ubuntu-buildroot/output/build/host-gcc-final-11.4.0/libsanitizer/sanitizer_common/sanitizer_common.h

1030 lines
32 KiB
C++

//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between run-time libraries of sanitizers.
//
// It declares common functions and classes that are used in both runtimes.
// Implementation of some functions are provided in sanitizer_common, while
// others must be defined by run-time library itself.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_COMMON_H
#define SANITIZER_COMMON_H
#include "sanitizer_flags.h"
#include "sanitizer_interface_internal.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_list.h"
#include "sanitizer_mutex.h"
#if defined(_MSC_VER) && !defined(__clang__)
extern "C" void _ReadWriteBarrier();
#pragma intrinsic(_ReadWriteBarrier)
#endif
namespace __sanitizer {
struct AddressInfo;
struct BufferedStackTrace;
struct SignalContext;
struct StackTrace;
// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;
const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
const uptr kMaxPathLength = 4096;
const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
static const uptr kErrorMessageBufferSize = 1 << 16;
// Denotes fake PC values that come from JIT/JAVA/etc.
// For such PC values __tsan_symbolize_external_ex() will be called.
const u64 kExternalPCBit = 1ULL << 60;
extern const char *SanitizerToolName; // Can be changed by the tool.
extern atomic_uint32_t current_verbosity;
inline void SetVerbosity(int verbosity) {
atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
}
inline int Verbosity() {
return atomic_load(&current_verbosity, memory_order_relaxed);
}
#if SANITIZER_ANDROID
inline uptr GetPageSize() {
// Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
return 4096;
}
inline uptr GetPageSizeCached() {
return 4096;
}
#else
uptr GetPageSize();
extern uptr PageSizeCached;
inline uptr GetPageSizeCached() {
if (!PageSizeCached)
PageSizeCached = GetPageSize();
return PageSizeCached;
}
#endif
uptr GetMmapGranularity();
uptr GetMaxVirtualAddress();
uptr GetMaxUserVirtualAddress();
// Threads
tid_t GetTid();
int TgKill(pid_t pid, tid_t tid, int sig);
uptr GetThreadSelf();
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom);
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size);
// Memory management
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type, /*raw_report*/ true);
}
void UnmapOrDie(void *addr, uptr size);
// Behaves just like MmapOrDie, but tolerates out of memory condition, in that
// case returns nullptr.
void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
WARN_UNUSED_RESULT;
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
const char *name = nullptr) WARN_UNUSED_RESULT;
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
// Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
// that case returns nullptr.
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
const char *name = nullptr);
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
void *MmapNoAccess(uptr size);
// Map aligned chunk of address space; size and alignment are powers of two.
// Dies on all but out of memory errors, in the latter case returns nullptr.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type);
// Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
// unaccessible memory.
bool MprotectNoAccess(uptr addr, uptr size);
bool MprotectReadOnly(uptr addr, uptr size);
void MprotectMallocZones(void *addr, int prot);
#if SANITIZER_LINUX
// Unmap memory. Currently only used on Linux.
void UnmapFromTo(uptr from, uptr to);
#endif
// Maps shadow_size_bytes of shadow memory and returns shadow address. It will
// be aligned to the mmap granularity * 2^shadow_scale, or to
// 2^min_shadow_base_alignment if that is larger. The returned address will
// have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
// shadow_size_bytes bytes on the right, which on linux is mapped no access.
// The high_mem_end may be updated if the original shadow size doesn't fit.
uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
uptr min_shadow_base_alignment, uptr &high_mem_end);
// Reserve memory range [beg, end]. If madvise_shadow is true then apply
// madvise (e.g. hugepages, core dumping) requested by options.
void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
bool madvise_shadow = true);
// Protect size bytes of memory starting at addr. Also try to protect
// several pages at the start of the address space as specified by
// zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
uptr zero_base_max_shadow_start);
// Find an available address space.
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found, uptr *max_occupied_addr);
// Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
// Releases memory pages entirely within the [beg, end] address range. Noop if
// the provided range does not contain at least one entire page.
void ReleaseMemoryPagesToOS(uptr beg, uptr end);
void IncreaseTotalMmap(uptr size);
void DecreaseTotalMmap(uptr size);
uptr GetRSS();
void SetShadowRegionHugePageMode(uptr addr, uptr length);
bool DontDumpShadowMemory(uptr addr, uptr length);
// Check if the built VMA size matches the runtime one.
void CheckVMASize();
void RunMallocHooks(const void *ptr, uptr size);
void RunFreeHooks(const void *ptr);
class ReservedAddressRange {
public:
uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
void Unmap(uptr addr, uptr size);
void *base() const { return base_; }
uptr size() const { return size_; }
private:
void* base_;
uptr size_;
const char* name_;
uptr os_handle_;
};
typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
/*out*/uptr *stats, uptr stats_size);
// Parse the contents of /proc/self/smaps and generate a memory profile.
// |cb| is a tool-specific callback that fills the |stats| array containing
// |stats_size| elements.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
// Simple low-level (mmap-based) allocator for internal use. Doesn't have
// constructor, so all instances of LowLevelAllocator should be
// linker initialized.
class LowLevelAllocator {
public:
// Requires an external lock.
void *Allocate(uptr size);
private:
char *allocated_end_;
char *allocated_current_;
};
// Set the min alignment of LowLevelAllocator to at least alignment.
void SetLowLevelAllocateMinAlignment(uptr alignment);
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
// Allows to register tool-specific callbacks for LowLevelAllocator.
// Passing NULL removes the callback.
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
// IO
void CatastrophicErrorWrite(const char *buffer, uptr length);
void RawWrite(const char *buffer);
bool ColorizeReports();
void RemoveANSIEscapeSequencesFromString(char *buffer);
void Printf(const char *format, ...);
void Report(const char *format, ...);
void SetPrintfAndReportCallback(void (*callback)(const char *));
#define VReport(level, ...) \
do { \
if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
} while (0)
#define VPrintf(level, ...) \
do { \
if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
} while (0)
// Lock sanitizer error reporting and protects against nested errors.
class ScopedErrorReportLock {
public:
ScopedErrorReportLock();
~ScopedErrorReportLock();
static void CheckLocked();
};
extern uptr stoptheworld_tracer_pid;
extern uptr stoptheworld_tracer_ppid;
bool IsAccessibleMemoryRange(uptr beg, uptr size);
// Error report formatting.
const char *StripPathPrefix(const char *filepath,
const char *strip_file_prefix);
// Strip the directories from the module name.
const char *StripModuleName(const char *module);
// OS
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
const char *GetProcessName();
void UpdateProcessName();
void CacheBinaryName();
void DisableCoreDumperIfNecessary();
void DumpProcessMap();
const char *GetEnv(const char *name);
bool SetEnv(const char *name, const char *value);
u32 GetUid();
void ReExec();
void CheckASLR();
void CheckMPROTECT();
char **GetArgv();
char **GetEnviron();
void PrintCmdline();
bool StackSizeIsUnlimited();
void SetStackSizeLimitInBytes(uptr limit);
bool AddressSpaceIsUnlimited();
void SetAddressSpaceUnlimited();
void AdjustStackSize(void *attr);
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
void SetSandboxingCallback(void (*f)());
void InitializeCoverage(bool enabled, const char *coverage_dir);
void InitTlsSize();
uptr GetTlsSize();
// Other
void SleepForSeconds(int seconds);
void SleepForMillis(int millis);
u64 NanoTime();
u64 MonotonicNanoTime();
int Atexit(void (*function)(void));
bool TemplateMatch(const char *templ, const char *str);
// Exit
void NORETURN Abort();
void NORETURN Die();
void NORETURN
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
const char *mmap_type, error_t err,
bool raw_report = false);
// Specific tools may override behavior of "Die" and "CheckFailed" functions
// to do tool-specific job.
typedef void (*DieCallbackType)(void);
// It's possible to add several callbacks that would be run when "Die" is
// called. The callbacks will be run in the opposite order. The tools are
// strongly recommended to setup all callbacks during initialization, when there
// is only a single thread.
bool AddDieCallback(DieCallbackType callback);
bool RemoveDieCallback(DieCallbackType callback);
void SetUserDieCallback(DieCallbackType callback);
typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
u64, u64);
void SetCheckFailedCallback(CheckFailedCallbackType callback);
// Callback will be called if soft_rss_limit_mb is given and the limit is
// exceeded (exceeded==true) or if rss went down below the limit
// (exceeded==false).
// The callback should be registered once at the tool init time.
void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
// Functions related to signal handling.
typedef void (*SignalHandlerType)(int, void *, void *);
HandleSignalMode GetHandleSignalMode(int signum);
void InstallDeadlySignalHandlers(SignalHandlerType handler);
// Signal reporting.
// Each sanitizer uses slightly different implementation of stack unwinding.
typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
const void *callback_context,
BufferedStackTrace *stack);
// Print deadly signal report and die.
void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
UnwindSignalStackCallbackType unwind,
const void *unwind_context);
// Part of HandleDeadlySignal, exposed for asan.
void StartReportDeadlySignal();
// Part of HandleDeadlySignal, exposed for asan.
void ReportDeadlySignal(const SignalContext &sig, u32 tid,
UnwindSignalStackCallbackType unwind,
const void *unwind_context);
// Alternative signal stack (POSIX-only).
void SetAlternateSignalStack();
void UnsetAlternateSignalStack();
// We don't want a summary too long.
const int kMaxSummaryLength = 1024;
// Construct a one-line string:
// SUMMARY: SanitizerToolName: error_message
// and pass it to __sanitizer_report_error_summary.
// If alt_tool_name is provided, it's used in place of SanitizerToolName.
void ReportErrorSummary(const char *error_message,
const char *alt_tool_name = nullptr);
// Same as above, but construct error_message as:
// error_type file:line[:column][ function]
void ReportErrorSummary(const char *error_type, const AddressInfo &info,
const char *alt_tool_name = nullptr);
// Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
void ReportErrorSummary(const char *error_type, const StackTrace *trace,
const char *alt_tool_name = nullptr);
void ReportMmapWriteExec(int prot);
// Math
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#if defined(_WIN64)
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
#endif
}
#endif
inline uptr MostSignificantSetBitIndex(uptr x) {
CHECK_NE(x, 0U);
unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
# else
up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
# endif
#elif defined(_WIN64)
_BitScanReverse64(&up, x);
#else
_BitScanReverse(&up, x);
#endif
return up;
}
inline uptr LeastSignificantSetBitIndex(uptr x) {
CHECK_NE(x, 0U);
unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
up = __builtin_ctzll(x);
# else
up = __builtin_ctzl(x);
# endif
#elif defined(_WIN64)
_BitScanForward64(&up, x);
#else
_BitScanForward(&up, x);
#endif
return up;
}
inline bool IsPowerOfTwo(uptr x) {
return (x & (x - 1)) == 0;
}
inline uptr RoundUpToPowerOfTwo(uptr size) {
CHECK(size);
if (IsPowerOfTwo(size)) return size;
uptr up = MostSignificantSetBitIndex(size);
CHECK_LT(size, (1ULL << (up + 1)));
CHECK_GT(size, (1ULL << up));
return 1ULL << (up + 1);
}
inline uptr RoundUpTo(uptr size, uptr boundary) {
RAW_CHECK(IsPowerOfTwo(boundary));
return (size + boundary - 1) & ~(boundary - 1);
}
inline uptr RoundDownTo(uptr x, uptr boundary) {
return x & ~(boundary - 1);
}
inline bool IsAligned(uptr a, uptr alignment) {
return (a & (alignment - 1)) == 0;
}
inline uptr Log2(uptr x) {
CHECK(IsPowerOfTwo(x));
return LeastSignificantSetBitIndex(x);
}
// Don't use std::min, std::max or std::swap, to minimize dependency
// on libstdc++.
template<class T> T Min(T a, T b) { return a < b ? a : b; }
template<class T> T Max(T a, T b) { return a > b ? a : b; }
template<class T> void Swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
// Char handling
inline bool IsSpace(int c) {
return (c == ' ') || (c == '\n') || (c == '\t') ||
(c == '\f') || (c == '\r') || (c == '\v');
}
inline bool IsDigit(int c) {
return (c >= '0') && (c <= '9');
}
inline int ToLower(int c) {
return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
}
// A low-level vector based on mmap. May incur a significant memory overhead for
// small vectors.
// WARNING: The current implementation supports only POD types.
template<typename T>
class InternalMmapVectorNoCtor {
public:
void Initialize(uptr initial_capacity) {
capacity_bytes_ = 0;
size_ = 0;
data_ = 0;
reserve(initial_capacity);
}
void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
T &operator[](uptr i) {
CHECK_LT(i, size_);
return data_[i];
}
const T &operator[](uptr i) const {
CHECK_LT(i, size_);
return data_[i];
}
void push_back(const T &element) {
CHECK_LE(size_, capacity());
if (size_ == capacity()) {
uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
Realloc(new_capacity);
}
internal_memcpy(&data_[size_++], &element, sizeof(T));
}
T &back() {
CHECK_GT(size_, 0);
return data_[size_ - 1];
}
void pop_back() {
CHECK_GT(size_, 0);
size_--;
}
uptr size() const {
return size_;
}
const T *data() const {
return data_;
}
T *data() {
return data_;
}
uptr capacity() const { return capacity_bytes_ / sizeof(T); }
void reserve(uptr new_size) {
// Never downsize internal buffer.
if (new_size > capacity())
Realloc(new_size);
}
void resize(uptr new_size) {
if (new_size > size_) {
reserve(new_size);
internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
}
size_ = new_size;
}
void clear() { size_ = 0; }
bool empty() const { return size() == 0; }
const T *begin() const {
return data();
}
T *begin() {
return data();
}
const T *end() const {
return data() + size();
}
T *end() {
return data() + size();
}
void swap(InternalMmapVectorNoCtor &other) {
Swap(data_, other.data_);
Swap(capacity_bytes_, other.capacity_bytes_);
Swap(size_, other.size_);
}
private:
void Realloc(uptr new_capacity) {
CHECK_GT(new_capacity, 0);
CHECK_LE(size_, new_capacity);
uptr new_capacity_bytes =
RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
internal_memcpy(new_data, data_, size_ * sizeof(T));
UnmapOrDie(data_, capacity_bytes_);
data_ = new_data;
capacity_bytes_ = new_capacity_bytes;
}
T *data_;
uptr capacity_bytes_;
uptr size_;
};
template <typename T>
bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
const InternalMmapVectorNoCtor<T> &rhs) {
if (lhs.size() != rhs.size()) return false;
return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
}
template <typename T>
bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
const InternalMmapVectorNoCtor<T> &rhs) {
return !(lhs == rhs);
}
template<typename T>
class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
public:
InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
explicit InternalMmapVector(uptr cnt) {
InternalMmapVectorNoCtor<T>::Initialize(cnt);
this->resize(cnt);
}
~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
// Disallow copies and moves.
InternalMmapVector(const InternalMmapVector &) = delete;
InternalMmapVector &operator=(const InternalMmapVector &) = delete;
InternalMmapVector(InternalMmapVector &&) = delete;
InternalMmapVector &operator=(InternalMmapVector &&) = delete;
};
class InternalScopedString : public InternalMmapVector<char> {
public:
explicit InternalScopedString(uptr max_length)
: InternalMmapVector<char>(max_length), length_(0) {
(*this)[0] = '\0';
}
uptr length() { return length_; }
void clear() {
(*this)[0] = '\0';
length_ = 0;
}
void append(const char *format, ...);
private:
uptr length_;
};
template <class T>
struct CompareLess {
bool operator()(const T &a, const T &b) const { return a < b; }
};
// HeapSort for arrays and InternalMmapVector.
template <class T, class Compare = CompareLess<T>>
void Sort(T *v, uptr size, Compare comp = {}) {
if (size < 2)
return;
// Stage 1: insert elements to the heap.
for (uptr i = 1; i < size; i++) {
uptr j, p;
for (j = i; j > 0; j = p) {
p = (j - 1) / 2;
if (comp(v[p], v[j]))
Swap(v[j], v[p]);
else
break;
}
}
// Stage 2: swap largest element with the last one,
// and sink the new top.
for (uptr i = size - 1; i > 0; i--) {
Swap(v[0], v[i]);
uptr j, max_ind;
for (j = 0; j < i; j = max_ind) {
uptr left = 2 * j + 1;
uptr right = 2 * j + 2;
max_ind = j;
if (left < i && comp(v[max_ind], v[left]))
max_ind = left;
if (right < i && comp(v[max_ind], v[right]))
max_ind = right;
if (max_ind != j)
Swap(v[j], v[max_ind]);
else
break;
}
}
}
// Works like std::lower_bound: finds the first element that is not less
// than the val.
template <class Container, class Value, class Compare>
uptr InternalLowerBound(const Container &v, uptr first, uptr last,
const Value &val, Compare comp) {
while (last > first) {
uptr mid = (first + last) / 2;
if (comp(v[mid], val))
first = mid + 1;
else
last = mid;
}
return first;
}
enum ModuleArch {
kModuleArchUnknown,
kModuleArchI386,
kModuleArchX86_64,
kModuleArchX86_64H,
kModuleArchARMV6,
kModuleArchARMV7,
kModuleArchARMV7S,
kModuleArchARMV7K,
kModuleArchARM64,
kModuleArchRISCV64
};
// Opens the file 'file_name" and reads up to 'max_len' bytes.
// The resulting buffer is mmaped and stored in '*buff'.
// Returns true if file was successfully opened and read.
bool ReadFileToVector(const char *file_name,
InternalMmapVectorNoCtor<char> *buff,
uptr max_len = 1 << 26, error_t *errno_p = nullptr);
// Opens the file 'file_name" and reads up to 'max_len' bytes.
// This function is less I/O efficient than ReadFileToVector as it may reread
// file multiple times to avoid mmap during read attempts. It's used to read
// procmap, so short reads with mmap in between can produce inconsistent result.
// The resulting buffer is mmaped and stored in '*buff'.
// The size of the mmaped region is stored in '*buff_size'.
// The total number of read bytes is stored in '*read_len'.
// Returns true if file was successfully opened and read.
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len = 1 << 26,
error_t *errno_p = nullptr);
// When adding a new architecture, don't forget to also update
// script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
inline const char *ModuleArchToString(ModuleArch arch) {
switch (arch) {
case kModuleArchUnknown:
return "";
case kModuleArchI386:
return "i386";
case kModuleArchX86_64:
return "x86_64";
case kModuleArchX86_64H:
return "x86_64h";
case kModuleArchARMV6:
return "armv6";
case kModuleArchARMV7:
return "armv7";
case kModuleArchARMV7S:
return "armv7s";
case kModuleArchARMV7K:
return "armv7k";
case kModuleArchARM64:
return "arm64";
case kModuleArchRISCV64:
return "riscv64";
}
CHECK(0 && "Invalid module arch");
return "";
}
const uptr kModuleUUIDSize = 16;
const uptr kMaxSegName = 16;
// Represents a binary loaded into virtual memory (e.g. this can be an
// executable or a shared object).
class LoadedModule {
public:
LoadedModule()
: full_name_(nullptr),
base_address_(0),
max_executable_address_(0),
arch_(kModuleArchUnknown),
instrumented_(false) {
internal_memset(uuid_, 0, kModuleUUIDSize);
ranges_.clear();
}
void set(const char *module_name, uptr base_address);
void set(const char *module_name, uptr base_address, ModuleArch arch,
u8 uuid[kModuleUUIDSize], bool instrumented);
void clear();
void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
const char *name = nullptr);
bool containsAddress(uptr address) const;
const char *full_name() const { return full_name_; }
uptr base_address() const { return base_address_; }
uptr max_executable_address() const { return max_executable_address_; }
ModuleArch arch() const { return arch_; }
const u8 *uuid() const { return uuid_; }
bool instrumented() const { return instrumented_; }
struct AddressRange {
AddressRange *next;
uptr beg;
uptr end;
bool executable;
bool writable;
char name[kMaxSegName];
AddressRange(uptr beg, uptr end, bool executable, bool writable,
const char *name)
: next(nullptr),
beg(beg),
end(end),
executable(executable),
writable(writable) {
internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
}
};
const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
private:
char *full_name_; // Owned.
uptr base_address_;
uptr max_executable_address_;
ModuleArch arch_;
u8 uuid_[kModuleUUIDSize];
bool instrumented_;
IntrusiveList<AddressRange> ranges_;
};
// List of LoadedModules. OS-dependent implementation is responsible for
// filling this information.
class ListOfModules {
public:
ListOfModules() : initialized(false) {}
~ListOfModules() { clear(); }
void init();
void fallbackInit(); // Uses fallback init if available, otherwise clears
const LoadedModule *begin() const { return modules_.begin(); }
LoadedModule *begin() { return modules_.begin(); }
const LoadedModule *end() const { return modules_.end(); }
LoadedModule *end() { return modules_.end(); }
uptr size() const { return modules_.size(); }
const LoadedModule &operator[](uptr i) const {
CHECK_LT(i, modules_.size());
return modules_[i];
}
private:
void clear() {
for (auto &module : modules_) module.clear();
modules_.clear();
}
void clearOrInit() {
initialized ? clear() : modules_.Initialize(kInitialCapacity);
initialized = true;
}
InternalMmapVectorNoCtor<LoadedModule> modules_;
// We rarely have more than 16K loaded modules.
static const uptr kInitialCapacity = 1 << 14;
bool initialized;
};
// Callback type for iterating over a set of memory ranges.
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
enum AndroidApiLevel {
ANDROID_NOT_ANDROID = 0,
ANDROID_KITKAT = 19,
ANDROID_LOLLIPOP_MR1 = 22,
ANDROID_POST_LOLLIPOP = 23
};
void WriteToSyslog(const char *buffer);
#if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
#define SANITIZER_WIN_TRACE 1
#else
#define SANITIZER_WIN_TRACE 0
#endif
#if SANITIZER_MAC || SANITIZER_WIN_TRACE
void LogFullErrorReport(const char *buffer);
#else
inline void LogFullErrorReport(const char *buffer) {}
#endif
#if SANITIZER_LINUX || SANITIZER_MAC
void WriteOneLineToSyslog(const char *s);
void LogMessageOnPrintf(const char *str);
#else
inline void WriteOneLineToSyslog(const char *s) {}
inline void LogMessageOnPrintf(const char *str) {}
#endif
#if SANITIZER_LINUX || SANITIZER_WIN_TRACE
// Initialize Android logging. Any writes before this are silently lost.
void AndroidLogInit();
void SetAbortMessage(const char *);
#else
inline void AndroidLogInit() {}
// FIXME: MacOS implementation could use CRSetCrashLogMessage.
inline void SetAbortMessage(const char *) {}
#endif
#if SANITIZER_ANDROID
void SanitizerInitializeUnwinder();
AndroidApiLevel AndroidGetApiLevel();
#else
inline void AndroidLogWrite(const char *buffer_unused) {}
inline void SanitizerInitializeUnwinder() {}
inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
#endif
inline uptr GetPthreadDestructorIterations() {
#if SANITIZER_ANDROID
return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
#elif SANITIZER_POSIX
return 4;
#else
// Unused on Windows.
return 0;
#endif
}
void *internal_start_thread(void *(*func)(void*), void *arg);
void internal_join_thread(void *th);
void MaybeStartBackgroudThread();
// Make the compiler think that something is going on there.
// Use this inside a loop that looks like memset/memcpy/etc to prevent the
// compiler from recognising it and turning it into an actual call to
// memset/memcpy/etc.
static inline void SanitizerBreakOptimization(void *arg) {
#if defined(_MSC_VER) && !defined(__clang__)
_ReadWriteBarrier();
#else
__asm__ __volatile__("" : : "r" (arg) : "memory");
#endif
}
struct SignalContext {
void *siginfo;
void *context;
uptr addr;
uptr pc;
uptr sp;
uptr bp;
bool is_memory_access;
enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
// In some cases the kernel cannot provide the true faulting address; `addr`
// will be zero then. This field allows to distinguish between these cases
// and dereferences of null.
bool is_true_faulting_addr;
// VS2013 doesn't implement unrestricted unions, so we need a trivial default
// constructor
SignalContext() = default;
// Creates signal context in a platform-specific manner.
// SignalContext is going to keep pointers to siginfo and context without
// owning them.
SignalContext(void *siginfo, void *context)
: siginfo(siginfo),
context(context),
addr(GetAddress()),
is_memory_access(IsMemoryAccess()),
write_flag(GetWriteFlag()),
is_true_faulting_addr(IsTrueFaultingAddress()) {
InitPcSpBp();
}
static void DumpAllRegisters(void *context);
// Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
int GetType() const;
// String description of the signal.
const char *Describe() const;
// Returns true if signal is stack overflow.
bool IsStackOverflow() const;
private:
// Platform specific initialization.
void InitPcSpBp();
uptr GetAddress() const;
WriteFlag GetWriteFlag() const;
bool IsMemoryAccess() const;
bool IsTrueFaultingAddress() const;
};
void InitializePlatformEarly();
void MaybeReexec();
template <typename Fn>
class RunOnDestruction {
public:
explicit RunOnDestruction(Fn fn) : fn_(fn) {}
~RunOnDestruction() { fn_(); }
private:
Fn fn_;
};
// A simple scope guard. Usage:
// auto cleanup = at_scope_exit([]{ do_cleanup; });
template <typename Fn>
RunOnDestruction<Fn> at_scope_exit(Fn fn) {
return RunOnDestruction<Fn>(fn);
}
// Linux on 64-bit s390 had a nasty bug that crashes the whole machine
// if a process uses virtual memory over 4TB (as many sanitizers like
// to do). This function will abort the process if running on a kernel
// that looks vulnerable.
#if SANITIZER_LINUX && SANITIZER_S390_64
void AvoidCVE_2016_2143();
#else
inline void AvoidCVE_2016_2143() {}
#endif
struct StackDepotStats {
uptr n_uniq_ids;
uptr allocated;
};
// The default value for allocator_release_to_os_interval_ms common flag to
// indicate that sanitizer allocator should not attempt to release memory to OS.
const s32 kReleaseToOSIntervalNever = -1;
void CheckNoDeepBind(const char *filename, int flag);
// Returns the requested amount of random data (up to 256 bytes) that can then
// be used to seed a PRNG. Defaults to blocking like the underlying syscall.
bool GetRandom(void *buffer, uptr length, bool blocking = true);
// Returns the number of logical processors on the system.
u32 GetNumberOfCPUs();
extern u32 NumberOfCPUsCached;
inline u32 GetNumberOfCPUsCached() {
if (!NumberOfCPUsCached)
NumberOfCPUsCached = GetNumberOfCPUs();
return NumberOfCPUsCached;
}
template <typename T>
class ArrayRef {
public:
ArrayRef() {}
ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {}
T *begin() { return begin_; }
T *end() { return end_; }
private:
T *begin_ = nullptr;
T *end_ = nullptr;
};
} // namespace __sanitizer
inline void *operator new(__sanitizer::operator_new_size_type size,
__sanitizer::LowLevelAllocator &alloc) { // NOLINT
return alloc.Allocate(size);
}
#endif // SANITIZER_COMMON_H