (Elsx, 'X', Pragma_Sloc);
|
|
return Skip;
|
|
end;
|
|
|
|
-- All other cases, continue scan
|
|
|
|
when others =>
|
|
return OK;
|
|
end case;
|
|
end Process_Node;
|
|
|
|
procedure Traverse is new Traverse_Proc (Process_Node);
|
|
|
|
-- Start of processing for Process_Decisions
|
|
|
|
begin
|
|
if No (N) then
|
|
return;
|
|
end if;
|
|
|
|
Hash_Entries.Init;
|
|
|
|
-- See if we have simple decision at outer level and if so then
|
|
-- generate the decision entry for this simple decision. A simple
|
|
-- decision is a boolean expression (which is not a logical operator
|
|
-- or short circuit form) appearing as the operand of an IF, WHILE,
|
|
-- EXIT WHEN, or special PRAGMA construct.
|
|
|
|
if T /= 'X' and then Is_Logical_Operator (N) = False then
|
|
Output_Header (T);
|
|
Output_Element (N);
|
|
|
|
-- Change Last in last table entry to True to mark end of
|
|
-- sequence, which is this case is only one element long.
|
|
|
|
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
|
|
end if;
|
|
|
|
Traverse (N);
|
|
|
|
-- Now we have the definitive set of SCO entries, register them in the
|
|
-- corresponding hash table.
|
|
|
|
for J in 1 .. Hash_Entries.Last loop
|
|
SCO_Raw_Hash_Table.Set
|
|
(Hash_Entries.Table (J).Sloc,
|
|
Hash_Entries.Table (J).SCO_Index);
|
|
end loop;
|
|
|
|
Hash_Entries.Free;
|
|
end Process_Decisions;
|
|
|
|
-----------
|
|
-- pscos --
|
|
-----------
|
|
|
|
procedure pscos is
|
|
procedure Write_Info_Char (C : Character) renames Write_Char;
|
|
-- Write one character;
|
|
|
|
procedure Write_Info_Initiate (Key : Character) renames Write_Char;
|
|
-- Start new one and write one character;
|
|
|
|
procedure Write_Info_Nat (N : Nat);
|
|
-- Write value of N
|
|
|
|
procedure Write_Info_Terminate renames Write_Eol;
|
|
-- Terminate current line
|
|
|
|
--------------------
|
|
-- Write_Info_Nat --
|
|
--------------------
|
|
|
|
procedure Write_Info_Nat (N : Nat) is
|
|
begin
|
|
Write_Int (N);
|
|
end Write_Info_Nat;
|
|
|
|
procedure Debug_Put_SCOs is new Put_SCOs;
|
|
|
|
-- Start of processing for pscos
|
|
|
|
begin
|
|
Debug_Put_SCOs;
|
|
end pscos;
|
|
|
|
---------------------
|
|
-- Record_Instance --
|
|
---------------------
|
|
|
|
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
|
|
Inst_Src : constant Source_File_Index :=
|
|
Get_Source_File_Index (Inst_Sloc);
|
|
begin
|
|
SCO_Instance_Table.Append
|
|
((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
|
|
Inst_Loc => To_Source_Location (Inst_Sloc),
|
|
Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
|
|
|
|
pragma Assert
|
|
(SCO_Instance_Table.Last = SCO_Instance_Index (Id));
|
|
end Record_Instance;
|
|
|
|
----------------
|
|
-- SCO_Output --
|
|
----------------
|
|
|
|
procedure SCO_Output is
|
|
procedure Populate_SCO_Instance_Table is
|
|
new Sinput.Iterate_On_Instances (Record_Instance);
|
|
|
|
begin
|
|
pragma Assert (SCO_Generation_State = Filtered);
|
|
|
|
if Debug_Flag_Dot_OO then
|
|
dsco;
|
|
end if;
|
|
|
|
Populate_SCO_Instance_Table;
|
|
|
|
-- Sort the unit tables based on dependency numbers
|
|
|
|
Unit_Table_Sort : declare
|
|
function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
|
|
-- Comparison routine for sort call
|
|
|
|
procedure Move (From : Natural; To : Natural);
|
|
-- Move routine for sort call
|
|
|
|
--------
|
|
-- Lt --
|
|
--------
|
|
|
|
function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
|
|
begin
|
|
return
|
|
Dependency_Num
|
|
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
|
|
<
|
|
Dependency_Num
|
|
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
|
|
end Lt;
|
|
|
|
----------
|
|
-- Move --
|
|
----------
|
|
|
|
procedure Move (From : Natural; To : Natural) is
|
|
begin
|
|
SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
|
|
SCO_Unit_Table.Table (SCO_Unit_Index (From));
|
|
SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
|
|
SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
|
|
end Move;
|
|
|
|
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
|
|
|
|
-- Start of processing for Unit_Table_Sort
|
|
|
|
begin
|
|
Sorting.Sort (Integer (SCO_Unit_Table.Last));
|
|
end Unit_Table_Sort;
|
|
|
|
-- Loop through entries in the unit table to set file name and
|
|
-- dependency number entries.
|
|
|
|
for J in 1 .. SCO_Unit_Table.Last loop
|
|
declare
|
|
U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
|
|
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
|
|
|
|
begin
|
|
Get_Name_String (Reference_Name (Source_Index (U)));
|
|
UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
|
|
UTE.Dep_Num := Dependency_Num (U);
|
|
end;
|
|
end loop;
|
|
|
|
-- Now the tables are all setup for output to the ALI file
|
|
|
|
Write_SCOs_To_ALI_File;
|
|
end SCO_Output;
|
|
|
|
-------------------------
|
|
-- SCO_Pragma_Disabled --
|
|
-------------------------
|
|
|
|
function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
|
|
Index : Nat;
|
|
|
|
begin
|
|
if Loc = No_Location then
|
|
return False;
|
|
end if;
|
|
|
|
Index := SCO_Raw_Hash_Table.Get (Loc);
|
|
|
|
-- The test here for zero is to deal with possible previous errors, and
|
|
-- for the case of pragma statement SCOs, for which we always set the
|
|
-- Pragma_Sloc even if the particular pragma cannot be specifically
|
|
-- disabled.
|
|
|
|
if Index /= 0 then
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
|
|
|
|
begin
|
|
case T.C1 is
|
|
when 'S' =>
|
|
-- Pragma statement
|
|
|
|
return T.C2 = 'p';
|
|
|
|
when 'A' =>
|
|
-- Aspect decision (enabled)
|
|
|
|
return False;
|
|
|
|
when 'a' =>
|
|
-- Aspect decision (not enabled)
|
|
|
|
return True;
|
|
|
|
when ASCII.NUL =>
|
|
-- Nullified disabled SCO
|
|
|
|
return True;
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
end;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end SCO_Pragma_Disabled;
|
|
|
|
--------------------
|
|
-- SCO_Record_Raw --
|
|
--------------------
|
|
|
|
procedure SCO_Record_Raw (U : Unit_Number_Type) is
|
|
procedure Traverse_Aux_Decls (N : Node_Id);
|
|
-- Traverse the Aux_Decls_Node of compilation unit N
|
|
|
|
------------------------
|
|
-- Traverse_Aux_Decls --
|
|
------------------------
|
|
|
|
procedure Traverse_Aux_Decls (N : Node_Id) is
|
|
ADN : constant Node_Id := Aux_Decls_Node (N);
|
|
|
|
begin
|
|
Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
|
|
Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
|
|
|
|
-- Declarations and Actions do not correspond to source constructs,
|
|
-- they contain only nodes from expansion, so at this point they
|
|
-- should still be empty:
|
|
|
|
pragma Assert (No (Declarations (ADN)));
|
|
pragma Assert (No (Actions (ADN)));
|
|
end Traverse_Aux_Decls;
|
|
|
|
-- Local variables
|
|
|
|
From : Nat;
|
|
Lu : Node_Id;
|
|
|
|
-- Start of processing for SCO_Record_Raw
|
|
|
|
begin
|
|
-- It is legitimate to run this pass multiple times (once per unit) so
|
|
-- run it even if it was already run before.
|
|
|
|
pragma Assert (SCO_Generation_State in None .. Raw);
|
|
SCO_Generation_State := Raw;
|
|
|
|
-- Ignore call if not generating code and generating SCO's
|
|
|
|
if not (Generate_SCO and then Operating_Mode = Generate_Code) then
|
|
return;
|
|
end if;
|
|
|
|
-- Ignore call if this unit already recorded
|
|
|
|
for J in 1 .. SCO_Unit_Number_Table.Last loop
|
|
if U = SCO_Unit_Number_Table.Table (J) then
|
|
return;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Otherwise record starting entry
|
|
|
|
From := SCO_Raw_Table.Last + 1;
|
|
|
|
-- Get Unit (checking case of subunit)
|
|
|
|
Lu := Unit (Cunit (U));
|
|
|
|
if Nkind (Lu) = N_Subunit then
|
|
Lu := Proper_Body (Lu);
|
|
end if;
|
|
|
|
-- Traverse the unit
|
|
|
|
Traverse_Aux_Decls (Cunit (U));
|
|
|
|
case Nkind (Lu) is
|
|
when N_Generic_Instantiation
|
|
| N_Generic_Package_Declaration
|
|
| N_Package_Body
|
|
| N_Package_Declaration
|
|
| N_Protected_Body
|
|
| N_Subprogram_Body
|
|
| N_Subprogram_Declaration
|
|
| N_Task_Body
|
|
=>
|
|
Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
|
|
|
|
-- All other cases of compilation units (e.g. renamings), generate no
|
|
-- SCO information.
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
-- Make entry for new unit in unit tables, we will fill in the file
|
|
-- name and dependency numbers later.
|
|
|
|
SCO_Unit_Table.Append (
|
|
(Dep_Num => 0,
|
|
File_Name => null,
|
|
File_Index => Get_Source_File_Index (Sloc (Lu)),
|
|
From => From,
|
|
To => SCO_Raw_Table.Last));
|
|
|
|
SCO_Unit_Number_Table.Append (U);
|
|
end SCO_Record_Raw;
|
|
|
|
-----------------------
|
|
-- Set_SCO_Condition --
|
|
-----------------------
|
|
|
|
procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
|
|
|
|
-- SCO annotations are not processed after the filtering pass
|
|
|
|
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
|
|
|
|
Constant_Condition_Code : constant array (Boolean) of Character :=
|
|
(False => 'f', True => 't');
|
|
|
|
Orig : constant Node_Id := Original_Node (Cond);
|
|
Dummy : Source_Ptr;
|
|
Index : Nat;
|
|
Start : Source_Ptr;
|
|
|
|
begin
|
|
Sloc_Range (Orig, Start, Dummy);
|
|
Index := SCO_Raw_Hash_Table.Get (Start);
|
|
|
|
-- Index can be zero for boolean expressions that do not have SCOs
|
|
-- (simple decisions outside of a control flow structure), or in case
|
|
-- of a previous error.
|
|
|
|
if Index = 0 then
|
|
return;
|
|
|
|
else
|
|
pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
|
|
SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
|
|
end if;
|
|
end Set_SCO_Condition;
|
|
|
|
------------------------------
|
|
-- Set_SCO_Logical_Operator --
|
|
------------------------------
|
|
|
|
procedure Set_SCO_Logical_Operator (Op : Node_Id) is
|
|
|
|
-- SCO annotations are not processed after the filtering pass
|
|
|
|
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
|
|
|
|
Orig : constant Node_Id := Original_Node (Op);
|
|
Orig_Sloc : constant Source_Ptr := Sloc (Orig);
|
|
Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
|
|
|
|
begin
|
|
-- All (putative) logical operators are supposed to have their own entry
|
|
-- in the SCOs table. However, the semantic analysis may invoke this
|
|
-- subprogram with nodes that are out of the SCO generation scope.
|
|
|
|
if Index /= 0 then
|
|
SCO_Raw_Table.Table (Index).C2 := ' ';
|
|
end if;
|
|
end Set_SCO_Logical_Operator;
|
|
|
|
----------------------------
|
|
-- Set_SCO_Pragma_Enabled --
|
|
----------------------------
|
|
|
|
procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
|
|
|
|
-- SCO annotations are not processed after the filtering pass
|
|
|
|
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
|
|
|
|
Index : Nat;
|
|
|
|
begin
|
|
-- Nothing to do if not generating SCO, or if we're not processing the
|
|
-- original source occurrence of the pragma.
|
|
|
|
if not (Generate_SCO
|
|
and then In_Extended_Main_Source_Unit (Loc)
|
|
and then not (In_Instance or In_Inlined_Body))
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Note: the reason we use the Sloc value as the key is that in the
|
|
-- generic case, the call to this procedure is made on a copy of the
|
|
-- original node, so we can't use the Node_Id value.
|
|
|
|
Index := SCO_Raw_Hash_Table.Get (Loc);
|
|
|
|
-- A zero index here indicates that semantic analysis found an
|
|
-- activated pragma at Loc which does not have a corresponding pragma
|
|
-- or aspect at the syntax level. This may occur in legitimate cases
|
|
-- because of expanded code (such are Pre/Post conditions generated for
|
|
-- formal parameter validity checks), or as a consequence of a previous
|
|
-- error.
|
|
|
|
if Index = 0 then
|
|
return;
|
|
|
|
else
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
|
|
|
|
begin
|
|
-- Note: may be called multiple times for the same sloc, so
|
|
-- account for the fact that the entry may already have been
|
|
-- marked enabled.
|
|
|
|
case T.C1 is
|
|
-- Aspect (decision SCO)
|
|
|
|
when 'a' =>
|
|
T.C1 := 'A';
|
|
|
|
when 'A' =>
|
|
null;
|
|
|
|
-- Pragma (statement SCO)
|
|
|
|
when 'S' =>
|
|
pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
|
|
T.C2 := 'P';
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
end;
|
|
end if;
|
|
end Set_SCO_Pragma_Enabled;
|
|
|
|
-------------------------
|
|
-- Set_Raw_Table_Entry --
|
|
-------------------------
|
|
|
|
procedure Set_Raw_Table_Entry
|
|
(C1 : Character;
|
|
C2 : Character;
|
|
From : Source_Ptr;
|
|
To : Source_Ptr;
|
|
Last : Boolean;
|
|
Pragma_Sloc : Source_Ptr := No_Location;
|
|
Pragma_Aspect_Name : Name_Id := No_Name)
|
|
is
|
|
pragma Assert (SCO_Generation_State = Raw);
|
|
begin
|
|
SCO_Raw_Table.Append
|
|
((C1 => C1,
|
|
C2 => C2,
|
|
From => To_Source_Location (From),
|
|
To => To_Source_Location (To),
|
|
Last => Last,
|
|
Pragma_Sloc => Pragma_Sloc,
|
|
Pragma_Aspect_Name => Pragma_Aspect_Name));
|
|
end Set_Raw_Table_Entry;
|
|
|
|
------------------------
|
|
-- To_Source_Location --
|
|
------------------------
|
|
|
|
function To_Source_Location (S : Source_Ptr) return Source_Location is
|
|
begin
|
|
if S = No_Location then
|
|
return No_Source_Location;
|
|
else
|
|
return
|
|
(Line => Get_Logical_Line_Number (S),
|
|
Col => Get_Column_Number (S));
|
|
end if;
|
|
end To_Source_Location;
|
|
|
|
-----------------------------------------
|
|
-- Traverse_Declarations_Or_Statements --
|
|
-----------------------------------------
|
|
|
|
-- Tables used by Traverse_Declarations_Or_Statements for temporarily
|
|
-- holding statement and decision entries. These are declared globally
|
|
-- since they are shared by recursive calls to this procedure.
|
|
|
|
type SC_Entry is record
|
|
N : Node_Id;
|
|
From : Source_Ptr;
|
|
To : Source_Ptr;
|
|
Typ : Character;
|
|
end record;
|
|
-- Used to store a single entry in the following table, From:To represents
|
|
-- the range of entries in the CS line entry, and typ is the type, with
|
|
-- space meaning that no type letter will accompany the entry.
|
|
|
|
package SC is new Table.Table
|
|
(Table_Component_Type => SC_Entry,
|
|
Table_Index_Type => Nat,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 1000,
|
|
Table_Increment => 200,
|
|
Table_Name => "SCO_SC");
|
|
-- Used to store statement components for a CS entry to be output as a
|
|
-- result of the call to this procedure. SC.Last is the last entry stored,
|
|
-- so the current statement sequence is represented by SC_Array (SC_First
|
|
-- .. SC.Last), where SC_First is saved on entry to each recursive call to
|
|
-- the routine.
|
|
--
|
|
-- Extend_Statement_Sequence adds an entry to this array, and then
|
|
-- Set_Statement_Entry clears the entries starting with SC_First, copying
|
|
-- these entries to the main SCO output table. The reason that we do the
|
|
-- temporary caching of results in this array is that we want the SCO table
|
|
-- entries for a given CS line to be contiguous, and the processing may
|
|
-- output intermediate entries such as decision entries.
|
|
|
|
type SD_Entry is record
|
|
Nod : Node_Id;
|
|
Lst : List_Id;
|
|
Typ : Character;
|
|
Plo : Source_Ptr;
|
|
end record;
|
|
-- Used to store a single entry in the following table. Nod is the node to
|
|
-- be searched for decisions for the case of Process_Decisions_Defer with a
|
|
-- node argument (with Lst set to No_List. Lst is the list to be searched
|
|
-- for decisions for the case of Process_Decisions_Defer with a List
|
|
-- argument (in which case Nod is set to Empty). Plo is the sloc of the
|
|
-- enclosing pragma, if any.
|
|
|
|
package SD is new Table.Table
|
|
(Table_Component_Type => SD_Entry,
|
|
Table_Index_Type => Nat,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 1000,
|
|
Table_Increment => 200,
|
|
Table_Name => "SCO_SD");
|
|
-- Used to store possible decision information. Instead of calling the
|
|
-- Process_Decisions procedures directly, we call Process_Decisions_Defer,
|
|
-- which simply stores the arguments in this table. Then when we clear
|
|
-- out a statement sequence using Set_Statement_Entry, after generating
|
|
-- the CS lines for the statements, the entries in this table result in
|
|
-- calls to Process_Decision. The reason for doing things this way is to
|
|
-- ensure that decisions are output after the CS line for the statements
|
|
-- in which the decisions occur.
|
|
|
|
procedure Traverse_Declarations_Or_Statements
|
|
(L : List_Id;
|
|
D : Dominant_Info := No_Dominant;
|
|
P : Node_Id := Empty)
|
|
is
|
|
Discard_Dom : Dominant_Info;
|
|
pragma Warnings (Off, Discard_Dom);
|
|
begin
|
|
Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
|
|
end Traverse_Declarations_Or_Statements;
|
|
|
|
function Traverse_Declarations_Or_Statements
|
|
(L : List_Id;
|
|
D : Dominant_Info := No_Dominant;
|
|
P : Node_Id := Empty) return Dominant_Info
|
|
is
|
|
Current_Dominant : Dominant_Info := D;
|
|
-- Dominance information for the current basic block
|
|
|
|
Current_Test : Node_Id;
|
|
-- Conditional node (N_If_Statement or N_Elsiif being processed
|
|
|
|
N : Node_Id;
|
|
|
|
SC_First : constant Nat := SC.Last + 1;
|
|
SD_First : constant Nat := SD.Last + 1;
|
|
-- Record first entries used in SC/SD at this recursive level
|
|
|
|
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
|
|
-- Extend the current statement sequence to encompass the node N. Typ is
|
|
-- the letter that identifies the type of statement/declaration that is
|
|
-- being added to the sequence.
|
|
|
|
procedure Process_Decisions_Defer (N : Node_Id; T : Character);
|
|
pragma Inline (Process_Decisions_Defer);
|
|
-- This routine is logically the same as Process_Decisions, except that
|
|
-- the arguments are saved in the SD table for later processing when
|
|
-- Set_Statement_Entry is called, which goes through the saved entries
|
|
-- making the corresponding calls to Process_Decision. Note: the
|
|
-- enclosing statement must have already been added to the current
|
|
-- statement sequence, so that nested decisions are properly
|
|
-- identified as such.
|
|
|
|
procedure Process_Decisions_Defer (L : List_Id; T : Character);
|
|
pragma Inline (Process_Decisions_Defer);
|
|
-- Same case for list arguments, deferred call to Process_Decisions
|
|
|
|
procedure Set_Statement_Entry;
|
|
-- Output CS entries for all statements saved in table SC, and end the
|
|
-- current CS sequence. Then output entries for all decisions nested in
|
|
-- these statements, which have been deferred so far.
|
|
|
|
procedure Traverse_One (N : Node_Id);
|
|
-- Traverse one declaration or statement
|
|
|
|
procedure Traverse_Aspects (N : Node_Id);
|
|
-- Helper for Traverse_One: traverse N's aspect specifications
|
|
|
|
procedure Traverse_Degenerate_Subprogram (N : Node_Id);
|
|
-- Common code to handle null procedures and expression functions. Emit
|
|
-- a SCO of the given Kind and N outside of the dominance flow.
|
|
|
|
-------------------------------
|
|
-- Extend_Statement_Sequence --
|
|
-------------------------------
|
|
|
|
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
|
|
Dummy : Source_Ptr;
|
|
F : Source_Ptr;
|
|
T : Source_Ptr;
|
|
To_Node : Node_Id := Empty;
|
|
|
|
begin
|
|
Sloc_Range (N, F, T);
|
|
|
|
case Nkind (N) is
|
|
when N_Accept_Statement =>
|
|
if Present (Parameter_Specifications (N)) then
|
|
To_Node := Last (Parameter_Specifications (N));
|
|
elsif Present (Entry_Index (N)) then
|
|
To_Node := Entry_Index (N);
|
|
else
|
|
To_Node := Entry_Direct_Name (N);
|
|
end if;
|
|
|
|
when N_Case_Statement =>
|
|
To_Node := Expression (N);
|
|
|
|
when N_Elsif_Part
|
|
| N_If_Statement
|
|
=>
|
|
To_Node := Condition (N);
|
|
|
|
when N_Extended_Return_Statement =>
|
|
To_Node := Last (Return_Object_Declarations (N));
|
|
|
|
when N_Loop_Statement =>
|
|
To_Node := Iteration_Scheme (N);
|
|
|
|
when N_Asynchronous_Select
|
|
| N_Conditional_Entry_Call
|
|
| N_Selective_Accept
|
|
| N_Single_Protected_Declaration
|
|
| N_Single_Task_Declaration
|
|
| N_Timed_Entry_Call
|
|
=>
|
|
T := F;
|
|
|
|
when N_Protected_Type_Declaration
|
|
| N_Task_Type_Declaration
|
|
=>
|
|
if Has_Aspects (N) then
|
|
To_Node := Last (Aspect_Specifications (N));
|
|
|
|
elsif Present (Discriminant_Specifications (N)) then
|
|
To_Node := Last (Discriminant_Specifications (N));
|
|
|
|
else
|
|
To_Node := Defining_Identifier (N);
|
|
end if;
|
|
|
|
when N_Subexpr =>
|
|
To_Node := N;
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
|
|
if Present (To_Node) then
|
|
Sloc_Range (To_Node, Dummy, T);
|
|
end if;
|
|
|
|
SC.Append ((N, F, T, Typ));
|
|
end Extend_Statement_Sequence;
|
|
|
|
-----------------------------
|
|
-- Process_Decisions_Defer --
|
|
-----------------------------
|
|
|
|
procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
|
|
begin
|
|
SD.Append ((N, No_List, T, Current_Pragma_Sloc));
|
|
end Process_Decisions_Defer;
|
|
|
|
procedure Process_Decisions_Defer (L : List_Id; T : Character) is
|
|
begin
|
|
SD.Append ((Empty, L, T, Current_Pragma_Sloc));
|
|
end Process_Decisions_Defer;
|
|
|
|
-------------------------
|
|
-- Set_Statement_Entry --
|
|
-------------------------
|
|
|
|
procedure Set_Statement_Entry is
|
|
SC_Last : constant Int := SC.Last;
|
|
SD_Last : constant Int := SD.Last;
|
|
|
|
begin
|
|
-- Output statement entries from saved entries in SC table
|
|
|
|
for J in SC_First .. SC_Last loop
|
|
if J = SC_First then
|
|
|
|
if Current_Dominant /= No_Dominant then
|
|
declare
|
|
From : Source_Ptr;
|
|
To : Source_Ptr;
|
|
|
|
begin
|
|
Sloc_Range (Current_Dominant.N, From, To);
|
|
|
|
if Current_Dominant.K /= 'E' then
|
|
To := No_Location;
|
|
end if;
|
|
|
|
Set_Raw_Table_Entry
|
|
(C1 => '>',
|
|
C2 => Current_Dominant.K,
|
|
From => From,
|
|
To => To,
|
|
Last => False,
|
|
Pragma_Sloc => No_Location,
|
|
Pragma_Aspect_Name => No_Name);
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
declare
|
|
SCE : SC_Entry renames SC.Table (J);
|
|
Pragma_Sloc : Source_Ptr := No_Location;
|
|
Pragma_Aspect_Name : Name_Id := No_Name;
|
|
|
|
begin
|
|
-- For the case of a statement SCO for a pragma controlled by
|
|
-- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
|
|
-- those of any nested decision) is emitted only if the pragma
|
|
-- is enabled.
|
|
|
|
if SCE.Typ = 'p' then
|
|
Pragma_Sloc := SCE.From;
|
|
SCO_Raw_Hash_Table.Set
|
|
(Pragma_Sloc, SCO_Raw_Table.Last + 1);
|
|
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
|
|
pragma Assert (Pragma_Aspect_Name /= No_Name);
|
|
|
|
elsif SCE.Typ = 'P' then
|
|
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
|
|
pragma Assert (Pragma_Aspect_Name /= No_Name);
|
|
end if;
|
|
|
|
Set_Raw_Table_Entry
|
|
(C1 => 'S',
|
|
C2 => SCE.Typ,
|
|
From => SCE.From,
|
|
To => SCE.To,
|
|
Last => (J = SC_Last),
|
|
Pragma_Sloc => Pragma_Sloc,
|
|
Pragma_Aspect_Name => Pragma_Aspect_Name);
|
|
end;
|
|
end loop;
|
|
|
|
-- Last statement of basic block, if present, becomes new current
|
|
-- dominant.
|
|
|
|
if SC_Last >= SC_First then
|
|
Current_Dominant := ('S', SC.Table (SC_Last).N);
|
|
end if;
|
|
|
|
-- Clear out used section of SC table
|
|
|
|
SC.Set_Last (SC_First - 1);
|
|
|
|
-- Output any embedded decisions
|
|
|
|
for J in SD_First .. SD_Last loop
|
|
declare
|
|
SDE : SD_Entry renames SD.Table (J);
|
|
|
|
begin
|
|
if Present (SDE.Nod) then
|
|
Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
|
|
else
|
|
Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
-- Clear out used section of SD table
|
|
|
|
SD.Set_Last (SD_First - 1);
|
|
end Set_Statement_Entry;
|
|
|
|
----------------------
|
|
-- Traverse_Aspects --
|
|
----------------------
|
|
|
|
procedure Traverse_Aspects (N : Node_Id) is
|
|
AE : Node_Id;
|
|
AN : Node_Id;
|
|
C1 : Character;
|
|
|
|
begin
|
|
AN := First (Aspect_Specifications (N));
|
|
while Present (AN) loop
|
|
AE := Expression (AN);
|
|
|
|
-- SCOs are generated before semantic analysis/expansion:
|
|
-- PPCs are not split yet.
|
|
|
|
pragma Assert (not Split_PPC (AN));
|
|
|
|
C1 := ASCII.NUL;
|
|
|
|
case Get_Aspect_Id (AN) is
|
|
|
|
-- Aspects rewritten into pragmas controlled by a Check_Policy:
|
|
-- Current_Pragma_Sloc must be set to the sloc of the aspect
|
|
-- specification. The corresponding pragma will have the same
|
|
-- sloc. Note that Invariant, Pre, and Post will be enabled if
|
|
-- the policy is Check; on the other hand, predicate aspects
|
|
-- will be enabled for Check and Ignore (when Add_Predicate
|
|
-- is called) because the actual checks occur in client units.
|
|
-- When the assertion policy for Predicate is Disable, the
|
|
-- SCO remains disabled, because Add_Predicate is never called.
|
|
|
|
-- Pre/post can have checks in client units too because of
|
|
-- inheritance, so should they receive the same treatment???
|
|
|
|
when Aspect_Dynamic_Predicate
|
|
| Aspect_Invariant
|
|
| Aspect_Post
|
|
| Aspect_Postcondition
|
|
| Aspect_Pre
|
|
| Aspect_Precondition
|
|
| Aspect_Predicate
|
|
| Aspect_Static_Predicate
|
|
| Aspect_Type_Invariant
|
|
=>
|
|
C1 := 'a';
|
|
|
|
-- Other aspects: just process any decision nested in the
|
|
-- aspect expression.
|
|
|
|
when others =>
|
|
if Has_Decision (AE) then
|
|
C1 := 'X';
|
|
end if;
|
|
end case;
|
|
|
|
if C1 /= ASCII.NUL then
|
|
pragma Assert (Current_Pragma_Sloc = No_Location);
|
|
|
|
if C1 = 'a' or else C1 = 'A' then
|
|
Current_Pragma_Sloc := Sloc (AN);
|
|
end if;
|
|
|
|
Process_Decisions_Defer (AE, C1);
|
|
|
|
Current_Pragma_Sloc := No_Location;
|
|
end if;
|
|
|
|
Next (AN);
|
|
end loop;
|
|
end Traverse_Aspects;
|
|
|
|
------------------------------------
|
|
-- Traverse_Degenerate_Subprogram --
|
|
------------------------------------
|
|
|
|
procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
|
|
begin
|
|
-- Complete current sequence of statements
|
|
|
|
Set_Statement_Entry;
|
|
|
|
declare
|
|
Saved_Dominant : constant Dominant_Info := Current_Dominant;
|
|
-- Save last statement in current sequence as dominant
|
|
|
|
begin
|
|
-- Output statement SCO for degenerate subprogram body (null
|
|
-- statement or freestanding expression) outside of the dominance
|
|
-- chain.
|
|
|
|
Current_Dominant := No_Dominant;
|
|
Extend_Statement_Sequence (N, Typ => 'X');
|
|
|
|
-- For the case of an expression-function, collect decisions
|
|
-- embedded in the expression now.
|
|
|
|
if Nkind (N) in N_Subexpr then
|
|
Process_Decisions_Defer (N, 'X');
|
|
end if;
|
|
|
|
Set_Statement_Entry;
|
|
|
|
-- Restore current dominant information designating last statement
|
|
-- in previous sequence (i.e. make the dominance chain skip over
|
|
-- the degenerate body).
|
|
|
|
Current_Dominant := Saved_Dominant;
|
|
end;
|
|
end Traverse_Degenerate_Subprogram;
|
|
|
|
------------------
|
|
-- Traverse_One --
|
|
------------------
|
|
|
|
procedure Traverse_One (N : Node_Id) is
|
|
begin
|
|
-- Initialize or extend current statement sequence. Note that for
|
|
-- special cases such as IF and Case statements we will modify
|
|
-- the range to exclude internal statements that should not be
|
|
-- counted as part of the current statement sequence.
|
|
|
|
case Nkind (N) is
|
|
|
|
-- Package declaration
|
|
|
|
when N_Package_Declaration =>
|
|
Set_Statement_Entry;
|
|
Traverse_Package_Declaration (N, Current_Dominant);
|
|
|
|
-- Generic package declaration
|
|
|
|
when N_Generic_Package_Declaration =>
|
|
Set_Statement_Entry;
|
|
Traverse_Generic_Package_Declaration (N);
|
|
|
|
-- Package body
|
|
|
|
when N_Package_Body =>
|
|
Set_Statement_Entry;
|
|
Traverse_Package_Body (N);
|
|
|
|
-- Subprogram declaration or subprogram body stub
|
|
|
|
when N_Expression_Function
|
|
| N_Subprogram_Body_Stub
|
|
| N_Subprogram_Declaration
|
|
=>
|
|
declare
|
|
Spec : constant Node_Id := Specification (N);
|
|
begin
|
|
Process_Decisions_Defer
|
|
(Parameter_Specifications (Spec), 'X');
|
|
|
|
-- Case of a null procedure: generate SCO for fictitious
|
|
-- NULL statement located at the NULL keyword in the
|
|
-- procedure specification.
|
|
|
|
if Nkind (N) = N_Subprogram_Declaration
|
|
and then Nkind (Spec) = N_Procedure_Specification
|
|
and then Null_Present (Spec)
|
|
then
|
|
Traverse_Degenerate_Subprogram (Null_Statement (Spec));
|
|
|
|
-- Case of an expression function: generate a statement SCO
|
|
-- for the expression (and then decision SCOs for any nested
|
|
-- decisions).
|
|
|
|
elsif Nkind (N) = N_Expression_Function then
|
|
Traverse_Degenerate_Subprogram (Expression (N));
|
|
end if;
|
|
end;
|
|
|
|
-- Entry declaration
|
|
|
|
when N_Entry_Declaration =>
|
|
Process_Decisions_Defer (Parameter_Specifications (N), 'X');
|
|
|
|
-- Generic subprogram declaration
|
|
|
|
when N_Generic_Subprogram_Declaration =>
|
|
Process_Decisions_Defer
|
|
(Generic_Formal_Declarations (N), 'X');
|
|
Process_Decisions_Defer
|
|
(Parameter_Specifications (Specification (N)), 'X');
|
|
|
|
-- Task or subprogram body
|
|
|
|
when N_Subprogram_Body
|
|
| N_Task_Body
|
|
=>
|
|
Set_Statement_Entry;
|
|
Traverse_Subprogram_Or_Task_Body (N);
|
|
|
|
-- Entry body
|
|
|
|
when N_Entry_Body =>
|
|
declare
|
|
Cond : constant Node_Id :=
|
|
Condition (Entry_Body_Formal_Part (N));
|
|
|
|
Inner_Dominant : Dominant_Info := No_Dominant;
|
|
|
|
begin
|
|
Set_Statement_Entry;
|
|
|
|
if Present (Cond) then
|
|
Process_Decisions_Defer (Cond, 'G');
|
|
|
|
-- For an entry body with a barrier, the entry body
|
|
-- is dominanted by a True evaluation of the barrier.
|
|
|
|
Inner_Dominant := ('T', N);
|
|
end if;
|
|
|
|
Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
|
|
end;
|
|
|
|
-- Protected body
|
|
|
|
when N_Protected_Body =>
|
|
Set_Statement_Entry;
|
|
Traverse_Declarations_Or_Statements (Declarations (N));
|
|
|
|
-- Exit statement, which is an exit statement in the SCO sense,
|
|
-- so it is included in the current statement sequence, but
|
|
-- then it terminates this sequence. We also have to process
|
|
-- any decisions in the exit statement expression.
|
|
|
|
when N_Exit_Statement =>
|
|
Extend_Statement_Sequence (N, 'E');
|
|
Process_Decisions_Defer (Condition (N), 'E');
|
|
Set_Statement_Entry;
|
|
|
|
-- If condition is present, then following statement is
|
|
-- only executed if the condition evaluates to False.
|
|
|
|
if Present (Condition (N)) then
|
|
Current_Dominant := ('F', N);
|
|
else
|
|
Current_Dominant := No_Dominant;
|
|
end if;
|
|
|
|
-- Label, which breaks the current statement sequence, but the
|
|
-- label itself is not included in the next statement sequence,
|
|
-- since it generates no code.
|
|
|
|
when N_Label =>
|
|
Set_Statement_Entry;
|
|
Current_Dominant := No_Dominant;
|
|
|
|
-- Block statement, which breaks the current statement sequence
|
|
|
|
when N_Block_Statement =>
|
|
Set_Statement_Entry;
|
|
|
|
-- The first statement in the handled sequence of statements
|
|
-- is dominated by the elaboration of the last declaration.
|
|
|
|
Current_Dominant := Traverse_Declarations_Or_Statements
|
|
(L => Declarations (N),
|
|
D => Current_Dominant);
|
|
|
|
Traverse_Handled_Statement_Sequence
|
|
(N => Handled_Statement_Sequence (N),
|
|
D => Current_Dominant);
|
|
|
|
-- If statement, which breaks the current statement sequence,
|
|
-- but we include the condition in the current sequence.
|
|
|
|
when N_If_Statement =>
|
|
Current_Test := N;
|
|
Extend_Statement_Sequence (N, 'I');
|
|
Process_Decisions_Defer (Condition (N), 'I');
|
|
Set_Statement_Entry;
|
|
|
|
-- Now we traverse the statements in the THEN part
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Then_Statements (N),
|
|
D => ('T', N));
|
|
|
|
-- Loop through ELSIF parts if present
|
|
|
|
if Present (Elsif_Parts (N)) then
|
|
declare
|
|
Saved_Dominant : constant Dominant_Info :=
|
|
Current_Dominant;
|
|
|
|
Elif : Node_Id := First (Elsif_Parts (N));
|
|
|
|
begin
|
|
while Present (Elif) loop
|
|
|
|
-- An Elsif is executed only if the previous test
|
|
-- got a FALSE outcome.
|
|
|
|
Current_Dominant := ('F', Current_Test);
|
|
|
|
-- Now update current test information
|
|
|
|
Current_Test := Elif;
|
|
|
|
-- We generate a statement sequence for the
|
|
-- construct "ELSIF condition", so that we have
|
|
-- a statement for the resulting decisions.
|
|
|
|
Extend_Statement_Sequence (Elif, 'I');
|
|
Process_Decisions_Defer (Condition (Elif), 'I');
|
|
Set_Statement_Entry;
|
|
|
|
-- An ELSIF part is never guaranteed to have
|
|
-- been executed, following statements are only
|
|
-- dominated by the initial IF statement.
|
|
|
|
Current_Dominant := Saved_Dominant;
|
|
|
|
-- Traverse the statements in the ELSIF
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Then_Statements (Elif),
|
|
D => ('T', Elif));
|
|
Next (Elif);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Finally traverse the ELSE statements if present
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Else_Statements (N),
|
|
D => ('F', Current_Test));
|
|
|
|
-- CASE statement, which breaks the current statement sequence,
|
|
-- but we include the expression in the current sequence.
|
|
|
|
when N_Case_Statement =>
|
|
Extend_Statement_Sequence (N, 'C');
|
|
Process_Decisions_Defer (Expression (N), 'X');
|
|
Set_Statement_Entry;
|
|
|
|
-- Process case branches, all of which are dominated by the
|
|
-- CASE statement.
|
|
|
|
declare
|
|
Alt : Node_Id;
|
|
begin
|
|
Alt := First_Non_Pragma (Alternatives (N));
|
|
while Present (Alt) loop
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (Alt),
|
|
D => Current_Dominant);
|
|
Next (Alt);
|
|
end loop;
|
|
end;
|
|
|
|
-- ACCEPT statement
|
|
|
|
when N_Accept_Statement =>
|
|
Extend_Statement_Sequence (N, 'A');
|
|
Set_Statement_Entry;
|
|
|
|
-- Process sequence of statements, dominant is the ACCEPT
|
|
-- statement.
|
|
|
|
Traverse_Handled_Statement_Sequence
|
|
(N => Handled_Statement_Sequence (N),
|
|
D => Current_Dominant);
|
|
|
|
-- SELECT
|
|
|
|
when N_Selective_Accept =>
|
|
Extend_Statement_Sequence (N, 'S');
|
|
Set_Statement_Entry;
|
|
|
|
-- Process alternatives
|
|
|
|
declare
|
|
Alt : Node_Id;
|
|
Guard : Node_Id;
|
|
S_Dom : Dominant_Info;
|
|
|
|
begin
|
|
Alt := First (Select_Alternatives (N));
|
|
while Present (Alt) loop
|
|
S_Dom := Current_Dominant;
|
|
Guard := Condition (Alt);
|
|
|
|
if Present (Guard) then
|
|
Process_Decisions
|
|
(Guard,
|
|
'G',
|
|
Pragma_Sloc => No_Location);
|
|
Current_Dominant := ('T', Guard);
|
|
end if;
|
|
|
|
Traverse_One (Alt);
|
|
|
|
Current_Dominant := S_Dom;
|
|
Next (Alt);
|
|
end loop;
|
|
end;
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Else_Statements (N),
|
|
D => Current_Dominant);
|
|
|
|
when N_Conditional_Entry_Call
|
|
| N_Timed_Entry_Call
|
|
=>
|
|
Extend_Statement_Sequence (N, 'S');
|
|
Set_Statement_Entry;
|
|
|
|
-- Process alternatives
|
|
|
|
Traverse_One (Entry_Call_Alternative (N));
|
|
|
|
if Nkind (N) = N_Timed_Entry_Call then
|
|
Traverse_One (Delay_Alternative (N));
|
|
else
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Else_Statements (N),
|
|
D => Current_Dominant);
|
|
end if;
|
|
|
|
when N_Asynchronous_Select =>
|
|
Extend_Statement_Sequence (N, 'S');
|
|
Set_Statement_Entry;
|
|
|
|
Traverse_One (Triggering_Alternative (N));
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (Abortable_Part (N)),
|
|
D => Current_Dominant);
|
|
|
|
when N_Accept_Alternative =>
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (N),
|
|
D => Current_Dominant,
|
|
P => Accept_Statement (N));
|
|
|
|
when N_Entry_Call_Alternative =>
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (N),
|
|
D => Current_Dominant,
|
|
P => Entry_Call_Statement (N));
|
|
|
|
when N_Delay_Alternative =>
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (N),
|
|
D => Current_Dominant,
|
|
P => Delay_Statement (N));
|
|
|
|
when N_Triggering_Alternative =>
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (N),
|
|
D => Current_Dominant,
|
|
P => Triggering_Statement (N));
|
|
|
|
when N_Terminate_Alternative =>
|
|
|
|
-- It is dubious to emit a statement SCO for a TERMINATE
|
|
-- alternative, since no code is actually executed if the
|
|
-- alternative is selected -- the tasking runtime call just
|
|
-- never returns???
|
|
|
|
Extend_Statement_Sequence (N, ' ');
|
|
Set_Statement_Entry;
|
|
|
|
-- Unconditional exit points, which are included in the current
|
|
-- statement sequence, but then terminate it
|
|
|
|
when N_Goto_Statement
|
|
| N_Raise_Statement
|
|
| N_Requeue_Statement
|
|
=>
|
|
Extend_Statement_Sequence (N, ' ');
|
|
Set_Statement_Entry;
|
|
Current_Dominant := No_Dominant;
|
|
|
|
-- Simple return statement. which is an exit point, but we
|
|
-- have to process the return expression for decisions.
|
|
|
|
when N_Simple_Return_Statement =>
|
|
Extend_Statement_Sequence (N, ' ');
|
|
Process_Decisions_Defer (Expression (N), 'X');
|
|
Set_Statement_Entry;
|
|
Current_Dominant := No_Dominant;
|
|
|
|
-- Extended return statement
|
|
|
|
when N_Extended_Return_Statement =>
|
|
Extend_Statement_Sequence (N, 'R');
|
|
Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
|
|
Set_Statement_Entry;
|
|
|
|
Traverse_Handled_Statement_Sequence
|
|
(N => Handled_Statement_Sequence (N),
|
|
D => Current_Dominant);
|
|
|
|
Current_Dominant := No_Dominant;
|
|
|
|
-- Loop ends the current statement sequence, but we include
|
|
-- the iteration scheme if present in the current sequence.
|
|
-- But the body of the loop starts a new sequence, since it
|
|
-- may not be executed as part of the current sequence.
|
|
|
|
when N_Loop_Statement =>
|
|
declare
|
|
ISC : constant Node_Id := Iteration_Scheme (N);
|
|
Inner_Dominant : Dominant_Info := No_Dominant;
|
|
|
|
begin
|
|
if Present (ISC) then
|
|
|
|
-- If iteration scheme present, extend the current
|
|
-- statement sequence to include the iteration scheme
|
|
-- and process any decisions it contains.
|
|
|
|
-- While loop
|
|
|
|
if Present (Condition (ISC)) then
|
|
Extend_Statement_Sequence (N, 'W');
|
|
Process_Decisions_Defer (Condition (ISC), 'W');
|
|
|
|
-- Set more specific dominant for inner statements
|
|
-- (the control sloc for the decision is that of
|
|
-- the WHILE token).
|
|
|
|
Inner_Dominant := ('T', ISC);
|
|
|
|
-- For loop
|
|
|
|
else
|
|
Extend_Statement_Sequence (N, 'F');
|
|
Process_Decisions_Defer
|
|
(Loop_Parameter_Specification (ISC), 'X');
|
|
end if;
|
|
end if;
|
|
|
|
Set_Statement_Entry;
|
|
|
|
if Inner_Dominant = No_Dominant then
|
|
Inner_Dominant := Current_Dominant;
|
|
end if;
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (N),
|
|
D => Inner_Dominant);
|
|
end;
|
|
|
|
-- Pragma
|
|
|
|
when N_Pragma =>
|
|
|
|
-- Record sloc of pragma (pragmas don't nest)
|
|
|
|
pragma Assert (Current_Pragma_Sloc = No_Location);
|
|
Current_Pragma_Sloc := Sloc (N);
|
|
|
|
-- Processing depends on the kind of pragma
|
|
|
|
declare
|
|
Nam : constant Name_Id := Pragma_Name_Unmapped (N);
|
|
Arg : Node_Id :=
|
|
First (Pragma_Argument_Associations (N));
|
|
Typ : Character;
|
|
|
|
begin
|
|
case Nam is
|
|
when Name_Assert
|
|
| Name_Assert_And_Cut
|
|
| Name_Assume
|
|
| Name_Check
|
|
| Name_Loop_Invariant
|
|
| Name_Postcondition
|
|
| Name_Precondition
|
|
=>
|
|
-- For Assert/Check/Precondition/Postcondition, we
|
|
-- must generate a P entry for the decision. Note
|
|
-- that this is done unconditionally at this stage.
|
|
-- Output for disabled pragmas is suppressed later
|
|
-- on when we output the decision line in Put_SCOs,
|
|
-- depending on setting by Set_SCO_Pragma_Enabled.
|
|
|
|
if Nam = Name_Check then
|
|
Next (Arg);
|
|
end if;
|
|
|
|
Process_Decisions_Defer (Expression (Arg), 'P');
|
|
Typ := 'p';
|
|
|
|
-- Pre/postconditions can be inherited so SCO should
|
|
-- never be deactivated???
|
|
|
|
when Name_Debug =>
|
|
if Present (Arg) and then Present (Next (Arg)) then
|
|
|
|
-- Case of a dyadic pragma Debug: first argument
|
|
-- is a P decision, any nested decision in the
|
|
-- second argument is an X decision.
|
|
|
|
Process_Decisions_Defer (Expression (Arg), 'P');
|
|
Next (Arg);
|
|
end if;
|
|
|
|
Process_Decisions_Defer (Expression (Arg), 'X');
|
|
Typ := 'p';
|
|
|
|
-- For all other pragmas, we generate decision entries
|
|
-- for any embedded expressions, and the pragma is
|
|
-- never disabled.
|
|
|
|
-- Should generate P decisions (not X) for assertion
|
|
-- related pragmas: [Type_]Invariant,
|
|
-- [{Static,Dynamic}_]Predicate???
|
|
|
|
when others =>
|
|
Process_Decisions_Defer (N, 'X');
|
|
Typ := 'P';
|
|
end case;
|
|
|
|
-- Add statement SCO
|
|
|
|
Extend_Statement_Sequence (N, Typ);
|
|
|
|
Current_Pragma_Sloc := No_Location;
|
|
end;
|
|
|
|
-- Object declaration. Ignored if Prev_Ids is set, since the
|
|
-- parser generates multiple instances of the whole declaration
|
|
-- if there is more than one identifier declared, and we only
|
|
-- want one entry in the SCOs, so we take the first, for which
|
|
-- Prev_Ids is False.
|
|
|
|
when N_Number_Declaration
|
|
| N_Object_Declaration
|
|
=>
|
|
if not Prev_Ids (N) then
|
|
Extend_Statement_Sequence (N, 'o');
|
|
|
|
if Has_Decision (N) then
|
|
Process_Decisions_Defer (N, 'X');
|
|
end if;
|
|
end if;
|
|
|
|
-- All other cases, which extend the current statement sequence
|
|
-- but do not terminate it, even if they have nested decisions.
|
|
|
|
when N_Protected_Type_Declaration
|
|
| N_Task_Type_Declaration
|
|
=>
|
|
Extend_Statement_Sequence (N, 't');
|
|
Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
|
|
Set_Statement_Entry;
|
|
|
|
Traverse_Sync_Definition (N);
|
|
|
|
when N_Single_Protected_Declaration
|
|
| N_Single_Task_Declaration
|
|
=>
|
|
Extend_Statement_Sequence (N, 'o');
|
|
Set_Statement_Entry;
|
|
|
|
Traverse_Sync_Definition (N);
|
|
|
|
when others =>
|
|
|
|
-- Determine required type character code, or ASCII.NUL if
|
|
-- no SCO should be generated for this node.
|
|
|
|
declare
|
|
NK : constant Node_Kind := Nkind (N);
|
|
Typ : Character;
|
|
|
|
begin
|
|
case NK is
|
|
when N_Full_Type_Declaration
|
|
| N_Incomplete_Type_Declaration
|
|
| N_Private_Extension_Declaration
|
|
| N_Private_Type_Declaration
|
|
=>
|
|
Typ := 't';
|
|
|
|
when N_Subtype_Declaration =>
|
|
Typ := 's';
|
|
|
|
when N_Renaming_Declaration =>
|
|
Typ := 'r';
|
|
|
|
when N_Generic_Instantiation =>
|
|
Typ := 'i';
|
|
|
|
when N_Package_Body_Stub
|
|
| N_Protected_Body_Stub
|
|
| N_Representation_Clause
|
|
| N_Task_Body_Stub
|
|
| N_Use_Package_Clause
|
|
| N_Use_Type_Clause
|
|
=>
|
|
Typ := ASCII.NUL;
|
|
|
|
when N_Procedure_Call_Statement =>
|
|
Typ := ' ';
|
|
|
|
when others =>
|
|
if NK in N_Statement_Other_Than_Procedure_Call then
|
|
Typ := ' ';
|
|
else
|
|
Typ := 'd';
|
|
end if;
|
|
end case;
|
|
|
|
if Typ /= ASCII.NUL then
|
|
Extend_Statement_Sequence (N, Typ);
|
|
end if;
|
|
end;
|
|
|
|
-- Process any embedded decisions
|
|
|
|
if Has_Decision (N) then
|
|
Process_Decisions_Defer (N, 'X');
|
|
end if;
|
|
end case;
|
|
|
|
-- Process aspects if present
|
|
|
|
Traverse_Aspects (N);
|
|
end Traverse_One;
|
|
|
|
-- Start of processing for Traverse_Declarations_Or_Statements
|
|
|
|
begin
|
|
-- Process single prefixed node
|
|
|
|
if Present (P) then
|
|
Traverse_One (P);
|
|
end if;
|
|
|
|
-- Loop through statements or declarations
|
|
|
|
if Is_Non_Empty_List (L) then
|
|
N := First (L);
|
|
while Present (N) loop
|
|
|
|
-- Note: For separate bodies, we see the tree after Par.Labl has
|
|
-- introduced implicit labels, so we need to ignore those nodes.
|
|
|
|
if Nkind (N) /= N_Implicit_Label_Declaration then
|
|
Traverse_One (N);
|
|
end if;
|
|
|
|
Next (N);
|
|
end loop;
|
|
|
|
end if;
|
|
|
|
-- End sequence of statements and flush deferred decisions
|
|
|
|
if Present (P) or else Is_Non_Empty_List (L) then
|
|
Set_Statement_Entry;
|
|
end if;
|
|
|
|
return Current_Dominant;
|
|
end Traverse_Declarations_Or_Statements;
|
|
|
|
------------------------------------------
|
|
-- Traverse_Generic_Package_Declaration --
|
|
------------------------------------------
|
|
|
|
procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
|
|
begin
|
|
Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
|
|
Traverse_Package_Declaration (N);
|
|
end Traverse_Generic_Package_Declaration;
|
|
|
|
-----------------------------------------
|
|
-- Traverse_Handled_Statement_Sequence --
|
|
-----------------------------------------
|
|
|
|
procedure Traverse_Handled_Statement_Sequence
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant)
|
|
is
|
|
Handler : Node_Id;
|
|
|
|
begin
|
|
-- For package bodies without a statement part, the parser adds an empty
|
|
-- one, to normalize the representation. The null statement therein,
|
|
-- which does not come from source, does not get a SCO.
|
|
|
|
if Present (N) and then Comes_From_Source (N) then
|
|
Traverse_Declarations_Or_Statements (Statements (N), D);
|
|
|
|
if Present (Exception_Handlers (N)) then
|
|
Handler := First_Non_Pragma (Exception_Handlers (N));
|
|
while Present (Handler) loop
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Statements (Handler),
|
|
D => ('E', Handler));
|
|
Next (Handler);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
end Traverse_Handled_Statement_Sequence;
|
|
|
|
---------------------------
|
|
-- Traverse_Package_Body --
|
|
---------------------------
|
|
|
|
procedure Traverse_Package_Body (N : Node_Id) is
|
|
Dom : Dominant_Info;
|
|
begin
|
|
-- The first statement in the handled sequence of statements is
|
|
-- dominated by the elaboration of the last declaration.
|
|
|
|
Dom := Traverse_Declarations_Or_Statements (Declarations (N));
|
|
|
|
Traverse_Handled_Statement_Sequence
|
|
(Handled_Statement_Sequence (N), Dom);
|
|
end Traverse_Package_Body;
|
|
|
|
----------------------------------
|
|
-- Traverse_Package_Declaration --
|
|
----------------------------------
|
|
|
|
procedure Traverse_Package_Declaration
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant)
|
|
is
|
|
Spec : constant Node_Id := Specification (N);
|
|
Dom : Dominant_Info;
|
|
|
|
begin
|
|
Dom :=
|
|
Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
|
|
|
|
-- First private declaration is dominated by last visible declaration
|
|
|
|
Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
|
|
end Traverse_Package_Declaration;
|
|
|
|
------------------------------
|
|
-- Traverse_Sync_Definition --
|
|
------------------------------
|
|
|
|
procedure Traverse_Sync_Definition (N : Node_Id) is
|
|
Dom_Info : Dominant_Info := ('S', N);
|
|
-- The first declaration is dominated by the protected or task [type]
|
|
-- declaration.
|
|
|
|
Sync_Def : Node_Id;
|
|
-- N's protected or task definition
|
|
|
|
Priv_Decl : List_Id;
|
|
Vis_Decl : List_Id;
|
|
-- Sync_Def's Visible_Declarations and Private_Declarations
|
|
|
|
begin
|
|
case Nkind (N) is
|
|
when N_Protected_Type_Declaration
|
|
| N_Single_Protected_Declaration
|
|
=>
|
|
Sync_Def := Protected_Definition (N);
|
|
|
|
when N_Single_Task_Declaration
|
|
| N_Task_Type_Declaration
|
|
=>
|
|
Sync_Def := Task_Definition (N);
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
-- Sync_Def may be Empty at least for empty Task_Type_Declarations.
|
|
-- Querying Visible or Private_Declarations is invalid in this case.
|
|
|
|
if Present (Sync_Def) then
|
|
Vis_Decl := Visible_Declarations (Sync_Def);
|
|
Priv_Decl := Private_Declarations (Sync_Def);
|
|
else
|
|
Vis_Decl := No_List;
|
|
Priv_Decl := No_List;
|
|
end if;
|
|
|
|
Dom_Info := Traverse_Declarations_Or_Statements
|
|
(L => Vis_Decl,
|
|
D => Dom_Info);
|
|
|
|
-- If visible declarations are present, the first private declaration
|
|
-- is dominated by the last visible declaration.
|
|
|
|
Traverse_Declarations_Or_Statements
|
|
(L => Priv_Decl,
|
|
D => Dom_Info);
|
|
end Traverse_Sync_Definition;
|
|
|
|
--------------------------------------
|
|
-- Traverse_Subprogram_Or_Task_Body --
|
|
--------------------------------------
|
|
|
|
procedure Traverse_Subprogram_Or_Task_Body
|
|
(N : Node_Id;
|
|
D : Dominant_Info := No_Dominant)
|
|
is
|
|
Decls : constant List_Id := Declarations (N);
|
|
Dom_Info : Dominant_Info := D;
|
|
|
|
begin
|
|
-- If declarations are present, the first statement is dominated by the
|
|
-- last declaration.
|
|
|
|
Dom_Info := Traverse_Declarations_Or_Statements
|
|
(L => Decls, D => Dom_Info);
|
|
|
|
Traverse_Handled_Statement_Sequence
|
|
(N => Handled_Statement_Sequence (N),
|
|
D => Dom_Info);
|
|
end Traverse_Subprogram_Or_Task_Body;
|
|
|
|
-------------------------
|
|
-- SCO_Record_Filtered --
|
|
-------------------------
|
|
|
|
procedure SCO_Record_Filtered is
|
|
type Decision is record
|
|
Kind : Character;
|
|
-- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
|
|
|
|
Sloc : Source_Location;
|
|
|
|
Top : Nat;
|
|
-- Index in the SCO_Raw_Table for the root operator/condition for the
|
|
-- expression that controls the decision.
|
|
end record;
|
|
-- Decision descriptor: used to gather information about a candidate
|
|
-- SCO decision.
|
|
|
|
package Pending_Decisions is new Table.Table
|
|
(Table_Component_Type => Decision,
|
|
Table_Index_Type => Nat,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 1000,
|
|
Table_Increment => 200,
|
|
Table_Name => "Filter_Pending_Decisions");
|
|
-- Table used to hold decisions to process during the collection pass
|
|
|
|
procedure Add_Expression_Tree (Idx : in out Nat);
|
|
-- Add SCO raw table entries for the decision controlling expression
|
|
-- tree starting at Idx to the filtered SCO table.
|
|
|
|
procedure Collect_Decisions
|
|
(D : Decision;
|
|
Next : out Nat);
|
|
-- Collect decisions to add to the filtered SCO table starting at the
|
|
-- D decision (including it and its nested operators/conditions). Set
|
|
-- Next to the first node index passed the whole decision.
|
|
|
|
procedure Compute_Range
|
|
(Idx : in out Nat;
|
|
From : out Source_Location;
|
|
To : out Source_Location);
|
|
-- Compute the source location range for the expression tree starting at
|
|
-- Idx in the SCO raw table. Store its bounds in From and To.
|
|
|
|
function Is_Decision (Idx : Nat) return Boolean;
|
|
-- Return if the expression tree starting at Idx has adjacent nested
|
|
-- nodes that make a decision.
|
|
|
|
procedure Process_Pending_Decisions
|
|
(Original_Decision : SCO_Table_Entry);
|
|
-- Complete the filtered SCO table using collected decisions. Output
|
|
-- decisions inherit the pragma information from the original decision.
|
|
|
|
procedure Search_Nested_Decisions (Idx : in out Nat);
|
|
-- Collect decisions to add to the filtered SCO table starting at the
|
|
-- node at Idx in the SCO raw table. This node must not be part of an
|
|
-- already-processed decision. Set Idx to the first node index passed
|
|
-- the whole expression tree.
|
|
|
|
procedure Skip_Decision
|
|
(Idx : in out Nat;
|
|
Process_Nested_Decisions : Boolean);
|
|
-- Skip all the nodes that belong to the decision starting at Idx. If
|
|
-- Process_Nested_Decision, call Search_Nested_Decisions on the first
|
|
-- nested nodes that do not belong to the decision. Set Idx to the first
|
|
-- node index passed the whole expression tree.
|
|
|
|
-------------------------
|
|
-- Add_Expression_Tree --
|
|
-------------------------
|
|
|
|
procedure Add_Expression_Tree (Idx : in out Nat) is
|
|
Node_Idx : constant Nat := Idx;
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
|
|
From : Source_Location;
|
|
To : Source_Location;
|
|
|
|
begin
|
|
case T.C1 is
|
|
when ' ' =>
|
|
|
|
-- This is a single condition. Add an entry for it and move on
|
|
|
|
SCO_Table.Append (T);
|
|
Idx := Idx + 1;
|
|
|
|
when '!' =>
|
|
|
|
-- This is a NOT operator: add an entry for it and browse its
|
|
-- only child.
|
|
|
|
SCO_Table.Append (T);
|
|
Idx := Idx + 1;
|
|
Add_Expression_Tree (Idx);
|
|
|
|
when others =>
|
|
|
|
-- This must be an AND/OR/AND THEN/OR ELSE operator
|
|
|
|
if T.C2 = '?' then
|
|
|
|
-- This is not a short circuit operator: consider this one
|
|
-- and all its children as a single condition.
|
|
|
|
Compute_Range (Idx, From, To);
|
|
SCO_Table.Append
|
|
((From => From,
|
|
To => To,
|
|
C1 => ' ',
|
|
C2 => 'c',
|
|
Last => False,
|
|
Pragma_Sloc => No_Location,
|
|
Pragma_Aspect_Name => No_Name));
|
|
|
|
else
|
|
-- This is a real short circuit operator: add an entry for
|
|
-- it and browse its children.
|
|
|
|
SCO_Table.Append (T);
|
|
Idx := Idx + 1;
|
|
Add_Expression_Tree (Idx);
|
|
Add_Expression_Tree (Idx);
|
|
end if;
|
|
end case;
|
|
end Add_Expression_Tree;
|
|
|
|
-----------------------
|
|
-- Collect_Decisions --
|
|
-----------------------
|
|
|
|
procedure Collect_Decisions
|
|
(D : Decision;
|
|
Next : out Nat)
|
|
is
|
|
Idx : Nat := D.Top;
|
|
|
|
begin
|
|
if D.Kind /= 'X' or else Is_Decision (D.Top) then
|
|
Pending_Decisions.Append (D);
|
|
end if;
|
|
|
|
Skip_Decision (Idx, True);
|
|
Next := Idx;
|
|
end Collect_Decisions;
|
|
|
|
-------------------
|
|
-- Compute_Range --
|
|
-------------------
|
|
|
|
procedure Compute_Range
|
|
(Idx : in out Nat;
|
|
From : out Source_Location;
|
|
To : out Source_Location)
|
|
is
|
|
Sloc_F : Source_Location := No_Source_Location;
|
|
Sloc_T : Source_Location := No_Source_Location;
|
|
|
|
procedure Process_One;
|
|
-- Process one node of the tree, and recurse over children. Update
|
|
-- Idx during the traversal.
|
|
|
|
-----------------
|
|
-- Process_One --
|
|
-----------------
|
|
|
|
procedure Process_One is
|
|
begin
|
|
if Sloc_F = No_Source_Location
|
|
or else
|
|
SCO_Raw_Table.Table (Idx).From < Sloc_F
|
|
then
|
|
Sloc_F := SCO_Raw_Table.Table (Idx).From;
|
|
end if;
|
|
|
|
if Sloc_T = No_Source_Location
|
|
or else
|
|
Sloc_T < SCO_Raw_Table.Table (Idx).To
|
|
then
|
|
Sloc_T := SCO_Raw_Table.Table (Idx).To;
|
|
end if;
|
|
|
|
if SCO_Raw_Table.Table (Idx).C1 = ' ' then
|
|
|
|
-- This is a condition: nothing special to do
|
|
|
|
Idx := Idx + 1;
|
|
|
|
elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
|
|
|
|
-- The "not" operator has only one operand
|
|
|
|
Idx := Idx + 1;
|
|
Process_One;
|
|
|
|
else
|
|
-- This is an AND THEN or OR ELSE logical operator: follow the
|
|
-- left, then the right operands.
|
|
|
|
Idx := Idx + 1;
|
|
|
|
Process_One;
|
|
Process_One;
|
|
end if;
|
|
end Process_One;
|
|
|
|
-- Start of processing for Compute_Range
|
|
|
|
begin
|
|
Process_One;
|
|
From := Sloc_F;
|
|
To := Sloc_T;
|
|
end Compute_Range;
|
|
|
|
-----------------
|
|
-- Is_Decision --
|
|
-----------------
|
|
|
|
function Is_Decision (Idx : Nat) return Boolean is
|
|
Index : Nat := Idx;
|
|
|
|
begin
|
|
loop
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
|
|
|
|
begin
|
|
case T.C1 is
|
|
when ' ' =>
|
|
return False;
|
|
|
|
when '!' =>
|
|
|
|
-- This is a decision iff the only operand of the NOT
|
|
-- operator could be a standalone decision.
|
|
|
|
Index := Idx + 1;
|
|
|
|
when others =>
|
|
|
|
-- This node is a logical operator (and thus could be a
|
|
-- standalone decision) iff it is a short circuit
|
|
-- operator.
|
|
|
|
return T.C2 /= '?';
|
|
end case;
|
|
end;
|
|
end loop;
|
|
end Is_Decision;
|
|
|
|
-------------------------------
|
|
-- Process_Pending_Decisions --
|
|
-------------------------------
|
|
|
|
procedure Process_Pending_Decisions
|
|
(Original_Decision : SCO_Table_Entry)
|
|
is
|
|
begin
|
|
for Index in 1 .. Pending_Decisions.Last loop
|
|
declare
|
|
D : Decision renames Pending_Decisions.Table (Index);
|
|
Idx : Nat := D.Top;
|
|
|
|
begin
|
|
-- Add a SCO table entry for the decision itself
|
|
|
|
pragma Assert (D.Kind /= ' ');
|
|
|
|
SCO_Table.Append
|
|
((To => No_Source_Location,
|
|
From => D.Sloc,
|
|
C1 => D.Kind,
|
|
C2 => ' ',
|
|
Last => False,
|
|
Pragma_Sloc => Original_Decision.Pragma_Sloc,
|
|
Pragma_Aspect_Name =>
|
|
Original_Decision.Pragma_Aspect_Name));
|
|
|
|
-- Then add ones for its nested operators/operands. Do not
|
|
-- forget to tag its *last* entry as such.
|
|
|
|
Add_Expression_Tree (Idx);
|
|
SCO_Table.Table (SCO_Table.Last).Last := True;
|
|
end;
|
|
end loop;
|
|
|
|
-- Clear the pending decisions list
|
|
Pending_Decisions.Set_Last (0);
|
|
end Process_Pending_Decisions;
|
|
|
|
-----------------------------
|
|
-- Search_Nested_Decisions --
|
|
-----------------------------
|
|
|
|
procedure Search_Nested_Decisions (Idx : in out Nat) is
|
|
begin
|
|
loop
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
|
|
|
|
begin
|
|
case T.C1 is
|
|
when ' ' =>
|
|
Idx := Idx + 1;
|
|
exit;
|
|
|
|
when '!' =>
|
|
Collect_Decisions
|
|
((Kind => 'X',
|
|
Sloc => T.From,
|
|
Top => Idx),
|
|
Idx);
|
|
exit;
|
|
|
|
when others =>
|
|
if T.C2 = '?' then
|
|
|
|
-- This is not a logical operator: start looking for
|
|
-- nested decisions from here. Recurse over the left
|
|
-- child and let the loop take care of the right one.
|
|
|
|
Idx := Idx + 1;
|
|
Search_Nested_Decisions (Idx);
|
|
|
|
else
|
|
-- We found a nested decision
|
|
|
|
Collect_Decisions
|
|
((Kind => 'X',
|
|
Sloc => T.From,
|
|
Top => Idx),
|
|
Idx);
|
|
exit;
|
|
end if;
|
|
end case;
|
|
end;
|
|
end loop;
|
|
end Search_Nested_Decisions;
|
|
|
|
-------------------
|
|
-- Skip_Decision --
|
|
-------------------
|
|
|
|
procedure Skip_Decision
|
|
(Idx : in out Nat;
|
|
Process_Nested_Decisions : Boolean)
|
|
is
|
|
begin
|
|
loop
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
|
|
|
|
begin
|
|
Idx := Idx + 1;
|
|
|
|
case T.C1 is
|
|
when ' ' =>
|
|
exit;
|
|
|
|
when '!' =>
|
|
|
|
-- This NOT operator belongs to the outside decision:
|
|
-- just skip it.
|
|
|
|
null;
|
|
|
|
when others =>
|
|
if T.C2 = '?' and then Process_Nested_Decisions then
|
|
|
|
-- This is not a logical operator: start looking for
|
|
-- nested decisions from here. Recurse over the left
|
|
-- child and let the loop take care of the right one.
|
|
|
|
Search_Nested_Decisions (Idx);
|
|
|
|
else
|
|
-- This is a logical operator, so it belongs to the
|
|
-- outside decision: skip its left child, then let the
|
|
-- loop take care of the right one.
|
|
|
|
Skip_Decision (Idx, Process_Nested_Decisions);
|
|
end if;
|
|
end case;
|
|
end;
|
|
end loop;
|
|
end Skip_Decision;
|
|
|
|
-- Start of processing for SCO_Record_Filtered
|
|
|
|
begin
|
|
-- Filtering must happen only once: do nothing if it this pass was
|
|
-- already run.
|
|
|
|
if SCO_Generation_State = Filtered then
|
|
return;
|
|
else
|
|
pragma Assert (SCO_Generation_State = Raw);
|
|
SCO_Generation_State := Filtered;
|
|
end if;
|
|
|
|
-- Loop through all SCO entries under SCO units
|
|
|
|
for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
|
|
declare
|
|
Unit : SCO_Unit_Table_Entry
|
|
renames SCO_Unit_Table.Table (Unit_Idx);
|
|
|
|
Idx : Nat := Unit.From;
|
|
-- Index of the current SCO raw table entry
|
|
|
|
New_From : constant Nat := SCO_Table.Last + 1;
|
|
-- After copying SCO enties of interest to the final table, we
|
|
-- will have to change the From/To indexes this unit targets.
|
|
-- This constant keeps track of the new From index.
|
|
|
|
begin
|
|
while Idx <= Unit.To loop
|
|
declare
|
|
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
|
|
|
|
begin
|
|
case T.C1 is
|
|
|
|
-- Decision (of any kind, including pragmas and aspects)
|
|
|
|
when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
|
|
if SCO_Pragma_Disabled (T.Pragma_Sloc) then
|
|
|
|
-- Skip SCO entries for decisions in disabled
|
|
-- constructs (pragmas or aspects).
|
|
|
|
Idx := Idx + 1;
|
|
Skip_Decision (Idx, False);
|
|
|
|
else
|
|
Collect_Decisions
|
|
((Kind => T.C1,
|
|
Sloc => T.From,
|
|
Top => Idx + 1),
|
|
Idx);
|
|
Process_Pending_Decisions (T);
|
|
end if;
|
|
|
|
-- There is no translation/filtering to do for other kind
|
|
-- of SCO items (statements, dominance markers, etc.).
|
|
|
|
when '|' | '&' | '!' | ' ' =>
|
|
|
|
-- SCO logical operators and conditions cannot exist
|
|
-- on their own: they must be inside a decision (such
|
|
-- entries must have been skipped by
|
|
-- Collect_Decisions).
|
|
|
|
raise Program_Error;
|
|
|
|
when others =>
|
|
SCO_Table.Append (T);
|
|
Idx := Idx + 1;
|
|
end case;
|
|
end;
|
|
end loop;
|
|
|
|
-- Now, update the SCO entry indexes in the unit entry
|
|
|
|
Unit.From := New_From;
|
|
Unit.To := SCO_Table.Last;
|
|
end;
|
|
end loop;
|
|
|
|
-- Then clear the raw table to free bytes
|
|
|
|
SCO_Raw_Table.Free;
|
|
end SCO_Record_Filtered;
|
|
|
|
end Par_SCO;
|