ubuntu-buildroot/output/build/glibc-2.36-81-g4f4d7a13edfd.../sysdeps/powerpc/powerpc64/power4/memcmp.S

1379 lines
31 KiB
ArmAsm

/* Optimized memcmp implementation for PowerPC64.
Copyright (C) 2003-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <sysdep.h>
/* int [r3] memcmp (const char *s1 [r3],
const char *s2 [r4],
size_t size [r5]) */
#ifndef MEMCMP
# define MEMCMP memcmp
#endif
#ifndef __LITTLE_ENDIAN__
.machine power4
#else
/* Little endian is only available since POWER8, so it's safe to
specify .machine as power8 (or older), even though this is a POWER4
file. Since the little-endian code uses 'ldbrx', power7 is enough. */
.machine power7
#endif
ENTRY_TOCLESS (MEMCMP, 4)
CALL_MCOUNT 3
#define rRTN r3
#define rSTR1 r3 /* first string arg */
#define rSTR2 r4 /* second string arg */
#define rN r5 /* max string length */
#define rWORD1 r6 /* current word in s1 */
#define rWORD2 r7 /* current word in s2 */
#define rWORD3 r8 /* next word in s1 */
#define rWORD4 r9 /* next word in s2 */
#define rWORD5 r10 /* next word in s1 */
#define rWORD6 r11 /* next word in s2 */
#define rWORD7 r30 /* next word in s1 */
#define rWORD8 r31 /* next word in s2 */
xor r0, rSTR2, rSTR1
cmpldi cr6, rN, 0
cmpldi cr1, rN, 12
clrldi. r0, r0, 61
clrldi r12, rSTR1, 61
cmpldi cr5, r12, 0
beq- cr6, L(zeroLength)
dcbt 0, rSTR1
dcbt 0, rSTR2
/* If less than 8 bytes or not aligned, use the unaligned
byte loop. */
blt cr1, L(bytealigned)
std rWORD8, -8(r1)
std rWORD7, -16(r1)
cfi_offset(rWORD8, -8)
cfi_offset(rWORD7, -16)
bne L(unaligned)
/* At this point we know both strings have the same alignment and the
compare length is at least 8 bytes. r12 contains the low order
3 bits of rSTR1 and cr5 contains the result of the logical compare
of r12 to 0. If r12 == 0 then we are already double word
aligned and can perform the DW aligned loop.
Otherwise we know the two strings have the same alignment (but not
yet DW). So we force the string addresses to the next lower DW
boundary and special case this first DW using shift left to
eliminate bits preceding the first byte. Since we want to join the
normal (DW aligned) compare loop, starting at the second double word,
we need to adjust the length (rN) and special case the loop
versioning for the first DW. This ensures that the loop count is
correct and the first DW (shifted) is in the expected register pair. */
.align 4
L(samealignment):
clrrdi rSTR1, rSTR1, 3
clrrdi rSTR2, rSTR2, 3
beq cr5, L(DWaligned)
add rN, rN, r12
sldi rWORD6, r12, 3
srdi r0, rN, 5 /* Divide by 32 */
andi. r12, rN, 24 /* Get the DW remainder */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
#endif
cmpldi cr1, r12, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
beq L(dPs4)
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(dPs3)
beq cr1, L(dPs2)
/* Remainder is 8 */
.align 3
L(dsP1):
sld rWORD5, rWORD1, rWORD6
sld rWORD6, rWORD2, rWORD6
cmpld cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
/* Do something useful in this cycle since we have to branch anyway. */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
b L(dP1e)
/* Remainder is 16 */
.align 4
L(dPs2):
sld rWORD5, rWORD1, rWORD6
sld rWORD6, rWORD2, rWORD6
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
/* Do something useful in this cycle since we have to branch anyway. */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
b L(dP2e)
/* Remainder is 24 */
.align 4
L(dPs3):
sld rWORD3, rWORD1, rWORD6
sld rWORD4, rWORD2, rWORD6
cmpld cr1, rWORD3, rWORD4
b L(dP3e)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(dPs4):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
sld rWORD1, rWORD1, rWORD6
sld rWORD2, rWORD2, rWORD6
cmpld cr7, rWORD1, rWORD2
b L(dP4e)
/* At this point we know both strings are double word aligned and the
compare length is at least 8 bytes. */
.align 4
L(DWaligned):
andi. r12, rN, 24 /* Get the DW remainder */
srdi r0, rN, 5 /* Divide by 32 */
cmpldi cr1, r12, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
beq L(dP4)
bgt cr1, L(dP3)
beq cr1, L(dP2)
/* Remainder is 8 */
.align 4
L(dP1):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
(8-15 byte compare), we want to use only volatile registers. This
means we can avoid restoring non-volatile registers since we did not
change any on the early exit path. The key here is the non-early
exit path only cares about the condition code (cr5), not about which
register pair was used. */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 0(rSTR1)
ld rWORD6, 0(rSTR2)
#endif
cmpld cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
L(dP1e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5x)
bne cr7, L(dLcr7x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
#endif
bne cr1, L(dLcr1)
cmpld cr5, rWORD7, rWORD8
bdnz L(dLoop)
bne cr6, L(dLcr6)
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
.align 3
L(dP1x):
sldi. r12, rN, 3
bne cr5, L(dLcr5x)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne L(d00)
li rRTN, 0
blr
/* Remainder is 16 */
.align 4
L(dP2):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 0(rSTR1)
ld rWORD6, 0(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
L(dP2e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 24(rSTR1)
ld rWORD4, 24(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#endif
bne cr6, L(dLcr6)
bne cr5, L(dLcr5)
b L(dLoop2)
/* Again we are on a early exit path (16-23 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP2x):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
sldi. r12, rN, 3
bne cr6, L(dLcr6x)
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#endif
bne cr1, L(dLcr1x)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne L(d00)
li rRTN, 0
blr
/* Remainder is 24 */
.align 4
L(dP3):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 0(rSTR1)
ld rWORD4, 0(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
L(dP3e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 8(rSTR1)
ld rWORD6, 8(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP3x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD7, 16(rSTR1)
ld rWORD8, 16(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 24(rSTR1)
ld rWORD2, 24(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
#endif
bne cr1, L(dLcr1)
bne cr6, L(dLcr6)
b L(dLoop1)
/* Again we are on a early exit path (24-31 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP3x):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
sldi. r12, rN, 3
bne cr1, L(dLcr1x)
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
#endif
bne cr6, L(dLcr6x)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne cr7, L(dLcr7x)
bne L(d00)
li rRTN, 0
blr
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(dP4):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
L(dP4e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 16(rSTR1)
ld rWORD6, 16(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ldu rWORD7, 24(rSTR1)
ldu rWORD8, 24(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr7, L(dLcr7)
bne cr1, L(dLcr1)
bdz- L(d24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(dLoop):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
L(dLoop1):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
L(dLoop2):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr7, L(dLcr7)
L(dLoop3):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
#endif
bne- cr1, L(dLcr1)
cmpld cr7, rWORD1, rWORD2
bdnz+ L(dLoop)
L(dL4):
cmpld cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
cmpld cr5, rWORD7, rWORD8
L(d44):
bne cr7, L(dLcr7)
L(d34):
bne cr1, L(dLcr1)
L(d24):
bne cr6, L(dLcr6)
L(d14):
sldi. r12, rN, 3
bne cr5, L(dLcr5)
L(d04):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
beq L(zeroLength)
/* At this point we have a remainder of 1 to 7 bytes to compare. Since
we are aligned it is safe to load the whole double word, and use
shift right double to eliminate bits beyond the compare length. */
L(d00):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
srd rWORD1, rWORD1, rN
srd rWORD2, rWORD2, rN
cmpld cr7, rWORD1, rWORD2
bne cr7, L(dLcr7x)
li rRTN, 0
blr
.align 4
L(dLcr7):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
L(dLcr7x):
li rRTN, 1
bgtlr cr7
li rRTN, -1
blr
.align 4
L(dLcr1):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
L(dLcr1x):
li rRTN, 1
bgtlr cr1
li rRTN, -1
blr
.align 4
L(dLcr6):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
L(dLcr6x):
li rRTN, 1
bgtlr cr6
li rRTN, -1
blr
.align 4
L(dLcr5):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
L(dLcr5x):
li rRTN, 1
bgtlr cr5
li rRTN, -1
blr
.align 4
L(bytealigned):
mtctr rN /* Power4 wants mtctr 1st in dispatch group */
#if 0
/* Huh? We've already branched on cr6! */
beq- cr6, L(zeroLength)
#endif
/* We need to prime this loop. This loop is swing modulo scheduled
to avoid pipe delays. The dependent instruction latencies (load to
compare to conditional branch) is 2 to 3 cycles. In this loop each
dispatch group ends in a branch and takes 1 cycle. Effectively
the first iteration of the loop only serves to load operands and
branches based on compares are delayed until the next loop.
So we must precondition some registers and condition codes so that
we don't exit the loop early on the first iteration. */
lbz rWORD1, 0(rSTR1)
lbz rWORD2, 0(rSTR2)
bdz- L(b11)
cmpld cr7, rWORD1, rWORD2
lbz rWORD3, 1(rSTR1)
lbz rWORD4, 1(rSTR2)
bdz- L(b12)
cmpld cr1, rWORD3, rWORD4
lbzu rWORD5, 2(rSTR1)
lbzu rWORD6, 2(rSTR2)
bdz- L(b13)
.align 4
L(bLoop):
lbzu rWORD1, 1(rSTR1)
lbzu rWORD2, 1(rSTR2)
bne- cr7, L(bLcr7)
cmpld cr6, rWORD5, rWORD6
bdz- L(b3i)
lbzu rWORD3, 1(rSTR1)
lbzu rWORD4, 1(rSTR2)
bne- cr1, L(bLcr1)
cmpld cr7, rWORD1, rWORD2
bdz- L(b2i)
lbzu rWORD5, 1(rSTR1)
lbzu rWORD6, 1(rSTR2)
bne- cr6, L(bLcr6)
cmpld cr1, rWORD3, rWORD4
bdnz+ L(bLoop)
/* We speculatively loading bytes before we have tested the previous
bytes. But we must avoid overrunning the length (in the ctr) to
prevent these speculative loads from causing a segfault. In this
case the loop will exit early (before the all pending bytes are
tested. In this case we must complete the pending operations
before returning. */
L(b1i):
bne- cr7, L(bLcr7)
bne- cr1, L(bLcr1)
b L(bx56)
.align 4
L(b2i):
bne- cr6, L(bLcr6)
bne- cr7, L(bLcr7)
b L(bx34)
.align 4
L(b3i):
bne- cr1, L(bLcr1)
bne- cr6, L(bLcr6)
b L(bx12)
.align 4
L(bLcr7):
li rRTN, 1
bgtlr cr7
li rRTN, -1
blr
L(bLcr1):
li rRTN, 1
bgtlr cr1
li rRTN, -1
blr
L(bLcr6):
li rRTN, 1
bgtlr cr6
li rRTN, -1
blr
L(b13):
bne- cr7, L(bx12)
bne- cr1, L(bx34)
L(bx56):
sub rRTN, rWORD5, rWORD6
blr
nop
L(b12):
bne- cr7, L(bx12)
L(bx34):
sub rRTN, rWORD3, rWORD4
blr
L(b11):
L(bx12):
sub rRTN, rWORD1, rWORD2
blr
.align 4
L(zeroLength):
li rRTN, 0
blr
.align 4
/* At this point we know the strings have different alignment and the
compare length is at least 8 bytes. r12 contains the low order
3 bits of rSTR1 and cr5 contains the result of the logical compare
of r12 to 0. If r12 == 0 then rStr1 is double word
aligned and can perform the DWunaligned loop.
Otherwise we know that rSTR1 is not already DW aligned yet.
So we can force the string addresses to the next lower DW
boundary and special case this first DW using shift left to
eliminate bits preceding the first byte. Since we want to join the
normal (DWaligned) compare loop, starting at the second double word,
we need to adjust the length (rN) and special case the loop
versioning for the first DW. This ensures that the loop count is
correct and the first DW (shifted) is in the expected resister pair. */
#define rSHL r29 /* Unaligned shift left count. */
#define rSHR r28 /* Unaligned shift right count. */
#define rWORD8_SHIFT r27 /* Left rotation temp for rWORD2. */
#define rWORD2_SHIFT r26 /* Left rotation temp for rWORD4. */
#define rWORD4_SHIFT r25 /* Left rotation temp for rWORD6. */
#define rWORD6_SHIFT r24 /* Left rotation temp for rWORD8. */
L(unaligned):
std rSHL, -24(r1)
cfi_offset(rSHL, -24)
clrldi rSHL, rSTR2, 61
beq- cr6, L(duzeroLength)
std rSHR, -32(r1)
cfi_offset(rSHR, -32)
beq cr5, L(DWunaligned)
std rWORD8_SHIFT, -40(r1)
cfi_offset(rWORD8_SHIFT, -40)
/* Adjust the logical start of rSTR2 to compensate for the extra bits
in the 1st rSTR1 DW. */
sub rWORD8_SHIFT, rSTR2, r12
/* But do not attempt to address the DW before that DW that contains
the actual start of rSTR2. */
clrrdi rSTR2, rSTR2, 3
std rWORD2_SHIFT, -48(r1)
/* Compute the left/right shift counts for the unaligned rSTR2,
compensating for the logical (DW aligned) start of rSTR1. */
clrldi rSHL, rWORD8_SHIFT, 61
clrrdi rSTR1, rSTR1, 3
std rWORD4_SHIFT, -56(r1)
sldi rSHL, rSHL, 3
cmpld cr5, rWORD8_SHIFT, rSTR2
add rN, rN, r12
sldi rWORD6, r12, 3
std rWORD6_SHIFT, -64(r1)
cfi_offset(rWORD2_SHIFT, -48)
cfi_offset(rWORD4_SHIFT, -56)
cfi_offset(rWORD6_SHIFT, -64)
subfic rSHR, rSHL, 64
srdi r0, rN, 5 /* Divide by 32 */
andi. r12, rN, 24 /* Get the DW remainder */
/* We normally need to load 2 DWs to start the unaligned rSTR2, but in
this special case those bits may be discarded anyway. Also we
must avoid loading a DW where none of the bits are part of rSTR2 as
this may cross a page boundary and cause a page fault. */
li rWORD8, 0
blt cr5, L(dus0)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD8, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD8, 0(rSTR2)
addi rSTR2, rSTR2, 8
#endif
sld rWORD8, rWORD8, rSHL
L(dus0):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
#endif
cmpldi cr1, r12, 16
cmpldi cr7, rN, 32
srd r12, rWORD2, rSHR
clrldi rN, rN, 61
beq L(duPs4)
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, r12, rWORD8
bgt cr1, L(duPs3)
beq cr1, L(duPs2)
/* Remainder is 8 */
.align 4
L(dusP1):
sld rWORD8_SHIFT, rWORD2, rSHL
sld rWORD7, rWORD1, rWORD6
sld rWORD8, rWORD8, rWORD6
bge cr7, L(duP1e)
/* At this point we exit early with the first double word compare
complete and remainder of 0 to 7 bytes. See L(du14) for details on
how we handle the remaining bytes. */
cmpld cr5, rWORD7, rWORD8
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li r0, 0
ble cr7, L(dutrim)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD2, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD2, 8(rSTR2)
#endif
srd r0, rWORD2, rSHR
b L(dutrim)
/* Remainder is 16 */
.align 4
L(duPs2):
sld rWORD6_SHIFT, rWORD2, rSHL
sld rWORD5, rWORD1, rWORD6
sld rWORD6, rWORD8, rWORD6
b L(duP2e)
/* Remainder is 24 */
.align 4
L(duPs3):
sld rWORD4_SHIFT, rWORD2, rSHL
sld rWORD3, rWORD1, rWORD6
sld rWORD4, rWORD8, rWORD6
b L(duP3e)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(duPs4):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, r12, rWORD8
sld rWORD2_SHIFT, rWORD2, rSHL
sld rWORD1, rWORD1, rWORD6
sld rWORD2, rWORD8, rWORD6
b L(duP4e)
/* At this point we know rSTR1 is double word aligned and the
compare length is at least 8 bytes. */
.align 4
L(DWunaligned):
std rWORD8_SHIFT, -40(r1)
clrrdi rSTR2, rSTR2, 3
std rWORD2_SHIFT, -48(r1)
srdi r0, rN, 5 /* Divide by 32 */
std rWORD4_SHIFT, -56(r1)
andi. r12, rN, 24 /* Get the DW remainder */
std rWORD6_SHIFT, -64(r1)
cfi_offset(rWORD8_SHIFT, -40)
cfi_offset(rWORD2_SHIFT, -48)
cfi_offset(rWORD4_SHIFT, -56)
cfi_offset(rWORD6_SHIFT, -64)
sldi rSHL, rSHL, 3
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD6, 0, rSTR2
addi rSTR2, rSTR2, 8
ldbrx rWORD8, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD6, 0(rSTR2)
ldu rWORD8, 8(rSTR2)
#endif
cmpldi cr1, r12, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
subfic rSHR, rSHL, 64
sld rWORD6_SHIFT, rWORD6, rSHL
beq L(duP4)
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(duP3)
beq cr1, L(duP2)
/* Remainder is 8 */
.align 4
L(duP1):
srd r12, rWORD8, rSHR
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
addi rSTR1, rSTR1, 8
#else
ld rWORD7, 0(rSTR1)
#endif
sld rWORD8_SHIFT, rWORD8, rSHL
or rWORD8, r12, rWORD6_SHIFT
blt cr7, L(duP1x)
L(duP1e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
srd r0, rWORD2, rSHR
sld rWORD2_SHIFT, rWORD2, rSHL
or rWORD2, r0, rWORD8_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
srd r12, rWORD4, rSHR
sld rWORD4_SHIFT, rWORD4, rSHL
bne cr5, L(duLcr5)
or rWORD4, r12, rWORD2_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
srd r0, rWORD6, rSHR
sld rWORD6_SHIFT, rWORD6, rSHL
bne cr7, L(duLcr7)
or rWORD6, r0, rWORD4_SHIFT
cmpld cr6, rWORD5, rWORD6
b L(duLoop3)
.align 4
/* At this point we exit early with the first double word compare
complete and remainder of 0 to 7 bytes. See L(du14) for details on
how we handle the remaining bytes. */
L(duP1x):
cmpld cr5, rWORD7, rWORD8
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li r0, 0
ble cr7, L(dutrim)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD2, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD2, 8(rSTR2)
#endif
srd r0, rWORD2, rSHR
b L(dutrim)
/* Remainder is 16 */
.align 4
L(duP2):
srd r0, rWORD8, rSHR
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
addi rSTR1, rSTR1, 8
#else
ld rWORD5, 0(rSTR1)
#endif
or rWORD6, r0, rWORD6_SHIFT
sld rWORD6_SHIFT, rWORD8, rSHL
L(duP2e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
srd r12, rWORD8, rSHR
sld rWORD8_SHIFT, rWORD8, rSHL
or rWORD8, r12, rWORD6_SHIFT
blt cr7, L(duP2x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srd r0, rWORD2, rSHR
sld rWORD2_SHIFT, rWORD2, rSHL
or rWORD2, r0, rWORD8_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 24(rSTR1)
ld rWORD4, 24(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
bne cr5, L(duLcr5)
srd r12, rWORD4, rSHR
sld rWORD4_SHIFT, rWORD4, rSHL
or rWORD4, r12, rWORD2_SHIFT
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#endif
cmpld cr1, rWORD3, rWORD4
b L(duLoop2)
.align 4
L(duP2x):
cmpld cr5, rWORD7, rWORD8
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#endif
bne cr6, L(duLcr6)
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li r0, 0
ble cr7, L(dutrim)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD2, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD2, 8(rSTR2)
#endif
srd r0, rWORD2, rSHR
b L(dutrim)
/* Remainder is 24 */
.align 4
L(duP3):
srd r12, rWORD8, rSHR
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
addi rSTR1, rSTR1, 8
#else
ld rWORD3, 0(rSTR1)
#endif
sld rWORD4_SHIFT, rWORD8, rSHL
or rWORD4, r12, rWORD6_SHIFT
L(duP3e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 8(rSTR1)
ld rWORD6, 8(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
srd r0, rWORD6, rSHR
sld rWORD6_SHIFT, rWORD6, rSHL
or rWORD6, r0, rWORD4_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD7, 16(rSTR1)
ld rWORD8, 16(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srd r12, rWORD8, rSHR
sld rWORD8_SHIFT, rWORD8, rSHL
or rWORD8, r12, rWORD6_SHIFT
blt cr7, L(duP3x)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 24(rSTR1)
ld rWORD2, 24(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srd r0, rWORD2, rSHR
sld rWORD2_SHIFT, rWORD2, rSHL
or rWORD2, r0, rWORD8_SHIFT
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
#endif
cmpld cr7, rWORD1, rWORD2
b L(duLoop1)
.align 4
L(duP3x):
#ifndef __LITTLE_ENDIAN__
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
#endif
#if 0
/* Huh? We've already branched on cr1! */
bne cr1, L(duLcr1)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li r0, 0
ble cr7, L(dutrim)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD2, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD2, 8(rSTR2)
#endif
srd r0, rWORD2, rSHR
b L(dutrim)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(duP4):
mtctr r0 /* Power4 wants mtctr 1st in dispatch group */
srd r0, rWORD8, rSHR
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
addi rSTR1, rSTR1, 8
#else
ld rWORD1, 0(rSTR1)
#endif
sld rWORD2_SHIFT, rWORD8, rSHL
or rWORD2, r0, rWORD6_SHIFT
L(duP4e):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
srd r12, rWORD4, rSHR
sld rWORD4_SHIFT, rWORD4, rSHL
or rWORD4, r12, rWORD2_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 16(rSTR1)
ld rWORD6, 16(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
bne cr7, L(duLcr7)
srd r0, rWORD6, rSHR
sld rWORD6_SHIFT, rWORD6, rSHL
or rWORD6, r0, rWORD4_SHIFT
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ldu rWORD7, 24(rSTR1)
ldu rWORD8, 24(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srd r12, rWORD8, rSHR
sld rWORD8_SHIFT, rWORD8, rSHL
or rWORD8, r12, rWORD6_SHIFT
cmpld cr5, rWORD7, rWORD8
bdz- L(du24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(duLoop):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
ldbrx rWORD2, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
#endif
cmpld cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
srd r0, rWORD2, rSHR
sld rWORD2_SHIFT, rWORD2, rSHL
or rWORD2, r0, rWORD8_SHIFT
L(duLoop1):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD3, 0, rSTR1
ldbrx rWORD4, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
#endif
cmpld cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
srd r12, rWORD4, rSHR
sld rWORD4_SHIFT, rWORD4, rSHL
or rWORD4, r12, rWORD2_SHIFT
L(duLoop2):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD5, 0, rSTR1
ldbrx rWORD6, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
#endif
cmpld cr5, rWORD7, rWORD8
bne cr7, L(duLcr7)
srd r0, rWORD6, rSHR
sld rWORD6_SHIFT, rWORD6, rSHL
or rWORD6, r0, rWORD4_SHIFT
L(duLoop3):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD7, 0, rSTR1
ldbrx rWORD8, 0, rSTR2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
#else
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
#endif
cmpld cr7, rWORD1, rWORD2
bne- cr1, L(duLcr1)
srd r12, rWORD8, rSHR
sld rWORD8_SHIFT, rWORD8, rSHL
or rWORD8, r12, rWORD6_SHIFT
bdnz+ L(duLoop)
L(duL4):
#if 0
/* Huh? We've already branched on cr1! */
bne cr1, L(duLcr1)
#endif
cmpld cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
cmpld cr5, rWORD7, rWORD8
L(du44):
bne cr7, L(duLcr7)
L(du34):
bne cr1, L(duLcr1)
L(du24):
bne cr6, L(duLcr6)
L(du14):
sldi. rN, rN, 3
bne cr5, L(duLcr5)
/* At this point we have a remainder of 1 to 7 bytes to compare. We use
shift right double to eliminate bits beyond the compare length.
However it may not be safe to load rWORD2 which may be beyond the
string length. So we compare the bit length of the remainder to
the right shift count (rSHR). If the bit count is less than or equal
we do not need to load rWORD2 (all significant bits are already in
rWORD8_SHIFT). */
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li r0, 0
ble cr7, L(dutrim)
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD2, 0, rSTR2
addi rSTR2, rSTR2, 8
#else
ld rWORD2, 8(rSTR2)
#endif
srd r0, rWORD2, rSHR
.align 4
L(dutrim):
#ifdef __LITTLE_ENDIAN__
ldbrx rWORD1, 0, rSTR1
#else
ld rWORD1, 8(rSTR1)
#endif
ld rWORD8, -8(r1)
subfic rN, rN, 64 /* Shift count is 64 - (rN * 8). */
or rWORD2, r0, rWORD8_SHIFT
ld rWORD7, -16(r1)
ld rSHL, -24(r1)
srd rWORD1, rWORD1, rN
srd rWORD2, rWORD2, rN
ld rSHR, -32(r1)
ld rWORD8_SHIFT, -40(r1)
li rRTN, 0
cmpld cr7, rWORD1, rWORD2
ld rWORD2_SHIFT, -48(r1)
ld rWORD4_SHIFT, -56(r1)
beq cr7, L(dureturn24)
li rRTN, 1
ld rWORD6_SHIFT, -64(r1)
bgtlr cr7
li rRTN, -1
blr
.align 4
L(duLcr7):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
li rRTN, 1
bgt cr7, L(dureturn29)
ld rSHL, -24(r1)
ld rSHR, -32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr1):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
li rRTN, 1
bgt cr1, L(dureturn29)
ld rSHL, -24(r1)
ld rSHR, -32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr6):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
li rRTN, 1
bgt cr6, L(dureturn29)
ld rSHL, -24(r1)
ld rSHR, -32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr5):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
li rRTN, 1
bgt cr5, L(dureturn29)
ld rSHL, -24(r1)
ld rSHR, -32(r1)
li rRTN, -1
b L(dureturn27)
.align 3
L(duZeroReturn):
li rRTN, 0
.align 4
L(dureturn):
ld rWORD8, -8(r1)
ld rWORD7, -16(r1)
L(dureturn29):
ld rSHL, -24(r1)
ld rSHR, -32(r1)
L(dureturn27):
ld rWORD8_SHIFT, -40(r1)
L(dureturn26):
ld rWORD2_SHIFT, -48(r1)
L(dureturn25):
ld rWORD4_SHIFT, -56(r1)
L(dureturn24):
ld rWORD6_SHIFT, -64(r1)
blr
L(duzeroLength):
li rRTN, 0
blr
END (MEMCMP)
libc_hidden_builtin_def (memcmp)
weak_alias (memcmp, bcmp)
strong_alias (memcmp, __memcmpeq)
libc_hidden_def (__memcmpeq)