2846 lines
99 KiB
Ada
2846 lines
99 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- L I B . X R E F --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1998-2020, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Csets; use Csets;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Lib.Util; use Lib.Util;
|
|
with Nlists; use Nlists;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Rident; use Rident;
|
|
with Sem; use Sem;
|
|
with Sem_Aux; use Sem_Aux;
|
|
with Sem_Prag; use Sem_Prag;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sem_Warn; use Sem_Warn;
|
|
with Sinfo; use Sinfo;
|
|
with Sinput; use Sinput;
|
|
with Snames; use Snames;
|
|
with Stringt; use Stringt;
|
|
with Stand; use Stand;
|
|
with Table; use Table;
|
|
|
|
with GNAT.Heap_Sort_G;
|
|
with GNAT.HTable;
|
|
|
|
package body Lib.Xref is
|
|
|
|
------------------
|
|
-- Declarations --
|
|
------------------
|
|
|
|
package Deferred_References is new Table.Table (
|
|
Table_Component_Type => Deferred_Reference_Entry,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 0,
|
|
Table_Initial => 512,
|
|
Table_Increment => 200,
|
|
Table_Name => "Name_Deferred_References");
|
|
|
|
-- The Xref table is used to record references. The Loc field is set
|
|
-- to No_Location for a definition entry.
|
|
|
|
subtype Xref_Entry_Number is Int;
|
|
|
|
type Xref_Key is record
|
|
-- These are the components of Xref_Entry that participate in hash
|
|
-- lookups.
|
|
|
|
Ent : Entity_Id;
|
|
-- Entity referenced (E parameter to Generate_Reference)
|
|
|
|
Loc : Source_Ptr;
|
|
-- Location of reference (Original_Location (Sloc field of N parameter
|
|
-- to Generate_Reference)). Set to No_Location for the case of a
|
|
-- defining occurrence.
|
|
|
|
Typ : Character;
|
|
-- Reference type (Typ param to Generate_Reference)
|
|
|
|
Eun : Unit_Number_Type;
|
|
-- Unit number corresponding to Ent
|
|
|
|
Lun : Unit_Number_Type;
|
|
-- Unit number corresponding to Loc. Value is undefined and not
|
|
-- referenced if Loc is set to No_Location.
|
|
|
|
-- The following components are only used for SPARK cross-references
|
|
|
|
Ref_Scope : Entity_Id;
|
|
-- Entity of the closest subprogram or package enclosing the reference
|
|
|
|
Ent_Scope : Entity_Id;
|
|
-- Entity of the closest subprogram or package enclosing the definition,
|
|
-- which should be located in the same file as the definition itself.
|
|
end record;
|
|
|
|
type Xref_Entry is record
|
|
Key : Xref_Key;
|
|
|
|
Ent_Scope_File : Unit_Number_Type;
|
|
-- File for entity Ent_Scope
|
|
|
|
Def : Source_Ptr;
|
|
-- Original source location for entity being referenced. Note that these
|
|
-- values are used only during the output process, they are not set when
|
|
-- the entries are originally built. This is because private entities
|
|
-- can be swapped when the initial call is made.
|
|
|
|
HTable_Next : Xref_Entry_Number;
|
|
-- For use only by Static_HTable
|
|
end record;
|
|
|
|
package Xrefs is new Table.Table (
|
|
Table_Component_Type => Xref_Entry,
|
|
Table_Index_Type => Xref_Entry_Number,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Xrefs_Initial,
|
|
Table_Increment => Alloc.Xrefs_Increment,
|
|
Table_Name => "Xrefs");
|
|
|
|
--------------
|
|
-- Xref_Set --
|
|
--------------
|
|
|
|
-- We keep a set of xref entries, in order to avoid inserting duplicate
|
|
-- entries into the above Xrefs table. An entry is in Xref_Set if and only
|
|
-- if it is in Xrefs.
|
|
|
|
Num_Buckets : constant := 2**16;
|
|
|
|
subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
|
|
type Null_Type is null record;
|
|
pragma Unreferenced (Null_Type);
|
|
|
|
function Hash (F : Xref_Entry_Number) return Header_Num;
|
|
|
|
function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
|
|
|
|
procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
|
|
|
|
function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
|
|
|
|
function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
|
|
|
|
pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
|
|
|
|
package Xref_Set is new GNAT.HTable.Static_HTable (
|
|
Header_Num,
|
|
Element => Xref_Entry,
|
|
Elmt_Ptr => Xref_Entry_Number,
|
|
Null_Ptr => 0,
|
|
Set_Next => HT_Set_Next,
|
|
Next => HT_Next,
|
|
Key => Xref_Entry_Number,
|
|
Get_Key => Get_Key,
|
|
Hash => Hash,
|
|
Equal => Equal);
|
|
|
|
-----------------------------
|
|
-- SPARK Xrefs Information --
|
|
-----------------------------
|
|
|
|
package body SPARK_Specific is separate;
|
|
|
|
------------------------
|
|
-- Local Subprograms --
|
|
------------------------
|
|
|
|
procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
|
|
-- Add an entry to the tables of Xref_Entries, avoiding duplicates
|
|
|
|
procedure Generate_Prim_Op_References (Typ : Entity_Id);
|
|
-- For a tagged type, generate implicit references to its primitive
|
|
-- operations, for source navigation. This is done right before emitting
|
|
-- cross-reference information rather than at the freeze point of the type
|
|
-- in order to handle late bodies that are primitive operations.
|
|
|
|
function Lt (T1, T2 : Xref_Entry) return Boolean;
|
|
-- Order cross-references
|
|
|
|
---------------
|
|
-- Add_Entry --
|
|
---------------
|
|
|
|
procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
|
|
begin
|
|
Xrefs.Increment_Last; -- tentative
|
|
Xrefs.Table (Xrefs.Last).Key := Key;
|
|
|
|
-- Set the entry in Xref_Set, and if newly set, keep the above
|
|
-- tentative increment.
|
|
|
|
if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
|
|
Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
|
|
-- Leave Def and HTable_Next uninitialized
|
|
|
|
Set_Has_Xref_Entry (Key.Ent);
|
|
|
|
-- It was already in Xref_Set, so throw away the tentatively-added entry
|
|
|
|
else
|
|
Xrefs.Decrement_Last;
|
|
end if;
|
|
end Add_Entry;
|
|
|
|
---------------------
|
|
-- Defer_Reference --
|
|
---------------------
|
|
|
|
procedure Defer_Reference (Deferred_Reference : Deferred_Reference_Entry) is
|
|
begin
|
|
-- If Get_Ignore_Errors, then we are in Preanalyze_Without_Errors, and
|
|
-- we should not record cross references, because that will cause
|
|
-- duplicates when we call Analyze.
|
|
|
|
if not Get_Ignore_Errors then
|
|
Deferred_References.Append (Deferred_Reference);
|
|
end if;
|
|
end Defer_Reference;
|
|
|
|
-----------
|
|
-- Equal --
|
|
-----------
|
|
|
|
function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
|
|
Result : constant Boolean :=
|
|
Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
|
|
begin
|
|
return Result;
|
|
end Equal;
|
|
|
|
-------------------------
|
|
-- Generate_Definition --
|
|
-------------------------
|
|
|
|
procedure Generate_Definition (E : Entity_Id) is
|
|
begin
|
|
pragma Assert (Nkind (E) in N_Entity);
|
|
|
|
-- Note that we do not test Xref_Entity_Letters here. It is too early
|
|
-- to do so, since we are often called before the entity is fully
|
|
-- constructed, so that the Ekind is still E_Void.
|
|
|
|
if Opt.Xref_Active
|
|
|
|
-- Definition must come from source
|
|
|
|
-- We make an exception for subprogram child units that have no spec.
|
|
-- For these we generate a subprogram declaration for library use,
|
|
-- and the corresponding entity does not come from source.
|
|
-- Nevertheless, all references will be attached to it and we have
|
|
-- to treat is as coming from user code.
|
|
|
|
and then (Comes_From_Source (E) or else Is_Child_Unit (E))
|
|
|
|
-- And must have a reasonable source location that is not
|
|
-- within an instance (all entities in instances are ignored)
|
|
|
|
and then Sloc (E) > No_Location
|
|
and then Instantiation_Location (Sloc (E)) = No_Location
|
|
|
|
-- And must be a non-internal name from the main source unit
|
|
|
|
and then In_Extended_Main_Source_Unit (E)
|
|
and then not Is_Internal_Name (Chars (E))
|
|
then
|
|
Add_Entry
|
|
((Ent => E,
|
|
Loc => No_Location,
|
|
Typ => ' ',
|
|
Eun => Get_Source_Unit (Original_Location (Sloc (E))),
|
|
Lun => No_Unit,
|
|
Ref_Scope => Empty,
|
|
Ent_Scope => Empty),
|
|
Ent_Scope_File => No_Unit);
|
|
|
|
if In_Inlined_Body then
|
|
Set_Referenced (E);
|
|
end if;
|
|
end if;
|
|
end Generate_Definition;
|
|
|
|
---------------------------------
|
|
-- Generate_Operator_Reference --
|
|
---------------------------------
|
|
|
|
procedure Generate_Operator_Reference
|
|
(N : Node_Id;
|
|
T : Entity_Id)
|
|
is
|
|
begin
|
|
if not In_Extended_Main_Source_Unit (N) then
|
|
return;
|
|
end if;
|
|
|
|
-- If the operator is not a Standard operator, then we generate a real
|
|
-- reference to the user defined operator.
|
|
|
|
if Sloc (Entity (N)) /= Standard_Location then
|
|
Generate_Reference (Entity (N), N);
|
|
|
|
-- A reference to an implicit inequality operator is also a reference
|
|
-- to the user-defined equality.
|
|
|
|
if Nkind (N) = N_Op_Ne
|
|
and then not Comes_From_Source (Entity (N))
|
|
and then Present (Corresponding_Equality (Entity (N)))
|
|
then
|
|
Generate_Reference (Corresponding_Equality (Entity (N)), N);
|
|
end if;
|
|
|
|
-- For the case of Standard operators, we mark the result type as
|
|
-- referenced. This ensures that in the case where we are using a
|
|
-- derived operator, we mark an entity of the unit that implicitly
|
|
-- defines this operator as used. Otherwise we may think that no entity
|
|
-- of the unit is used. The actual entity marked as referenced is the
|
|
-- first subtype, which is the relevant user defined entity.
|
|
|
|
-- Note: we only do this for operators that come from source. The
|
|
-- generated code sometimes reaches for entities that do not need to be
|
|
-- explicitly visible (for example, when we expand the code for
|
|
-- comparing two record objects, the fields of the record may not be
|
|
-- visible).
|
|
|
|
elsif Comes_From_Source (N) then
|
|
Set_Referenced (First_Subtype (T));
|
|
end if;
|
|
end Generate_Operator_Reference;
|
|
|
|
---------------------------------
|
|
-- Generate_Prim_Op_References --
|
|
---------------------------------
|
|
|
|
procedure Generate_Prim_Op_References (Typ : Entity_Id) is
|
|
Base_T : Entity_Id;
|
|
Prim : Elmt_Id;
|
|
Prim_List : Elist_Id;
|
|
|
|
begin
|
|
-- Handle subtypes of synchronized types
|
|
|
|
if Ekind (Typ) = E_Protected_Subtype
|
|
or else Ekind (Typ) = E_Task_Subtype
|
|
then
|
|
Base_T := Etype (Typ);
|
|
else
|
|
Base_T := Typ;
|
|
end if;
|
|
|
|
-- References to primitive operations are only relevant for tagged types
|
|
|
|
if not Is_Tagged_Type (Base_T)
|
|
or else Is_Class_Wide_Type (Base_T)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Ada 2005 (AI-345): For synchronized types generate reference to the
|
|
-- wrapper that allow us to dispatch calls through their implemented
|
|
-- abstract interface types.
|
|
|
|
-- The check for Present here is to protect against previously reported
|
|
-- critical errors.
|
|
|
|
Prim_List := Primitive_Operations (Base_T);
|
|
|
|
if No (Prim_List) then
|
|
return;
|
|
end if;
|
|
|
|
Prim := First_Elmt (Prim_List);
|
|
while Present (Prim) loop
|
|
|
|
-- If the operation is derived, get the original for cross-reference
|
|
-- reference purposes (it is the original for which we want the xref
|
|
-- and for which the comes_from_source test must be performed).
|
|
|
|
Generate_Reference
|
|
(Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
|
|
Next_Elmt (Prim);
|
|
end loop;
|
|
end Generate_Prim_Op_References;
|
|
|
|
------------------------
|
|
-- Generate_Reference --
|
|
------------------------
|
|
|
|
procedure Generate_Reference
|
|
(E : Entity_Id;
|
|
N : Node_Id;
|
|
Typ : Character := 'r';
|
|
Set_Ref : Boolean := True;
|
|
Force : Boolean := False)
|
|
is
|
|
Actual_Typ : Character := Typ;
|
|
Call : Node_Id;
|
|
Def : Source_Ptr;
|
|
Ent : Entity_Id;
|
|
Ent_Scope : Entity_Id;
|
|
Formal : Entity_Id;
|
|
Kind : Entity_Kind;
|
|
Nod : Node_Id;
|
|
Ref : Source_Ptr;
|
|
Ref_Scope : Entity_Id;
|
|
|
|
function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
|
|
-- Get the enclosing entity through renamings, which may come from
|
|
-- source or from the translation of generic instantiations.
|
|
|
|
function Is_On_LHS (Node : Node_Id) return Boolean;
|
|
-- Used to check if a node is on the left hand side of an assignment.
|
|
-- The following cases are handled:
|
|
--
|
|
-- Variable Node is a direct descendant of left hand side of an
|
|
-- assignment statement.
|
|
--
|
|
-- Prefix Of an indexed or selected component that is present in
|
|
-- a subtree rooted by an assignment statement. There is
|
|
-- no restriction of nesting of components, thus cases
|
|
-- such as A.B (C).D are handled properly. However a prefix
|
|
-- of a dereference (either implicit or explicit) is never
|
|
-- considered as on a LHS.
|
|
--
|
|
-- Out param Same as above cases, but OUT parameter
|
|
|
|
function OK_To_Set_Referenced return Boolean;
|
|
-- Returns True if the Referenced flag can be set. There are a few
|
|
-- exceptions where we do not want to set this flag, see body for
|
|
-- details of these exceptional cases.
|
|
|
|
---------------------------
|
|
-- Get_Through_Renamings --
|
|
---------------------------
|
|
|
|
function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
|
|
begin
|
|
case Ekind (E) is
|
|
|
|
-- For subprograms we just need to check once if they are have a
|
|
-- Renamed_Entity, because Renamed_Entity is set transitively.
|
|
|
|
when Subprogram_Kind =>
|
|
declare
|
|
Renamed : constant Entity_Id := Renamed_Entity (E);
|
|
|
|
begin
|
|
if Present (Renamed) then
|
|
return Renamed;
|
|
else
|
|
return E;
|
|
end if;
|
|
end;
|
|
|
|
-- For objects we need to repeatedly call Renamed_Object, because
|
|
-- it is not transitive.
|
|
|
|
when Object_Kind =>
|
|
declare
|
|
Obj : Entity_Id := E;
|
|
|
|
begin
|
|
loop
|
|
pragma Assert (Present (Obj));
|
|
|
|
declare
|
|
Renamed : constant Entity_Id := Renamed_Object (Obj);
|
|
|
|
begin
|
|
if Present (Renamed) then
|
|
Obj := Get_Enclosing_Object (Renamed);
|
|
|
|
-- The renamed expression denotes a non-object,
|
|
-- e.g. function call, slicing of a function call,
|
|
-- pointer dereference, etc.
|
|
|
|
if No (Obj) then
|
|
return Empty;
|
|
end if;
|
|
else
|
|
return Obj;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
end;
|
|
|
|
when others =>
|
|
return E;
|
|
|
|
end case;
|
|
end Get_Through_Renamings;
|
|
|
|
---------------
|
|
-- Is_On_LHS --
|
|
---------------
|
|
|
|
-- ??? There are several routines here and there that perform a similar
|
|
-- (but subtly different) computation, which should be factored:
|
|
|
|
-- Sem_Util.Is_LHS
|
|
-- Sem_Util.May_Be_Lvalue
|
|
-- Sem_Util.Known_To_Be_Assigned
|
|
-- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
|
|
-- Exp_Smem.Is_Out_Actual
|
|
|
|
function Is_On_LHS (Node : Node_Id) return Boolean is
|
|
N : Node_Id;
|
|
P : Node_Id;
|
|
K : Node_Kind;
|
|
|
|
begin
|
|
-- Only identifiers are considered, is this necessary???
|
|
|
|
if Nkind (Node) /= N_Identifier then
|
|
return False;
|
|
end if;
|
|
|
|
-- Immediate return if appeared as OUT parameter
|
|
|
|
if Kind = E_Out_Parameter then
|
|
return True;
|
|
end if;
|
|
|
|
-- Search for assignment statement subtree root
|
|
|
|
N := Node;
|
|
loop
|
|
P := Parent (N);
|
|
K := Nkind (P);
|
|
|
|
if K = N_Assignment_Statement then
|
|
return Name (P) = N;
|
|
|
|
-- Check whether the parent is a component and the current node is
|
|
-- its prefix, but return False if the current node has an access
|
|
-- type, as in that case the selected or indexed component is an
|
|
-- implicit dereference, and the LHS is the designated object, not
|
|
-- the access object.
|
|
|
|
-- ??? case of a slice assignment?
|
|
|
|
elsif (K = N_Selected_Component or else K = N_Indexed_Component)
|
|
and then Prefix (P) = N
|
|
then
|
|
-- Check for access type. First a special test, In some cases
|
|
-- this is called too early (see comments in Find_Direct_Name),
|
|
-- at a point where the tree is not fully typed yet. In that
|
|
-- case we may lack an Etype for N, and we can't check the
|
|
-- Etype. For now, we always return False in such a case,
|
|
-- but this is clearly not right in all cases ???
|
|
|
|
if No (Etype (N)) then
|
|
return False;
|
|
|
|
elsif Is_Access_Type (Etype (N)) then
|
|
return False;
|
|
|
|
-- Access type case dealt with, keep going
|
|
|
|
else
|
|
N := P;
|
|
end if;
|
|
|
|
-- All other cases, definitely not on left side
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
end Is_On_LHS;
|
|
|
|
---------------------------
|
|
-- OK_To_Set_Referenced --
|
|
---------------------------
|
|
|
|
function OK_To_Set_Referenced return Boolean is
|
|
P : Node_Id;
|
|
|
|
begin
|
|
-- A reference from a pragma Unreferenced or pragma Unmodified or
|
|
-- pragma Warnings does not cause the Referenced flag to be set.
|
|
-- This avoids silly warnings about things being referenced and
|
|
-- not assigned when the only reference is from the pragma.
|
|
|
|
if Nkind (N) = N_Identifier then
|
|
P := Parent (N);
|
|
|
|
if Nkind (P) = N_Pragma_Argument_Association then
|
|
P := Parent (P);
|
|
|
|
if Nkind (P) = N_Pragma then
|
|
if Pragma_Name_Unmapped (P) in Name_Warnings
|
|
| Name_Unmodified
|
|
| Name_Unreferenced
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
-- A reference to a formal in a named parameter association does
|
|
-- not make the formal referenced. Formals that are unused in the
|
|
-- subprogram body are properly flagged as such, even if calls
|
|
-- elsewhere use named notation.
|
|
|
|
elsif Nkind (P) = N_Parameter_Association
|
|
and then N = Selector_Name (P)
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
return True;
|
|
end OK_To_Set_Referenced;
|
|
|
|
-- Start of processing for Generate_Reference
|
|
|
|
begin
|
|
-- If Get_Ignore_Errors, then we are in Preanalyze_Without_Errors, and
|
|
-- we should not record cross references, because that will cause
|
|
-- duplicates when we call Analyze.
|
|
|
|
if Get_Ignore_Errors then
|
|
return;
|
|
end if;
|
|
|
|
-- May happen in case of severe errors
|
|
|
|
if Nkind (E) not in N_Entity then
|
|
return;
|
|
end if;
|
|
|
|
Find_Actual (N, Formal, Call);
|
|
|
|
if Present (Formal) then
|
|
Kind := Ekind (Formal);
|
|
else
|
|
Kind := E_Void;
|
|
end if;
|
|
|
|
-- Check for obsolescent reference to package ASCII. GNAT treats this
|
|
-- element of annex J specially since in practice, programs make a lot
|
|
-- of use of this feature, so we don't include it in the set of features
|
|
-- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
|
|
-- are required to note it as a violation of the RM defined restriction.
|
|
|
|
if E = Standard_ASCII then
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
end if;
|
|
|
|
-- Check for reference to entity marked with Is_Obsolescent
|
|
|
|
-- Note that we always allow obsolescent references in the compiler
|
|
-- itself and the run time, since we assume that we know what we are
|
|
-- doing in such cases. For example the calls in Ada.Characters.Handling
|
|
-- to its own obsolescent subprograms are just fine.
|
|
|
|
-- In any case we only generate warnings if we are in the extended main
|
|
-- source unit, and the entity itself is not in the extended main source
|
|
-- unit, since we assume the source unit itself knows what is going on
|
|
-- (and for sure we do not want silly warnings, e.g. on the end line of
|
|
-- an obsolescent procedure body).
|
|
|
|
if Is_Obsolescent (E)
|
|
and then not GNAT_Mode
|
|
and then not In_Extended_Main_Source_Unit (E)
|
|
and then In_Extended_Main_Source_Unit (N)
|
|
then
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Output_Obsolescent_Entity_Warnings (N, E);
|
|
end if;
|
|
end if;
|
|
|
|
-- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
|
|
-- detect real explicit references (modifications and references).
|
|
|
|
if Comes_From_Source (N)
|
|
and then Is_Ada_2005_Only (E)
|
|
and then Ada_Version < Ada_2005
|
|
and then Warn_On_Ada_2005_Compatibility
|
|
and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
|
|
then
|
|
Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
|
|
end if;
|
|
|
|
-- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
|
|
-- detect real explicit references (modifications and references).
|
|
|
|
if Comes_From_Source (N)
|
|
and then Is_Ada_2012_Only (E)
|
|
and then Ada_Version < Ada_2012
|
|
and then Warn_On_Ada_2012_Compatibility
|
|
and then (Typ = 'm' or else Typ = 'r')
|
|
then
|
|
Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
|
|
end if;
|
|
|
|
-- Do not generate references if we are within a postcondition sub-
|
|
-- program, because the reference does not comes from source, and the
|
|
-- preanalysis of the aspect has already created an entry for the ALI
|
|
-- file at the proper source location.
|
|
|
|
if Chars (Current_Scope) = Name_uPostconditions then
|
|
return;
|
|
end if;
|
|
|
|
-- Never collect references if not in main source unit. However, we omit
|
|
-- this test if Typ is 'e' or 'k', since these entries are structural,
|
|
-- and it is useful to have them in units that reference packages as
|
|
-- well as units that define packages. We also omit the test for the
|
|
-- case of 'p' since we want to include inherited primitive operations
|
|
-- from other packages.
|
|
|
|
-- We also omit this test is this is a body reference for a subprogram
|
|
-- instantiation. In this case the reference is to the generic body,
|
|
-- which clearly need not be in the main unit containing the instance.
|
|
-- For the same reason we accept an implicit reference generated for
|
|
-- a default in an instance.
|
|
|
|
-- We also set the referenced flag in a generic package that is not in
|
|
-- then main source unit, when the variable is of a formal private type,
|
|
-- to warn in the instance if the corresponding type is not a fully
|
|
-- initialized type.
|
|
|
|
if not In_Extended_Main_Source_Unit (N) then
|
|
if Typ = 'e' or else
|
|
Typ = 'I' or else
|
|
Typ = 'p' or else
|
|
Typ = 'i' or else
|
|
Typ = 'k'
|
|
or else (Typ = 'b' and then Is_Generic_Instance (E))
|
|
|
|
-- Allow the generation of references to reads, writes and calls
|
|
-- in SPARK mode when the related context comes from an instance.
|
|
|
|
or else
|
|
(GNATprove_Mode
|
|
and then In_Extended_Main_Code_Unit (N)
|
|
and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
|
|
then
|
|
null;
|
|
|
|
elsif In_Instance_Body
|
|
and then In_Extended_Main_Code_Unit (N)
|
|
and then Is_Generic_Type (Etype (E))
|
|
then
|
|
Set_Referenced (E);
|
|
return;
|
|
|
|
elsif Inside_A_Generic
|
|
and then Is_Generic_Type (Etype (E))
|
|
then
|
|
Set_Referenced (E);
|
|
return;
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- For reference type p, the entity must be in main source unit
|
|
|
|
if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
|
|
return;
|
|
end if;
|
|
|
|
-- Unless the reference is forced, we ignore references where the
|
|
-- reference itself does not come from source.
|
|
|
|
if not Force and then not Comes_From_Source (N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Deal with setting entity as referenced, unless suppressed. Note that
|
|
-- we still do Set_Referenced on entities that do not come from source.
|
|
-- This situation arises when we have a source reference to a derived
|
|
-- operation, where the derived operation itself does not come from
|
|
-- source, but we still want to mark it as referenced, since we really
|
|
-- are referencing an entity in the corresponding package (this avoids
|
|
-- wrong complaints that the package contains no referenced entities).
|
|
|
|
if Set_Ref then
|
|
|
|
-- Assignable object appearing on left side of assignment or as
|
|
-- an out parameter.
|
|
|
|
if Is_Assignable (E)
|
|
and then Is_On_LHS (N)
|
|
and then Ekind (E) /= E_In_Out_Parameter
|
|
then
|
|
-- For objects that are renamings, just set as simply referenced
|
|
-- we do not try to do assignment type tracking in this case.
|
|
|
|
if Present (Renamed_Object (E)) then
|
|
Set_Referenced (E);
|
|
|
|
-- Out parameter case
|
|
|
|
elsif Kind = E_Out_Parameter then
|
|
|
|
-- If warning mode for all out parameters is set, or this is
|
|
-- the only warning parameter, then we want to mark this for
|
|
-- later warning logic by setting Referenced_As_Out_Parameter
|
|
|
|
if Warn_On_Modified_As_Out_Parameter (Formal) then
|
|
Set_Referenced_As_Out_Parameter (E, True);
|
|
Set_Referenced_As_LHS (E, False);
|
|
|
|
-- For OUT parameter not covered by the above cases, we simply
|
|
-- regard it as a normal reference (in this case we do not
|
|
-- want any of the warning machinery for out parameters).
|
|
|
|
else
|
|
Set_Referenced (E);
|
|
end if;
|
|
|
|
-- For the left hand of an assignment case, we do nothing here.
|
|
-- The processing for Analyze_Assignment will set the
|
|
-- Referenced_As_LHS flag.
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
|
|
-- Check for a reference in a pragma that should not count as a
|
|
-- making the variable referenced for warning purposes.
|
|
|
|
elsif Is_Non_Significant_Pragma_Reference (N) then
|
|
null;
|
|
|
|
-- A reference in an attribute definition clause does not count as a
|
|
-- reference except for the case of Address. The reason that 'Address
|
|
-- is an exception is that it creates an alias through which the
|
|
-- variable may be referenced.
|
|
|
|
elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
|
|
and then Chars (Parent (N)) /= Name_Address
|
|
and then N = Name (Parent (N))
|
|
then
|
|
null;
|
|
|
|
-- Constant completion does not count as a reference
|
|
|
|
elsif Typ = 'c'
|
|
and then Ekind (E) = E_Constant
|
|
then
|
|
null;
|
|
|
|
-- Record representation clause does not count as a reference
|
|
|
|
elsif Nkind (N) = N_Identifier
|
|
and then Nkind (Parent (N)) = N_Record_Representation_Clause
|
|
then
|
|
null;
|
|
|
|
-- Discriminants do not need to produce a reference to record type
|
|
|
|
elsif Typ = 'd'
|
|
and then Nkind (Parent (N)) = N_Discriminant_Specification
|
|
then
|
|
null;
|
|
|
|
-- All other cases
|
|
|
|
else
|
|
-- Special processing for IN OUT parameters, where we have an
|
|
-- implicit assignment to a simple variable.
|
|
|
|
if Kind = E_In_Out_Parameter
|
|
and then Is_Assignable (E)
|
|
then
|
|
-- For sure this counts as a normal read reference
|
|
|
|
Set_Referenced (E);
|
|
Set_Last_Assignment (E, Empty);
|
|
|
|
-- We count it as being referenced as an out parameter if the
|
|
-- option is set to warn on all out parameters, except that we
|
|
-- have a special exclusion for an intrinsic subprogram, which
|
|
-- is most likely an instantiation of Unchecked_Deallocation
|
|
-- which we do not want to consider as an assignment since it
|
|
-- generates false positives. We also exclude the case of an
|
|
-- IN OUT parameter if the name of the procedure is Free,
|
|
-- since we suspect similar semantics.
|
|
|
|
if Warn_On_All_Unread_Out_Parameters
|
|
and then Is_Entity_Name (Name (Call))
|
|
and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
|
|
and then Chars (Name (Call)) /= Name_Free
|
|
then
|
|
Set_Referenced_As_Out_Parameter (E, True);
|
|
Set_Referenced_As_LHS (E, False);
|
|
end if;
|
|
|
|
-- Don't count a recursive reference within a subprogram as a
|
|
-- reference (that allows detection of a recursive subprogram
|
|
-- whose only references are recursive calls as unreferenced).
|
|
|
|
elsif Is_Subprogram (E)
|
|
and then E = Nearest_Dynamic_Scope (Current_Scope)
|
|
then
|
|
null;
|
|
|
|
-- Any other occurrence counts as referencing the entity
|
|
|
|
elsif OK_To_Set_Referenced then
|
|
Set_Referenced (E);
|
|
|
|
-- If variable, this is an OK reference after an assignment
|
|
-- so we can clear the Last_Assignment indication.
|
|
|
|
if Is_Assignable (E) then
|
|
Set_Last_Assignment (E, Empty);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- Check for pragma Unreferenced given and reference is within
|
|
-- this source unit (occasion for possible warning to be issued).
|
|
-- Note that the entity may be marked as unreferenced by pragma
|
|
-- Unused.
|
|
|
|
if Has_Unreferenced (E)
|
|
and then In_Same_Extended_Unit (E, N)
|
|
then
|
|
-- A reference as a named parameter in a call does not count as a
|
|
-- violation of pragma Unreferenced for this purpose...
|
|
|
|
if Nkind (N) = N_Identifier
|
|
and then Nkind (Parent (N)) = N_Parameter_Association
|
|
and then Selector_Name (Parent (N)) = N
|
|
then
|
|
null;
|
|
|
|
-- ... Neither does a reference to a variable on the left side of
|
|
-- an assignment.
|
|
|
|
elsif Is_On_LHS (N) then
|
|
null;
|
|
|
|
-- Do not consider F'Result as a violation of pragma Unreferenced
|
|
-- since the attribute acts as an anonymous alias of the function
|
|
-- result and not as a real reference to the function.
|
|
|
|
elsif Ekind (E) in E_Function | E_Generic_Function
|
|
and then Is_Entity_Name (N)
|
|
and then Is_Attribute_Result (Parent (N))
|
|
then
|
|
null;
|
|
|
|
-- No warning if the reference is in a call that does not come
|
|
-- from source (e.g. a call to a controlled type primitive).
|
|
|
|
elsif not Comes_From_Source (Parent (N))
|
|
and then Nkind (Parent (N)) = N_Procedure_Call_Statement
|
|
then
|
|
null;
|
|
|
|
-- For entry formals, we want to place the warning message on the
|
|
-- corresponding entity in the accept statement. The current scope
|
|
-- is the body of the accept, so we find the formal whose name
|
|
-- matches that of the entry formal (there is no link between the
|
|
-- two entities, and the one in the accept statement is only used
|
|
-- for conformance checking).
|
|
|
|
elsif Ekind (Scope (E)) = E_Entry then
|
|
declare
|
|
BE : Entity_Id;
|
|
|
|
begin
|
|
BE := First_Entity (Current_Scope);
|
|
while Present (BE) loop
|
|
if Chars (BE) = Chars (E) then
|
|
if Has_Pragma_Unused (E) then
|
|
Error_Msg_NE -- CODEFIX
|
|
("??pragma Unused given for&!", N, BE);
|
|
else
|
|
Error_Msg_NE -- CODEFIX
|
|
("??pragma Unreferenced given for&!", N, BE);
|
|
end if;
|
|
exit;
|
|
end if;
|
|
|
|
Next_Entity (BE);
|
|
end loop;
|
|
end;
|
|
|
|
-- Here we issue the warning, since this is a real reference
|
|
|
|
elsif Has_Pragma_Unused (E) then
|
|
Error_Msg_NE -- CODEFIX
|
|
("??pragma Unused given for&!", N, E);
|
|
else
|
|
Error_Msg_NE -- CODEFIX
|
|
("??pragma Unreferenced given for&!", N, E);
|
|
end if;
|
|
end if;
|
|
|
|
-- If this is a subprogram instance, mark as well the internal
|
|
-- subprogram in the wrapper package, which may be a visible
|
|
-- compilation unit.
|
|
|
|
if Is_Overloadable (E)
|
|
and then Is_Generic_Instance (E)
|
|
and then Present (Alias (E))
|
|
then
|
|
Set_Referenced (Alias (E));
|
|
end if;
|
|
end if;
|
|
|
|
-- Generate reference if all conditions are met:
|
|
|
|
if
|
|
-- Cross referencing must be active
|
|
|
|
Opt.Xref_Active
|
|
|
|
-- The entity must be one for which we collect references
|
|
|
|
and then Xref_Entity_Letters (Ekind (E)) /= ' '
|
|
|
|
-- Both Sloc values must be set to something sensible
|
|
|
|
and then Sloc (E) > No_Location
|
|
and then Sloc (N) > No_Location
|
|
|
|
-- Ignore references from within an instance. The only exceptions to
|
|
-- this are default subprograms, for which we generate an implicit
|
|
-- reference and compilations in SPARK mode.
|
|
|
|
and then
|
|
(Instantiation_Location (Sloc (N)) = No_Location
|
|
or else Typ = 'i'
|
|
or else GNATprove_Mode)
|
|
|
|
-- Ignore dummy references
|
|
|
|
and then Typ /= ' '
|
|
then
|
|
if Nkind (N) in N_Identifier
|
|
| N_Defining_Identifier
|
|
| N_Defining_Operator_Symbol
|
|
| N_Operator_Symbol
|
|
| N_Defining_Character_Literal
|
|
| N_Op
|
|
or else (Nkind (N) = N_Character_Literal
|
|
and then Sloc (Entity (N)) /= Standard_Location)
|
|
then
|
|
Nod := N;
|
|
|
|
elsif Nkind (N) in N_Expanded_Name | N_Selected_Component then
|
|
Nod := Selector_Name (N);
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- Normal case of source entity comes from source
|
|
|
|
if Comes_From_Source (E) then
|
|
Ent := E;
|
|
|
|
-- Because a declaration may be generated for a subprogram body
|
|
-- without declaration in GNATprove mode, for inlining, some
|
|
-- parameters may end up being marked as not coming from source
|
|
-- although they are. Take these into account specially.
|
|
|
|
elsif GNATprove_Mode and then Is_Formal (E) then
|
|
Ent := E;
|
|
|
|
-- Entity does not come from source, but is a derived subprogram and
|
|
-- the derived subprogram comes from source (after one or more
|
|
-- derivations) in which case the reference is to parent subprogram.
|
|
|
|
elsif Is_Overloadable (E)
|
|
and then Present (Alias (E))
|
|
then
|
|
Ent := Alias (E);
|
|
while not Comes_From_Source (Ent) loop
|
|
if No (Alias (Ent)) then
|
|
return;
|
|
end if;
|
|
|
|
Ent := Alias (Ent);
|
|
end loop;
|
|
|
|
-- The internally created defining entity for a child subprogram
|
|
-- that has no previous spec has valid references.
|
|
|
|
elsif Is_Overloadable (E)
|
|
and then Is_Child_Unit (E)
|
|
then
|
|
Ent := E;
|
|
|
|
-- Ditto for the formals of such a subprogram
|
|
|
|
elsif Is_Overloadable (Scope (E))
|
|
and then Is_Child_Unit (Scope (E))
|
|
then
|
|
Ent := E;
|
|
|
|
-- Record components of discriminated subtypes or derived types must
|
|
-- be treated as references to the original component.
|
|
|
|
elsif Ekind (E) = E_Component
|
|
and then Comes_From_Source (Original_Record_Component (E))
|
|
then
|
|
Ent := Original_Record_Component (E);
|
|
|
|
-- If this is an expanded reference to a discriminant, recover the
|
|
-- original discriminant, which gets the reference.
|
|
|
|
elsif Ekind (E) = E_In_Parameter
|
|
and then Present (Discriminal_Link (E))
|
|
then
|
|
Ent := Discriminal_Link (E);
|
|
Set_Referenced (Ent);
|
|
|
|
-- Ignore reference to any other entity that is not from source
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- In SPARK mode, consider the underlying entity renamed instead of
|
|
-- the renaming, which is needed to compute a valid set of effects
|
|
-- (reads, writes) for the enclosing subprogram.
|
|
|
|
if GNATprove_Mode then
|
|
Ent := Get_Through_Renamings (Ent);
|
|
|
|
-- If no enclosing object, then it could be a reference to any
|
|
-- location not tracked individually, like heap-allocated data.
|
|
-- Conservatively approximate this possibility by generating a
|
|
-- dereference, and return.
|
|
|
|
if No (Ent) then
|
|
if Actual_Typ = 'w' then
|
|
SPARK_Specific.Generate_Dereference (Nod, 'r');
|
|
SPARK_Specific.Generate_Dereference (Nod, 'w');
|
|
else
|
|
SPARK_Specific.Generate_Dereference (Nod, 'r');
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- Record reference to entity
|
|
|
|
if Actual_Typ = 'p'
|
|
and then Is_Subprogram (Nod)
|
|
and then Present (Overridden_Operation (Nod))
|
|
then
|
|
Actual_Typ := 'P';
|
|
end if;
|
|
|
|
-- Comment needed here for special SPARK code ???
|
|
|
|
if GNATprove_Mode then
|
|
|
|
-- Ignore references to an entity which is a Part_Of single
|
|
-- concurrent object. Ideally we would prefer to add it as a
|
|
-- reference to the corresponding concurrent type, but it is quite
|
|
-- difficult (as such references are not currently added even for)
|
|
-- reads/writes of private protected components) and not worth the
|
|
-- effort.
|
|
|
|
if Ekind (Ent) in E_Abstract_State | E_Constant | E_Variable
|
|
and then Present (Encapsulating_State (Ent))
|
|
and then Is_Single_Concurrent_Object (Encapsulating_State (Ent))
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
Ref := Sloc (Nod);
|
|
Def := Sloc (Ent);
|
|
|
|
Ref_Scope :=
|
|
SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
|
|
Ent_Scope :=
|
|
SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
|
|
|
|
-- Since we are reaching through renamings in SPARK mode, we may
|
|
-- end up with standard constants. Ignore those.
|
|
|
|
if Sloc (Ent_Scope) <= Standard_Location
|
|
or else Def <= Standard_Location
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
Add_Entry
|
|
((Ent => Ent,
|
|
Loc => Ref,
|
|
Typ => Actual_Typ,
|
|
Eun => Get_Top_Level_Code_Unit (Def),
|
|
Lun => Get_Top_Level_Code_Unit (Ref),
|
|
Ref_Scope => Ref_Scope,
|
|
Ent_Scope => Ent_Scope),
|
|
Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
|
|
|
|
else
|
|
Ref := Original_Location (Sloc (Nod));
|
|
Def := Original_Location (Sloc (Ent));
|
|
|
|
-- If this is an operator symbol, skip the initial quote for
|
|
-- navigation purposes. This is not done for the end label,
|
|
-- where we want the actual position after the closing quote.
|
|
|
|
if Typ = 't' then
|
|
null;
|
|
|
|
elsif Nkind (N) = N_Defining_Operator_Symbol
|
|
or else Nkind (Nod) = N_Operator_Symbol
|
|
then
|
|
Ref := Ref + 1;
|
|
end if;
|
|
|
|
Add_Entry
|
|
((Ent => Ent,
|
|
Loc => Ref,
|
|
Typ => Actual_Typ,
|
|
Eun => Get_Source_Unit (Def),
|
|
Lun => Get_Source_Unit (Ref),
|
|
Ref_Scope => Empty,
|
|
Ent_Scope => Empty),
|
|
Ent_Scope_File => No_Unit);
|
|
|
|
-- Generate reference to the first private entity
|
|
|
|
if Typ = 'e'
|
|
and then Comes_From_Source (E)
|
|
and then Nkind (Ent) = N_Defining_Identifier
|
|
and then (Is_Package_Or_Generic_Package (Ent)
|
|
or else Is_Concurrent_Type (Ent))
|
|
and then Present (First_Private_Entity (E))
|
|
and then In_Extended_Main_Source_Unit (N)
|
|
then
|
|
-- Handle case in which the full-view and partial-view of the
|
|
-- first private entity are swapped.
|
|
|
|
declare
|
|
First_Private : Entity_Id := First_Private_Entity (E);
|
|
|
|
begin
|
|
if Is_Private_Type (First_Private)
|
|
and then Present (Full_View (First_Private))
|
|
then
|
|
First_Private := Full_View (First_Private);
|
|
end if;
|
|
|
|
Add_Entry
|
|
((Ent => Ent,
|
|
Loc => Sloc (First_Private),
|
|
Typ => 'E',
|
|
Eun => Get_Source_Unit (Def),
|
|
Lun => Get_Source_Unit (Ref),
|
|
Ref_Scope => Empty,
|
|
Ent_Scope => Empty),
|
|
Ent_Scope_File => No_Unit);
|
|
end;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Generate_Reference;
|
|
|
|
-----------------------------------
|
|
-- Generate_Reference_To_Formals --
|
|
-----------------------------------
|
|
|
|
procedure Generate_Reference_To_Formals (E : Entity_Id) is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
if Is_Generic_Subprogram (E) then
|
|
Formal := First_Entity (E);
|
|
|
|
while Present (Formal)
|
|
and then not Is_Formal (Formal)
|
|
loop
|
|
Next_Entity (Formal);
|
|
end loop;
|
|
|
|
elsif Ekind (E) in Access_Subprogram_Kind then
|
|
Formal := First_Formal (Designated_Type (E));
|
|
|
|
else
|
|
Formal := First_Formal (E);
|
|
end if;
|
|
|
|
while Present (Formal) loop
|
|
if Ekind (Formal) = E_In_Parameter then
|
|
|
|
if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
|
|
then
|
|
Generate_Reference (E, Formal, '^', False);
|
|
else
|
|
Generate_Reference (E, Formal, '>', False);
|
|
end if;
|
|
|
|
elsif Ekind (Formal) = E_In_Out_Parameter then
|
|
Generate_Reference (E, Formal, '=', False);
|
|
|
|
else
|
|
Generate_Reference (E, Formal, '<', False);
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
end Generate_Reference_To_Formals;
|
|
|
|
-------------------------------------------
|
|
-- Generate_Reference_To_Generic_Formals --
|
|
-------------------------------------------
|
|
|
|
procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
Formal := First_Entity (E);
|
|
while Present (Formal) loop
|
|
if Comes_From_Source (Formal) then
|
|
Generate_Reference (E, Formal, 'z', False);
|
|
end if;
|
|
|
|
Next_Entity (Formal);
|
|
end loop;
|
|
end Generate_Reference_To_Generic_Formals;
|
|
|
|
-------------
|
|
-- Get_Key --
|
|
-------------
|
|
|
|
function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
|
|
begin
|
|
return E;
|
|
end Get_Key;
|
|
|
|
----------------------------
|
|
-- Has_Deferred_Reference --
|
|
----------------------------
|
|
|
|
function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
|
|
begin
|
|
for J in Deferred_References.First .. Deferred_References.Last loop
|
|
if Deferred_References.Table (J).E = Ent then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Has_Deferred_Reference;
|
|
|
|
----------
|
|
-- Hash --
|
|
----------
|
|
|
|
function Hash (F : Xref_Entry_Number) return Header_Num is
|
|
-- It is unlikely to have two references to the same entity at the same
|
|
-- source location, so the hash function depends only on the Ent and Loc
|
|
-- fields.
|
|
|
|
XE : Xref_Entry renames Xrefs.Table (F);
|
|
type M is mod 2**32;
|
|
|
|
H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
|
|
-- It would be more natural to write:
|
|
--
|
|
-- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
|
|
--
|
|
-- But we can't use M'Mod, because it prevents bootstrapping with older
|
|
-- compilers. Loc can be negative, so we do "abs" before converting.
|
|
-- One day this can be cleaned up ???
|
|
|
|
begin
|
|
return Header_Num (H mod Num_Buckets);
|
|
end Hash;
|
|
|
|
-----------------
|
|
-- HT_Set_Next --
|
|
-----------------
|
|
|
|
procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
|
|
begin
|
|
Xrefs.Table (E).HTable_Next := Next;
|
|
end HT_Set_Next;
|
|
|
|
-------------
|
|
-- HT_Next --
|
|
-------------
|
|
|
|
function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
|
|
begin
|
|
return Xrefs.Table (E).HTable_Next;
|
|
end HT_Next;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
Xrefs.Init;
|
|
end Initialize;
|
|
|
|
--------
|
|
-- Lt --
|
|
--------
|
|
|
|
function Lt (T1, T2 : Xref_Entry) return Boolean is
|
|
begin
|
|
-- First test: if entity is in different unit, sort by unit
|
|
|
|
if T1.Key.Eun /= T2.Key.Eun then
|
|
return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
|
|
|
|
-- Second test: within same unit, sort by entity Sloc
|
|
|
|
elsif T1.Def /= T2.Def then
|
|
return T1.Def < T2.Def;
|
|
|
|
-- Third test: sort definitions ahead of references
|
|
|
|
elsif T1.Key.Loc = No_Location then
|
|
return True;
|
|
|
|
elsif T2.Key.Loc = No_Location then
|
|
return False;
|
|
|
|
-- Fourth test: for same entity, sort by reference location unit
|
|
|
|
elsif T1.Key.Lun /= T2.Key.Lun then
|
|
return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
|
|
|
|
-- Fifth test: order of location within referencing unit
|
|
|
|
elsif T1.Key.Loc /= T2.Key.Loc then
|
|
return T1.Key.Loc < T2.Key.Loc;
|
|
|
|
-- Finally, for two locations at the same address, we prefer
|
|
-- the one that does NOT have the type 'r' so that a modification
|
|
-- or extension takes preference, when there are more than one
|
|
-- reference at the same location. As a result, in the case of
|
|
-- entities that are in-out actuals, the read reference follows
|
|
-- the modify reference.
|
|
|
|
else
|
|
return T2.Key.Typ = 'r';
|
|
end if;
|
|
end Lt;
|
|
|
|
-----------------------
|
|
-- Output_References --
|
|
-----------------------
|
|
|
|
procedure Output_References is
|
|
|
|
procedure Get_Type_Reference
|
|
(Ent : Entity_Id;
|
|
Tref : out Entity_Id;
|
|
Left : out Character;
|
|
Right : out Character);
|
|
-- Given an Entity_Id Ent, determines whether a type reference is
|
|
-- required. If so, Tref is set to the entity for the type reference
|
|
-- and Left and Right are set to the left/right brackets to be output
|
|
-- for the reference. If no type reference is required, then Tref is
|
|
-- set to Empty, and Left/Right are set to space.
|
|
|
|
procedure Output_Import_Export_Info (Ent : Entity_Id);
|
|
-- Output language and external name information for an interfaced
|
|
-- entity, using the format <language, external_name>.
|
|
|
|
------------------------
|
|
-- Get_Type_Reference --
|
|
------------------------
|
|
|
|
procedure Get_Type_Reference
|
|
(Ent : Entity_Id;
|
|
Tref : out Entity_Id;
|
|
Left : out Character;
|
|
Right : out Character)
|
|
is
|
|
Sav : Entity_Id;
|
|
|
|
begin
|
|
-- See if we have a type reference
|
|
|
|
Tref := Ent;
|
|
Left := '{';
|
|
Right := '}';
|
|
|
|
loop
|
|
Sav := Tref;
|
|
|
|
-- Processing for types
|
|
|
|
if Is_Type (Tref) then
|
|
|
|
-- Case of base type
|
|
|
|
if Base_Type (Tref) = Tref then
|
|
|
|
-- If derived, then get first subtype
|
|
|
|
if Tref /= Etype (Tref) then
|
|
Tref := First_Subtype (Etype (Tref));
|
|
|
|
-- Set brackets for derived type, but don't override
|
|
-- pointer case since the fact that something is a
|
|
-- pointer is more important.
|
|
|
|
if Left /= '(' then
|
|
Left := '<';
|
|
Right := '>';
|
|
end if;
|
|
|
|
-- If the completion of a private type is itself a derived
|
|
-- type, we need the parent of the full view.
|
|
|
|
elsif Is_Private_Type (Tref)
|
|
and then Present (Full_View (Tref))
|
|
and then Etype (Full_View (Tref)) /= Full_View (Tref)
|
|
then
|
|
Tref := Etype (Full_View (Tref));
|
|
|
|
if Left /= '(' then
|
|
Left := '<';
|
|
Right := '>';
|
|
end if;
|
|
|
|
-- If non-derived pointer, get directly designated type.
|
|
-- If the type has a full view, all references are on the
|
|
-- partial view that is seen first.
|
|
|
|
elsif Is_Access_Type (Tref) then
|
|
Tref := Directly_Designated_Type (Tref);
|
|
Left := '(';
|
|
Right := ')';
|
|
|
|
elsif Is_Private_Type (Tref)
|
|
and then Present (Full_View (Tref))
|
|
then
|
|
if Is_Access_Type (Full_View (Tref)) then
|
|
Tref := Directly_Designated_Type (Full_View (Tref));
|
|
Left := '(';
|
|
Right := ')';
|
|
|
|
-- If the full view is an array type, we also retrieve
|
|
-- the corresponding component type, because the ali
|
|
-- entry already indicates that this is an array.
|
|
|
|
elsif Is_Array_Type (Full_View (Tref)) then
|
|
Tref := Component_Type (Full_View (Tref));
|
|
Left := '(';
|
|
Right := ')';
|
|
end if;
|
|
|
|
-- If non-derived array, get component type. Skip component
|
|
-- type for case of String or Wide_String, saves worthwhile
|
|
-- space.
|
|
|
|
elsif Is_Array_Type (Tref)
|
|
and then Tref /= Standard_String
|
|
and then Tref /= Standard_Wide_String
|
|
then
|
|
Tref := Component_Type (Tref);
|
|
Left := '(';
|
|
Right := ')';
|
|
|
|
-- For other non-derived base types, nothing
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
|
|
-- For a subtype, go to ancestor subtype
|
|
|
|
else
|
|
Tref := Ancestor_Subtype (Tref);
|
|
|
|
-- If no ancestor subtype, go to base type
|
|
|
|
if No (Tref) then
|
|
Tref := Base_Type (Sav);
|
|
end if;
|
|
end if;
|
|
|
|
-- For objects, functions, enum literals, just get type from
|
|
-- Etype field.
|
|
|
|
elsif Is_Object (Tref)
|
|
or else Ekind (Tref) = E_Enumeration_Literal
|
|
or else Ekind (Tref) = E_Function
|
|
or else Ekind (Tref) = E_Operator
|
|
then
|
|
Tref := Etype (Tref);
|
|
|
|
-- Another special case: an object of a classwide type
|
|
-- initialized with a tag-indeterminate call gets a subtype
|
|
-- of the classwide type during expansion. See if the original
|
|
-- type in the declaration is named, and return it instead
|
|
-- of going to the root type. The expression may be a class-
|
|
-- wide function call whose result is on the secondary stack,
|
|
-- which forces the declaration to be rewritten as a renaming,
|
|
-- so examine the source declaration.
|
|
|
|
if Ekind (Tref) = E_Class_Wide_Subtype then
|
|
declare
|
|
Decl : constant Node_Id := Original_Node (Parent (Ent));
|
|
begin
|
|
if Nkind (Decl) = N_Object_Declaration
|
|
and then Is_Entity_Name
|
|
(Original_Node (Object_Definition (Decl)))
|
|
then
|
|
Tref :=
|
|
Entity (Original_Node (Object_Definition (Decl)));
|
|
end if;
|
|
end;
|
|
|
|
-- For a function that returns a class-wide type, Tref is
|
|
-- already correct.
|
|
|
|
elsif Is_Overloadable (Ent)
|
|
and then Is_Class_Wide_Type (Tref)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- For anything else, exit
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
|
|
-- Exit if no type reference, or we are stuck in some loop trying
|
|
-- to find the type reference, or if the type is standard void
|
|
-- type (the latter is an implementation artifact that should not
|
|
-- show up in the generated cross-references).
|
|
|
|
exit when No (Tref)
|
|
or else Tref = Sav
|
|
or else Tref = Standard_Void_Type;
|
|
|
|
-- If we have a usable type reference, return, otherwise keep
|
|
-- looking for something useful (we are looking for something
|
|
-- that either comes from source or standard)
|
|
|
|
if Sloc (Tref) = Standard_Location
|
|
or else Comes_From_Source (Tref)
|
|
then
|
|
-- If the reference is a subtype created for a generic actual,
|
|
-- go actual directly, the inner subtype is not user visible.
|
|
|
|
if Nkind (Parent (Tref)) = N_Subtype_Declaration
|
|
and then not Comes_From_Source (Parent (Tref))
|
|
and then
|
|
(Is_Wrapper_Package (Scope (Tref))
|
|
or else Is_Generic_Instance (Scope (Tref)))
|
|
then
|
|
Tref := First_Subtype (Base_Type (Tref));
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
end loop;
|
|
|
|
-- If we fall through the loop, no type reference
|
|
|
|
Tref := Empty;
|
|
Left := ' ';
|
|
Right := ' ';
|
|
end Get_Type_Reference;
|
|
|
|
-------------------------------
|
|
-- Output_Import_Export_Info --
|
|
-------------------------------
|
|
|
|
procedure Output_Import_Export_Info (Ent : Entity_Id) is
|
|
Language_Name : Name_Id;
|
|
Conv : constant Convention_Id := Convention (Ent);
|
|
|
|
begin
|
|
-- Generate language name from convention
|
|
|
|
if Conv = Convention_C or else Conv in Convention_C_Variadic then
|
|
Language_Name := Name_C;
|
|
|
|
elsif Conv = Convention_CPP then
|
|
Language_Name := Name_CPP;
|
|
|
|
elsif Conv = Convention_Ada then
|
|
Language_Name := Name_Ada;
|
|
|
|
else
|
|
-- For the moment we ignore all other cases ???
|
|
|
|
return;
|
|
end if;
|
|
|
|
Write_Info_Char ('<');
|
|
Get_Unqualified_Name_String (Language_Name);
|
|
|
|
for J in 1 .. Name_Len loop
|
|
Write_Info_Char (Name_Buffer (J));
|
|
end loop;
|
|
|
|
if Present (Interface_Name (Ent)) then
|
|
Write_Info_Char (',');
|
|
String_To_Name_Buffer (Strval (Interface_Name (Ent)));
|
|
|
|
for J in 1 .. Name_Len loop
|
|
Write_Info_Char (Name_Buffer (J));
|
|
end loop;
|
|
end if;
|
|
|
|
Write_Info_Char ('>');
|
|
end Output_Import_Export_Info;
|
|
|
|
-- Start of processing for Output_References
|
|
|
|
begin
|
|
-- First we add references to the primitive operations of tagged types
|
|
-- declared in the main unit.
|
|
|
|
Handle_Prim_Ops : declare
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
for J in 1 .. Xrefs.Last loop
|
|
Ent := Xrefs.Table (J).Key.Ent;
|
|
|
|
if Is_Type (Ent)
|
|
and then Is_Tagged_Type (Ent)
|
|
and then Is_Base_Type (Ent)
|
|
and then In_Extended_Main_Source_Unit (Ent)
|
|
then
|
|
Generate_Prim_Op_References (Ent);
|
|
end if;
|
|
end loop;
|
|
end Handle_Prim_Ops;
|
|
|
|
-- Before we go ahead and output the references we have a problem
|
|
-- that needs dealing with. So far we have captured things that are
|
|
-- definitely referenced by the main unit, or defined in the main
|
|
-- unit. That's because we don't want to clutter up the ali file
|
|
-- for this unit with definition lines for entities in other units
|
|
-- that are not referenced.
|
|
|
|
-- But there is a glitch. We may reference an entity in another unit,
|
|
-- and it may have a type reference to an entity that is not directly
|
|
-- referenced in the main unit, which may mean that there is no xref
|
|
-- entry for this entity yet in the list of references.
|
|
|
|
-- If we don't do something about this, we will end with an orphan type
|
|
-- reference, i.e. it will point to an entity that does not appear
|
|
-- within the generated references in the ali file. That is not good for
|
|
-- tools using the xref information.
|
|
|
|
-- To fix this, we go through the references adding definition entries
|
|
-- for any unreferenced entities that can be referenced in a type
|
|
-- reference. There is a recursion problem here, and that is dealt with
|
|
-- by making sure that this traversal also traverses any entries that
|
|
-- get added by the traversal.
|
|
|
|
Handle_Orphan_Type_References : declare
|
|
J : Nat;
|
|
Tref : Entity_Id;
|
|
Ent : Entity_Id;
|
|
|
|
L, R : Character;
|
|
pragma Warnings (Off, L);
|
|
pragma Warnings (Off, R);
|
|
|
|
procedure New_Entry (E : Entity_Id);
|
|
-- Make an additional entry into the Xref table for a type entity
|
|
-- that is related to the current entity (parent, type ancestor,
|
|
-- progenitor, etc.).
|
|
|
|
----------------
|
|
-- New_Entry --
|
|
----------------
|
|
|
|
procedure New_Entry (E : Entity_Id) is
|
|
begin
|
|
pragma Assert (Present (E));
|
|
|
|
if not Has_Xref_Entry (Implementation_Base_Type (E))
|
|
and then Sloc (E) > No_Location
|
|
then
|
|
Add_Entry
|
|
((Ent => E,
|
|
Loc => No_Location,
|
|
Typ => Character'First,
|
|
Eun => Get_Source_Unit (Original_Location (Sloc (E))),
|
|
Lun => No_Unit,
|
|
Ref_Scope => Empty,
|
|
Ent_Scope => Empty),
|
|
Ent_Scope_File => No_Unit);
|
|
end if;
|
|
end New_Entry;
|
|
|
|
-- Start of processing for Handle_Orphan_Type_References
|
|
|
|
begin
|
|
-- Note that this is not a for loop for a very good reason. The
|
|
-- processing of items in the table can add new items to the table,
|
|
-- and they must be processed as well.
|
|
|
|
J := 1;
|
|
while J <= Xrefs.Last loop
|
|
Ent := Xrefs.Table (J).Key.Ent;
|
|
|
|
-- Do not generate reference information for an ignored Ghost
|
|
-- entity because neither the entity nor its references will
|
|
-- appear in the final tree.
|
|
|
|
if Is_Ignored_Ghost_Entity (Ent) then
|
|
goto Orphan_Continue;
|
|
end if;
|
|
|
|
Get_Type_Reference (Ent, Tref, L, R);
|
|
|
|
if Present (Tref)
|
|
and then not Has_Xref_Entry (Tref)
|
|
and then Sloc (Tref) > No_Location
|
|
then
|
|
New_Entry (Tref);
|
|
|
|
if Is_Record_Type (Ent)
|
|
and then Present (Interfaces (Ent))
|
|
then
|
|
-- Add an entry for each one of the given interfaces
|
|
-- implemented by type Ent.
|
|
|
|
declare
|
|
Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
|
|
begin
|
|
while Present (Elmt) loop
|
|
New_Entry (Node (Elmt));
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
-- Collect inherited primitive operations that may be declared in
|
|
-- another unit and have no visible reference in the current one.
|
|
|
|
if Is_Type (Ent)
|
|
and then Is_Tagged_Type (Ent)
|
|
and then Is_Derived_Type (Ent)
|
|
and then Is_Base_Type (Ent)
|
|
and then In_Extended_Main_Source_Unit (Ent)
|
|
then
|
|
declare
|
|
Op_List : constant Elist_Id := Primitive_Operations (Ent);
|
|
Op : Elmt_Id;
|
|
Prim : Entity_Id;
|
|
|
|
function Parent_Op (E : Entity_Id) return Entity_Id;
|
|
-- Find original operation, which may be inherited through
|
|
-- several derivations.
|
|
|
|
function Parent_Op (E : Entity_Id) return Entity_Id is
|
|
Orig_Op : constant Entity_Id := Alias (E);
|
|
|
|
begin
|
|
if No (Orig_Op) then
|
|
return Empty;
|
|
|
|
elsif not Comes_From_Source (E)
|
|
and then not Has_Xref_Entry (Orig_Op)
|
|
and then Comes_From_Source (Orig_Op)
|
|
then
|
|
return Orig_Op;
|
|
else
|
|
return Parent_Op (Orig_Op);
|
|
end if;
|
|
end Parent_Op;
|
|
|
|
begin
|
|
Op := First_Elmt (Op_List);
|
|
while Present (Op) loop
|
|
Prim := Parent_Op (Node (Op));
|
|
|
|
if Present (Prim) then
|
|
Add_Entry
|
|
((Ent => Prim,
|
|
Loc => No_Location,
|
|
Typ => Character'First,
|
|
Eun => Get_Source_Unit (Sloc (Prim)),
|
|
Lun => No_Unit,
|
|
Ref_Scope => Empty,
|
|
Ent_Scope => Empty),
|
|
Ent_Scope_File => No_Unit);
|
|
end if;
|
|
|
|
Next_Elmt (Op);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
<<Orphan_Continue>>
|
|
J := J + 1;
|
|
end loop;
|
|
end Handle_Orphan_Type_References;
|
|
|
|
-- Now we have all the references, including those for any embedded type
|
|
-- references, so we can sort them, and output them.
|
|
|
|
Output_Refs : declare
|
|
Nrefs : constant Nat := Xrefs.Last;
|
|
-- Number of references in table
|
|
|
|
Rnums : array (0 .. Nrefs) of Nat;
|
|
-- This array contains numbers of references in the Xrefs table.
|
|
-- This list is sorted in output order. The extra 0'th entry is
|
|
-- convenient for the call to sort. When we sort the table, we
|
|
-- move the entries in Rnums around, but we do not move the
|
|
-- original table entries.
|
|
|
|
Curxu : Unit_Number_Type;
|
|
-- Current xref unit
|
|
|
|
Curru : Unit_Number_Type;
|
|
-- Current reference unit for one entity
|
|
|
|
Curent : Entity_Id;
|
|
-- Current entity
|
|
|
|
Curnam : String (1 .. Name_Buffer'Length);
|
|
Curlen : Natural;
|
|
-- Simple name and length of current entity
|
|
|
|
Curdef : Source_Ptr;
|
|
-- Original source location for current entity
|
|
|
|
Crloc : Source_Ptr;
|
|
-- Current reference location
|
|
|
|
Ctyp : Character;
|
|
-- Entity type character
|
|
|
|
Prevt : Character;
|
|
-- reference kind of previous reference
|
|
|
|
Tref : Entity_Id;
|
|
-- Type reference
|
|
|
|
Rref : Node_Id;
|
|
-- Renaming reference
|
|
|
|
Trunit : Unit_Number_Type;
|
|
-- Unit number for type reference
|
|
|
|
function Lt (Op1, Op2 : Natural) return Boolean;
|
|
-- Comparison function for Sort call
|
|
|
|
function Name_Change (X : Entity_Id) return Boolean;
|
|
-- Determines if entity X has a different simple name from Curent
|
|
|
|
procedure Move (From : Natural; To : Natural);
|
|
-- Move procedure for Sort call
|
|
|
|
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
|
|
|
|
--------
|
|
-- Lt --
|
|
--------
|
|
|
|
function Lt (Op1, Op2 : Natural) return Boolean is
|
|
T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
|
|
T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
|
|
|
|
begin
|
|
return Lt (T1, T2);
|
|
end Lt;
|
|
|
|
----------
|
|
-- Move --
|
|
----------
|
|
|
|
procedure Move (From : Natural; To : Natural) is
|
|
begin
|
|
Rnums (Nat (To)) := Rnums (Nat (From));
|
|
end Move;
|
|
|
|
-----------------
|
|
-- Name_Change --
|
|
-----------------
|
|
|
|
-- Why a string comparison here??? Why not compare Name_Id values???
|
|
|
|
function Name_Change (X : Entity_Id) return Boolean is
|
|
begin
|
|
Get_Unqualified_Name_String (Chars (X));
|
|
|
|
if Name_Len /= Curlen then
|
|
return True;
|
|
else
|
|
return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
|
|
end if;
|
|
end Name_Change;
|
|
|
|
-- Start of processing for Output_Refs
|
|
|
|
begin
|
|
-- Capture the definition Sloc values. We delay doing this till now,
|
|
-- since at the time the reference or definition is made, private
|
|
-- types may be swapped, and the Sloc value may be incorrect. We
|
|
-- also set up the pointer vector for the sort.
|
|
|
|
-- For user-defined operators we need to skip the initial quote and
|
|
-- point to the first character of the name, for navigation purposes.
|
|
|
|
for J in 1 .. Nrefs loop
|
|
declare
|
|
E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
|
|
Loc : constant Source_Ptr := Original_Location (Sloc (E));
|
|
|
|
begin
|
|
Rnums (J) := J;
|
|
|
|
if Nkind (E) = N_Defining_Operator_Symbol then
|
|
Xrefs.Table (J).Def := Loc + 1;
|
|
else
|
|
Xrefs.Table (J).Def := Loc;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
-- Sort the references
|
|
|
|
Sorting.Sort (Integer (Nrefs));
|
|
|
|
-- Initialize loop through references
|
|
|
|
Curxu := No_Unit;
|
|
Curent := Empty;
|
|
Curdef := No_Location;
|
|
Curru := No_Unit;
|
|
Crloc := No_Location;
|
|
Prevt := 'm';
|
|
|
|
-- Loop to output references
|
|
|
|
for Refno in 1 .. Nrefs loop
|
|
Output_One_Ref : declare
|
|
Ent : Entity_Id;
|
|
|
|
XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
|
|
-- The current entry to be accessed
|
|
|
|
Left : Character;
|
|
Right : Character;
|
|
-- Used for {} or <> or () for type reference
|
|
|
|
procedure Check_Type_Reference
|
|
(Ent : Entity_Id;
|
|
List_Interface : Boolean;
|
|
Is_Component : Boolean := False);
|
|
-- Find whether there is a meaningful type reference for
|
|
-- Ent, and display it accordingly. If List_Interface is
|
|
-- true, then Ent is a progenitor interface of the current
|
|
-- type entity being listed. In that case list it as is,
|
|
-- without looking for a type reference for it. Flag is also
|
|
-- used for index types of an array type, where the caller
|
|
-- supplies the intended type reference. Is_Component serves
|
|
-- the same purpose, to display the component type of a
|
|
-- derived array type, for which only the parent type has
|
|
-- ben displayed so far.
|
|
|
|
procedure Output_Instantiation_Refs (Loc : Source_Ptr);
|
|
-- Recursive procedure to output instantiation references for
|
|
-- the given source ptr in [file|line[...]] form. No output
|
|
-- if the given location is not a generic template reference.
|
|
|
|
procedure Output_Overridden_Op (Old_E : Entity_Id);
|
|
-- For a subprogram that is overriding, display information
|
|
-- about the inherited operation that it overrides.
|
|
|
|
--------------------------
|
|
-- Check_Type_Reference --
|
|
--------------------------
|
|
|
|
procedure Check_Type_Reference
|
|
(Ent : Entity_Id;
|
|
List_Interface : Boolean;
|
|
Is_Component : Boolean := False)
|
|
is
|
|
begin
|
|
if List_Interface then
|
|
|
|
-- This is a progenitor interface of the type for which
|
|
-- xref information is being generated.
|
|
|
|
Tref := Ent;
|
|
Left := '<';
|
|
Right := '>';
|
|
|
|
-- The following is not documented in lib-xref.ads ???
|
|
|
|
elsif Is_Component then
|
|
Tref := Ent;
|
|
Left := '(';
|
|
Right := ')';
|
|
|
|
else
|
|
Get_Type_Reference (Ent, Tref, Left, Right);
|
|
end if;
|
|
|
|
if Present (Tref) then
|
|
|
|
-- Case of standard entity, output name
|
|
|
|
if Sloc (Tref) = Standard_Location then
|
|
Write_Info_Char (Left);
|
|
Write_Info_Name (Chars (Tref));
|
|
Write_Info_Char (Right);
|
|
|
|
-- Case of source entity, output location
|
|
|
|
else
|
|
Write_Info_Char (Left);
|
|
Trunit := Get_Source_Unit (Sloc (Tref));
|
|
|
|
if Trunit /= Curxu then
|
|
Write_Info_Nat (Dependency_Num (Trunit));
|
|
Write_Info_Char ('|');
|
|
end if;
|
|
|
|
Write_Info_Nat
|
|
(Int (Get_Logical_Line_Number (Sloc (Tref))));
|
|
|
|
declare
|
|
Ent : Entity_Id;
|
|
Ctyp : Character;
|
|
|
|
begin
|
|
Ent := Tref;
|
|
Ctyp := Xref_Entity_Letters (Ekind (Ent));
|
|
|
|
if Ctyp = '+'
|
|
and then Present (Full_View (Ent))
|
|
then
|
|
Ent := Underlying_Type (Ent);
|
|
|
|
if Present (Ent) then
|
|
Ctyp := Xref_Entity_Letters (Ekind (Ent));
|
|
end if;
|
|
end if;
|
|
|
|
Write_Info_Char (Ctyp);
|
|
end;
|
|
|
|
Write_Info_Nat
|
|
(Int (Get_Column_Number (Sloc (Tref))));
|
|
|
|
-- If the type comes from an instantiation, add the
|
|
-- corresponding info.
|
|
|
|
Output_Instantiation_Refs (Sloc (Tref));
|
|
Write_Info_Char (Right);
|
|
end if;
|
|
end if;
|
|
end Check_Type_Reference;
|
|
|
|
-------------------------------
|
|
-- Output_Instantiation_Refs --
|
|
-------------------------------
|
|
|
|
procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
|
|
Iloc : constant Source_Ptr := Instantiation_Location (Loc);
|
|
Lun : Unit_Number_Type;
|
|
Cu : constant Unit_Number_Type := Curru;
|
|
|
|
begin
|
|
-- Nothing to do if this is not an instantiation
|
|
|
|
if Iloc = No_Location then
|
|
return;
|
|
end if;
|
|
|
|
-- Output instantiation reference
|
|
|
|
Write_Info_Char ('[');
|
|
Lun := Get_Source_Unit (Iloc);
|
|
|
|
if Lun /= Curru then
|
|
Curru := Lun;
|
|
Write_Info_Nat (Dependency_Num (Curru));
|
|
Write_Info_Char ('|');
|
|
end if;
|
|
|
|
Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
|
|
|
|
-- Recursive call to get nested instantiations
|
|
|
|
Output_Instantiation_Refs (Iloc);
|
|
|
|
-- Output final ] after call to get proper nesting
|
|
|
|
Write_Info_Char (']');
|
|
Curru := Cu;
|
|
return;
|
|
end Output_Instantiation_Refs;
|
|
|
|
--------------------------
|
|
-- Output_Overridden_Op --
|
|
--------------------------
|
|
|
|
procedure Output_Overridden_Op (Old_E : Entity_Id) is
|
|
Op : Entity_Id;
|
|
|
|
begin
|
|
-- The overridden operation has an implicit declaration
|
|
-- at the point of derivation. What we want to display
|
|
-- is the original operation, which has the actual body
|
|
-- (or abstract declaration) that is being overridden.
|
|
-- The overridden operation is not always set, e.g. when
|
|
-- it is a predefined operator.
|
|
|
|
if No (Old_E) then
|
|
return;
|
|
|
|
-- Follow alias chain if one is present
|
|
|
|
elsif Present (Alias (Old_E)) then
|
|
|
|
-- The subprogram may have been implicitly inherited
|
|
-- through several levels of derivation, so find the
|
|
-- ultimate (source) ancestor.
|
|
|
|
Op := Ultimate_Alias (Old_E);
|
|
|
|
-- Normal case of no alias present. We omit generated
|
|
-- primitives like tagged equality, that have no source
|
|
-- representation.
|
|
|
|
else
|
|
Op := Old_E;
|
|
end if;
|
|
|
|
if Present (Op)
|
|
and then Sloc (Op) /= Standard_Location
|
|
and then Comes_From_Source (Op)
|
|
then
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (Op);
|
|
Par_Unit : constant Unit_Number_Type :=
|
|
Get_Source_Unit (Loc);
|
|
|
|
begin
|
|
Write_Info_Char ('<');
|
|
|
|
if Par_Unit /= Curxu then
|
|
Write_Info_Nat (Dependency_Num (Par_Unit));
|
|
Write_Info_Char ('|');
|
|
end if;
|
|
|
|
Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
|
|
Write_Info_Char ('p');
|
|
Write_Info_Nat (Int (Get_Column_Number (Loc)));
|
|
Write_Info_Char ('>');
|
|
end;
|
|
end if;
|
|
end Output_Overridden_Op;
|
|
|
|
-- Start of processing for Output_One_Ref
|
|
|
|
begin
|
|
Ent := XE.Key.Ent;
|
|
|
|
-- Do not generate reference information for an ignored Ghost
|
|
-- entity because neither the entity nor its references will
|
|
-- appear in the final tree.
|
|
|
|
if Is_Ignored_Ghost_Entity (Ent) then
|
|
goto Continue;
|
|
end if;
|
|
|
|
Ctyp := Xref_Entity_Letters (Ekind (Ent));
|
|
|
|
-- Skip reference if it is the only reference to an entity,
|
|
-- and it is an END line reference, and the entity is not in
|
|
-- the current extended source. This prevents junk entries
|
|
-- consisting only of packages with END lines, where no
|
|
-- entity from the package is actually referenced.
|
|
|
|
if XE.Key.Typ = 'e'
|
|
and then Ent /= Curent
|
|
and then (Refno = Nrefs
|
|
or else
|
|
Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
|
|
and then not In_Extended_Main_Source_Unit (Ent)
|
|
then
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- For private type, get full view type
|
|
|
|
if Ctyp = '+'
|
|
and then Present (Full_View (XE.Key.Ent))
|
|
then
|
|
Ent := Underlying_Type (Ent);
|
|
|
|
if Present (Ent) then
|
|
Ctyp := Xref_Entity_Letters (Ekind (Ent));
|
|
end if;
|
|
end if;
|
|
|
|
-- Special exception for Boolean
|
|
|
|
if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
|
|
Ctyp := 'B';
|
|
end if;
|
|
|
|
-- For variable reference, get corresponding type
|
|
|
|
if Ctyp = '*' then
|
|
Ent := Etype (XE.Key.Ent);
|
|
Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
|
|
|
|
-- If variable is private type, get full view type
|
|
|
|
if Ctyp = '+'
|
|
and then Present (Full_View (Etype (XE.Key.Ent)))
|
|
then
|
|
Ent := Underlying_Type (Etype (XE.Key.Ent));
|
|
|
|
if Present (Ent) then
|
|
Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
|
|
end if;
|
|
|
|
elsif Is_Generic_Type (Ent) then
|
|
|
|
-- If the type of the entity is a generic private type,
|
|
-- there is no usable full view, so retain the indication
|
|
-- that this is an object.
|
|
|
|
Ctyp := '*';
|
|
end if;
|
|
|
|
-- Special handling for access parameters and objects and
|
|
-- components of an anonymous access type.
|
|
|
|
if Ekind (Etype (XE.Key.Ent)) in
|
|
E_Anonymous_Access_Type
|
|
| E_Anonymous_Access_Subprogram_Type
|
|
| E_Anonymous_Access_Protected_Subprogram_Type
|
|
then
|
|
if Is_Formal (XE.Key.Ent)
|
|
or else
|
|
Ekind (XE.Key.Ent) in
|
|
E_Variable | E_Constant | E_Component
|
|
then
|
|
Ctyp := 'p';
|
|
end if;
|
|
|
|
-- Special handling for Boolean
|
|
|
|
elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
|
|
Ctyp := 'b';
|
|
end if;
|
|
end if;
|
|
|
|
-- Special handling for abstract types and operations
|
|
|
|
if Is_Overloadable (XE.Key.Ent)
|
|
and then Is_Abstract_Subprogram (XE.Key.Ent)
|
|
then
|
|
if Ctyp = 'U' then
|
|
Ctyp := 'x'; -- Abstract procedure
|
|
|
|
elsif Ctyp = 'V' then
|
|
Ctyp := 'y'; -- Abstract function
|
|
end if;
|
|
|
|
elsif Is_Type (XE.Key.Ent)
|
|
and then Is_Abstract_Type (XE.Key.Ent)
|
|
then
|
|
if Is_Interface (XE.Key.Ent) then
|
|
Ctyp := 'h';
|
|
|
|
elsif Ctyp = 'R' then
|
|
Ctyp := 'H'; -- Abstract type
|
|
end if;
|
|
end if;
|
|
|
|
-- Only output reference if interesting type of entity
|
|
|
|
if Ctyp = ' '
|
|
|
|
-- Suppress references to object definitions, used for local
|
|
-- references.
|
|
|
|
or else XE.Key.Typ = 'D'
|
|
or else XE.Key.Typ = 'I'
|
|
|
|
-- Suppress self references, except for bodies that act as
|
|
-- specs.
|
|
|
|
or else (XE.Key.Loc = XE.Def
|
|
and then
|
|
(XE.Key.Typ /= 'b'
|
|
or else not Is_Subprogram (XE.Key.Ent)))
|
|
|
|
-- Also suppress definitions of body formals (we only
|
|
-- treat these as references, and the references were
|
|
-- separately recorded).
|
|
|
|
or else (Is_Formal (XE.Key.Ent)
|
|
and then Present (Spec_Entity (XE.Key.Ent)))
|
|
then
|
|
null;
|
|
|
|
else
|
|
-- Start new Xref section if new xref unit
|
|
|
|
if XE.Key.Eun /= Curxu then
|
|
if Write_Info_Col > 1 then
|
|
Write_Info_EOL;
|
|
end if;
|
|
|
|
Curxu := XE.Key.Eun;
|
|
|
|
Write_Info_Initiate ('X');
|
|
Write_Info_Char (' ');
|
|
Write_Info_Nat (Dependency_Num (XE.Key.Eun));
|
|
Write_Info_Char (' ');
|
|
Write_Info_Name
|
|
(Reference_Name (Source_Index (XE.Key.Eun)));
|
|
end if;
|
|
|
|
-- Start new Entity line if new entity. Note that we
|
|
-- consider two entities the same if they have the same
|
|
-- name and source location. This causes entities in
|
|
-- instantiations to be treated as though they referred
|
|
-- to the template.
|
|
|
|
if No (Curent)
|
|
or else
|
|
(XE.Key.Ent /= Curent
|
|
and then
|
|
(Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
|
|
then
|
|
Curent := XE.Key.Ent;
|
|
Curdef := XE.Def;
|
|
|
|
Get_Unqualified_Name_String (Chars (XE.Key.Ent));
|
|
Curlen := Name_Len;
|
|
Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
|
|
|
|
if Write_Info_Col > 1 then
|
|
Write_Info_EOL;
|
|
end if;
|
|
|
|
-- Write column number information
|
|
|
|
Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
|
|
Write_Info_Char (Ctyp);
|
|
Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
|
|
|
|
-- Write level information
|
|
|
|
Write_Level_Info : declare
|
|
function Is_Visible_Generic_Entity
|
|
(E : Entity_Id) return Boolean;
|
|
-- Check whether E is declared in the visible part
|
|
-- of a generic package. For source navigation
|
|
-- purposes, treat this as a visible entity.
|
|
|
|
function Is_Private_Record_Component
|
|
(E : Entity_Id) return Boolean;
|
|
-- Check whether E is a non-inherited component of a
|
|
-- private extension. Even if the enclosing record is
|
|
-- public, we want to treat the component as private
|
|
-- for navigation purposes.
|
|
|
|
---------------------------------
|
|
-- Is_Private_Record_Component --
|
|
---------------------------------
|
|
|
|
function Is_Private_Record_Component
|
|
(E : Entity_Id) return Boolean
|
|
is
|
|
S : constant Entity_Id := Scope (E);
|
|
begin
|
|
return
|
|
Ekind (E) = E_Component
|
|
and then Nkind (Declaration_Node (S)) =
|
|
N_Private_Extension_Declaration
|
|
and then Original_Record_Component (E) = E;
|
|
end Is_Private_Record_Component;
|
|
|
|
-------------------------------
|
|
-- Is_Visible_Generic_Entity --
|
|
-------------------------------
|
|
|
|
function Is_Visible_Generic_Entity
|
|
(E : Entity_Id) return Boolean
|
|
is
|
|
Par : Node_Id;
|
|
|
|
begin
|
|
-- The Present check here is an error defense
|
|
|
|
if Present (Scope (E))
|
|
and then Ekind (Scope (E)) /= E_Generic_Package
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Par := Parent (E);
|
|
while Present (Par) loop
|
|
if
|
|
Nkind (Par) = N_Generic_Package_Declaration
|
|
then
|
|
-- Entity is a generic formal
|
|
|
|
return False;
|
|
|
|
elsif
|
|
Nkind (Parent (Par)) = N_Package_Specification
|
|
then
|
|
return
|
|
Is_List_Member (Par)
|
|
and then List_Containing (Par) =
|
|
Visible_Declarations (Parent (Par));
|
|
else
|
|
Par := Parent (Par);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Visible_Generic_Entity;
|
|
|
|
-- Start of processing for Write_Level_Info
|
|
|
|
begin
|
|
if Is_Hidden (Curent)
|
|
or else Is_Private_Record_Component (Curent)
|
|
then
|
|
Write_Info_Char (' ');
|
|
|
|
elsif
|
|
Is_Public (Curent)
|
|
or else Is_Visible_Generic_Entity (Curent)
|
|
then
|
|
Write_Info_Char ('*');
|
|
|
|
else
|
|
Write_Info_Char (' ');
|
|
end if;
|
|
end Write_Level_Info;
|
|
|
|
-- Output entity name. We use the occurrence from the
|
|
-- actual source program at the definition point.
|
|
|
|
declare
|
|
Ent_Name : constant String :=
|
|
Exact_Source_Name (Sloc (XE.Key.Ent));
|
|
begin
|
|
for C in Ent_Name'Range loop
|
|
Write_Info_Char (Ent_Name (C));
|
|
end loop;
|
|
end;
|
|
|
|
-- See if we have a renaming reference
|
|
|
|
if Is_Object (XE.Key.Ent)
|
|
and then Present (Renamed_Object (XE.Key.Ent))
|
|
then
|
|
Rref := Renamed_Object (XE.Key.Ent);
|
|
|
|
elsif Is_Overloadable (XE.Key.Ent)
|
|
and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
|
|
= N_Subprogram_Renaming_Declaration
|
|
then
|
|
Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
|
|
|
|
elsif Ekind (XE.Key.Ent) = E_Package
|
|
and then Nkind (Declaration_Node (XE.Key.Ent)) =
|
|
N_Package_Renaming_Declaration
|
|
then
|
|
Rref := Name (Declaration_Node (XE.Key.Ent));
|
|
|
|
else
|
|
Rref := Empty;
|
|
end if;
|
|
|
|
if Present (Rref) then
|
|
if Nkind (Rref) = N_Expanded_Name then
|
|
Rref := Selector_Name (Rref);
|
|
end if;
|
|
|
|
if Nkind (Rref) = N_Identifier
|
|
or else Nkind (Rref) = N_Operator_Symbol
|
|
then
|
|
null;
|
|
|
|
-- For renamed array components, use the array name
|
|
-- for the renamed entity, which reflect the fact that
|
|
-- in general the whole array is aliased.
|
|
|
|
elsif Nkind (Rref) = N_Indexed_Component then
|
|
if Nkind (Prefix (Rref)) = N_Identifier then
|
|
Rref := Prefix (Rref);
|
|
elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
|
|
Rref := Selector_Name (Prefix (Rref));
|
|
else
|
|
Rref := Empty;
|
|
end if;
|
|
|
|
else
|
|
Rref := Empty;
|
|
end if;
|
|
end if;
|
|
|
|
-- Write out renaming reference if we have one
|
|
|
|
if Present (Rref) then
|
|
Write_Info_Char ('=');
|
|
Write_Info_Nat
|
|
(Int (Get_Logical_Line_Number (Sloc (Rref))));
|
|
Write_Info_Char (':');
|
|
Write_Info_Nat
|
|
(Int (Get_Column_Number (Sloc (Rref))));
|
|
end if;
|
|
|
|
-- Indicate that the entity is in the unit of the current
|
|
-- xref section.
|
|
|
|
Curru := Curxu;
|
|
|
|
-- Write out information about generic parent, if entity
|
|
-- is an instance.
|
|
|
|
if Is_Generic_Instance (XE.Key.Ent) then
|
|
declare
|
|
Gen_Par : constant Entity_Id :=
|
|
Generic_Parent
|
|
(Specification
|
|
(Unit_Declaration_Node
|
|
(XE.Key.Ent)));
|
|
Loc : constant Source_Ptr := Sloc (Gen_Par);
|
|
Gen_U : constant Unit_Number_Type :=
|
|
Get_Source_Unit (Loc);
|
|
|
|
begin
|
|
Write_Info_Char ('[');
|
|
|
|
if Curru /= Gen_U then
|
|
Write_Info_Nat (Dependency_Num (Gen_U));
|
|
Write_Info_Char ('|');
|
|
end if;
|
|
|
|
Write_Info_Nat
|
|
(Int (Get_Logical_Line_Number (Loc)));
|
|
Write_Info_Char (']');
|
|
end;
|
|
end if;
|
|
|
|
-- See if we have a type reference and if so output
|
|
|
|
Check_Type_Reference (XE.Key.Ent, False);
|
|
|
|
-- Additional information for types with progenitors,
|
|
-- including synchronized tagged types.
|
|
|
|
declare
|
|
Typ : constant Entity_Id := XE.Key.Ent;
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
if Is_Record_Type (Typ)
|
|
and then Present (Interfaces (Typ))
|
|
then
|
|
Elmt := First_Elmt (Interfaces (Typ));
|
|
|
|
elsif Is_Concurrent_Type (Typ)
|
|
and then Present (Corresponding_Record_Type (Typ))
|
|
and then Present (
|
|
Interfaces (Corresponding_Record_Type (Typ)))
|
|
then
|
|
Elmt :=
|
|
First_Elmt (
|
|
Interfaces (Corresponding_Record_Type (Typ)));
|
|
|
|
else
|
|
Elmt := No_Elmt;
|
|
end if;
|
|
|
|
while Present (Elmt) loop
|
|
Check_Type_Reference (Node (Elmt), True);
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end;
|
|
|
|
-- For array types, list index types as well. (This is
|
|
-- not C, indexes have distinct types).
|
|
|
|
if Is_Array_Type (XE.Key.Ent) then
|
|
declare
|
|
A_Typ : constant Entity_Id := XE.Key.Ent;
|
|
Indx : Node_Id;
|
|
|
|
begin
|
|
-- If this is a derived array type, we have
|
|
-- output the parent type, so add the component
|
|
-- type now.
|
|
|
|
if Is_Derived_Type (A_Typ) then
|
|
Check_Type_Reference
|
|
(Component_Type (A_Typ), False, True);
|
|
end if;
|
|
|
|
-- Add references to index types.
|
|
|
|
Indx := First_Index (XE.Key.Ent);
|
|
while Present (Indx) loop
|
|
Check_Type_Reference
|
|
(First_Subtype (Etype (Indx)), True);
|
|
Next_Index (Indx);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- If the entity is an overriding operation, write info
|
|
-- on operation that was overridden.
|
|
|
|
if Is_Subprogram (XE.Key.Ent)
|
|
and then Present (Overridden_Operation (XE.Key.Ent))
|
|
then
|
|
Output_Overridden_Op
|
|
(Overridden_Operation (XE.Key.Ent));
|
|
end if;
|
|
|
|
-- End of processing for entity output
|
|
|
|
Crloc := No_Location;
|
|
end if;
|
|
|
|
-- Output the reference if it is not as the same location
|
|
-- as the previous one, or it is a read-reference that
|
|
-- indicates that the entity is an in-out actual in a call.
|
|
|
|
if XE.Key.Loc /= No_Location
|
|
and then
|
|
(XE.Key.Loc /= Crloc
|
|
or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
|
|
then
|
|
Crloc := XE.Key.Loc;
|
|
Prevt := XE.Key.Typ;
|
|
|
|
-- Start continuation if line full, else blank
|
|
|
|
if Write_Info_Col > 72 then
|
|
Write_Info_EOL;
|
|
Write_Info_Initiate ('.');
|
|
end if;
|
|
|
|
Write_Info_Char (' ');
|
|
|
|
-- Output file number if changed
|
|
|
|
if XE.Key.Lun /= Curru then
|
|
Curru := XE.Key.Lun;
|
|
Write_Info_Nat (Dependency_Num (Curru));
|
|
Write_Info_Char ('|');
|
|
end if;
|
|
|
|
Write_Info_Nat
|
|
(Int (Get_Logical_Line_Number (XE.Key.Loc)));
|
|
Write_Info_Char (XE.Key.Typ);
|
|
|
|
if Is_Overloadable (XE.Key.Ent) then
|
|
if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
|
|
or else
|
|
(Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
|
|
then
|
|
Output_Import_Export_Info (XE.Key.Ent);
|
|
end if;
|
|
end if;
|
|
|
|
Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
|
|
|
|
Output_Instantiation_Refs (Sloc (XE.Key.Ent));
|
|
end if;
|
|
end if;
|
|
end Output_One_Ref;
|
|
|
|
<<Continue>>
|
|
null;
|
|
end loop;
|
|
|
|
Write_Info_EOL;
|
|
end Output_Refs;
|
|
end Output_References;
|
|
|
|
---------------------------------
|
|
-- Process_Deferred_References --
|
|
---------------------------------
|
|
|
|
procedure Process_Deferred_References is
|
|
begin
|
|
for J in Deferred_References.First .. Deferred_References.Last loop
|
|
declare
|
|
D : Deferred_Reference_Entry renames Deferred_References.Table (J);
|
|
|
|
begin
|
|
case Is_LHS (D.N) is
|
|
when Yes =>
|
|
Generate_Reference (D.E, D.N, 'm');
|
|
|
|
when No =>
|
|
Generate_Reference (D.E, D.N, 'r');
|
|
|
|
-- Not clear if Unknown can occur at this stage, but if it
|
|
-- does we will treat it as a normal reference.
|
|
|
|
when Unknown =>
|
|
Generate_Reference (D.E, D.N, 'r');
|
|
end case;
|
|
end;
|
|
end loop;
|
|
|
|
-- Clear processed entries from table
|
|
|
|
Deferred_References.Init;
|
|
end Process_Deferred_References;
|
|
|
|
-- Start of elaboration for Lib.Xref
|
|
|
|
begin
|
|
-- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
|
|
-- because it's not an access type.
|
|
|
|
Xref_Set.Reset;
|
|
end Lib.Xref;
|