ubuntu-buildroot/output/build/linux-headers-6.1.38/sound/soc/codecs/cx2072x.c

1719 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// ALSA SoC CX20721/CX20723 codec driver
//
// Copyright: (C) 2017 Conexant Systems, Inc.
// Author: Simon Ho, <Simon.ho@conexant.com>
//
// TODO: add support for TDM mode.
//
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include "cx2072x.h"
#define PLL_OUT_HZ_48 (1024 * 3 * 48000)
#define BITS_PER_SLOT 8
/* codec private data */
struct cx2072x_priv {
struct regmap *regmap;
struct clk *mclk;
unsigned int mclk_rate;
struct device *dev;
struct snd_soc_component *codec;
struct snd_soc_jack_gpio jack_gpio;
struct mutex lock;
unsigned int bclk_ratio;
bool pll_changed;
bool i2spcm_changed;
int sample_size;
int frame_size;
int sample_rate;
unsigned int dai_fmt;
bool en_aec_ref;
};
/*
* DAC/ADC Volume
*
* max : 74 : 0 dB
* ( in 1 dB step )
* min : 0 : -74 dB
*/
static const DECLARE_TLV_DB_SCALE(adc_tlv, -7400, 100, 0);
static const DECLARE_TLV_DB_SCALE(dac_tlv, -7400, 100, 0);
static const DECLARE_TLV_DB_SCALE(boost_tlv, 0, 1200, 0);
struct cx2072x_eq_ctrl {
u8 ch;
u8 band;
};
static const DECLARE_TLV_DB_RANGE(hpf_tlv,
0, 0, TLV_DB_SCALE_ITEM(120, 0, 0),
1, 63, TLV_DB_SCALE_ITEM(30, 30, 0)
);
/* Lookup table for PRE_DIV */
static const struct {
unsigned int mclk;
unsigned int div;
} mclk_pre_div[] = {
{ 6144000, 1 },
{ 12288000, 2 },
{ 19200000, 3 },
{ 26000000, 4 },
{ 28224000, 5 },
{ 36864000, 6 },
{ 36864000, 7 },
{ 48000000, 8 },
{ 49152000, 8 },
};
/*
* cx2072x register cache.
*/
static const struct reg_default cx2072x_reg_defaults[] = {
{ CX2072X_AFG_POWER_STATE, 0x00000003 },
{ CX2072X_UM_RESPONSE, 0x00000000 },
{ CX2072X_GPIO_DATA, 0x00000000 },
{ CX2072X_GPIO_ENABLE, 0x00000000 },
{ CX2072X_GPIO_DIRECTION, 0x00000000 },
{ CX2072X_GPIO_WAKE, 0x00000000 },
{ CX2072X_GPIO_UM_ENABLE, 0x00000000 },
{ CX2072X_GPIO_STICKY_MASK, 0x00000000 },
{ CX2072X_DAC1_CONVERTER_FORMAT, 0x00000031 },
{ CX2072X_DAC1_AMP_GAIN_RIGHT, 0x0000004a },
{ CX2072X_DAC1_AMP_GAIN_LEFT, 0x0000004a },
{ CX2072X_DAC1_POWER_STATE, 0x00000433 },
{ CX2072X_DAC1_CONVERTER_STREAM_CHANNEL, 0x00000000 },
{ CX2072X_DAC1_EAPD_ENABLE, 0x00000000 },
{ CX2072X_DAC2_CONVERTER_FORMAT, 0x00000031 },
{ CX2072X_DAC2_AMP_GAIN_RIGHT, 0x0000004a },
{ CX2072X_DAC2_AMP_GAIN_LEFT, 0x0000004a },
{ CX2072X_DAC2_POWER_STATE, 0x00000433 },
{ CX2072X_DAC2_CONVERTER_STREAM_CHANNEL, 0x00000000 },
{ CX2072X_ADC1_CONVERTER_FORMAT, 0x00000031 },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_0, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_0, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_1, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_1, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_2, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_2, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_3, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_3, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_4, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_4, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_5, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_5, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_RIGHT_6, 0x0000004a },
{ CX2072X_ADC1_AMP_GAIN_LEFT_6, 0x0000004a },
{ CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 0x00000000 },
{ CX2072X_ADC1_POWER_STATE, 0x00000433 },
{ CX2072X_ADC1_CONVERTER_STREAM_CHANNEL, 0x00000000 },
{ CX2072X_ADC2_CONVERTER_FORMAT, 0x00000031 },
{ CX2072X_ADC2_AMP_GAIN_RIGHT_0, 0x0000004a },
{ CX2072X_ADC2_AMP_GAIN_LEFT_0, 0x0000004a },
{ CX2072X_ADC2_AMP_GAIN_RIGHT_1, 0x0000004a },
{ CX2072X_ADC2_AMP_GAIN_LEFT_1, 0x0000004a },
{ CX2072X_ADC2_AMP_GAIN_RIGHT_2, 0x0000004a },
{ CX2072X_ADC2_AMP_GAIN_LEFT_2, 0x0000004a },
{ CX2072X_ADC2_CONNECTION_SELECT_CONTROL, 0x00000000 },
{ CX2072X_ADC2_POWER_STATE, 0x00000433 },
{ CX2072X_ADC2_CONVERTER_STREAM_CHANNEL, 0x00000000 },
{ CX2072X_PORTA_CONNECTION_SELECT_CTRL, 0x00000000 },
{ CX2072X_PORTA_POWER_STATE, 0x00000433 },
{ CX2072X_PORTA_PIN_CTRL, 0x000000c0 },
{ CX2072X_PORTA_UNSOLICITED_RESPONSE, 0x00000000 },
{ CX2072X_PORTA_PIN_SENSE, 0x00000000 },
{ CX2072X_PORTA_EAPD_BTL, 0x00000002 },
{ CX2072X_PORTB_POWER_STATE, 0x00000433 },
{ CX2072X_PORTB_PIN_CTRL, 0x00000000 },
{ CX2072X_PORTB_UNSOLICITED_RESPONSE, 0x00000000 },
{ CX2072X_PORTB_PIN_SENSE, 0x00000000 },
{ CX2072X_PORTB_EAPD_BTL, 0x00000002 },
{ CX2072X_PORTB_GAIN_RIGHT, 0x00000000 },
{ CX2072X_PORTB_GAIN_LEFT, 0x00000000 },
{ CX2072X_PORTC_POWER_STATE, 0x00000433 },
{ CX2072X_PORTC_PIN_CTRL, 0x00000000 },
{ CX2072X_PORTC_GAIN_RIGHT, 0x00000000 },
{ CX2072X_PORTC_GAIN_LEFT, 0x00000000 },
{ CX2072X_PORTD_POWER_STATE, 0x00000433 },
{ CX2072X_PORTD_PIN_CTRL, 0x00000020 },
{ CX2072X_PORTD_UNSOLICITED_RESPONSE, 0x00000000 },
{ CX2072X_PORTD_PIN_SENSE, 0x00000000 },
{ CX2072X_PORTD_GAIN_RIGHT, 0x00000000 },
{ CX2072X_PORTD_GAIN_LEFT, 0x00000000 },
{ CX2072X_PORTE_CONNECTION_SELECT_CTRL, 0x00000000 },
{ CX2072X_PORTE_POWER_STATE, 0x00000433 },
{ CX2072X_PORTE_PIN_CTRL, 0x00000040 },
{ CX2072X_PORTE_UNSOLICITED_RESPONSE, 0x00000000 },
{ CX2072X_PORTE_PIN_SENSE, 0x00000000 },
{ CX2072X_PORTE_EAPD_BTL, 0x00000002 },
{ CX2072X_PORTE_GAIN_RIGHT, 0x00000000 },
{ CX2072X_PORTE_GAIN_LEFT, 0x00000000 },
{ CX2072X_PORTF_POWER_STATE, 0x00000433 },
{ CX2072X_PORTF_PIN_CTRL, 0x00000000 },
{ CX2072X_PORTF_UNSOLICITED_RESPONSE, 0x00000000 },
{ CX2072X_PORTF_PIN_SENSE, 0x00000000 },
{ CX2072X_PORTF_GAIN_RIGHT, 0x00000000 },
{ CX2072X_PORTF_GAIN_LEFT, 0x00000000 },
{ CX2072X_PORTG_POWER_STATE, 0x00000433 },
{ CX2072X_PORTG_PIN_CTRL, 0x00000040 },
{ CX2072X_PORTG_CONNECTION_SELECT_CTRL, 0x00000000 },
{ CX2072X_PORTG_EAPD_BTL, 0x00000002 },
{ CX2072X_PORTM_POWER_STATE, 0x00000433 },
{ CX2072X_PORTM_PIN_CTRL, 0x00000000 },
{ CX2072X_PORTM_CONNECTION_SELECT_CTRL, 0x00000000 },
{ CX2072X_PORTM_EAPD_BTL, 0x00000002 },
{ CX2072X_MIXER_POWER_STATE, 0x00000433 },
{ CX2072X_MIXER_GAIN_RIGHT_0, 0x0000004a },
{ CX2072X_MIXER_GAIN_LEFT_0, 0x0000004a },
{ CX2072X_MIXER_GAIN_RIGHT_1, 0x0000004a },
{ CX2072X_MIXER_GAIN_LEFT_1, 0x0000004a },
{ CX2072X_SPKR_DRC_ENABLE_STEP, 0x040065a4 },
{ CX2072X_SPKR_DRC_CONTROL, 0x007b0024 },
{ CX2072X_SPKR_DRC_TEST, 0x00000000 },
{ CX2072X_DIGITAL_BIOS_TEST0, 0x001f008a },
{ CX2072X_DIGITAL_BIOS_TEST2, 0x00990026 },
{ CX2072X_I2SPCM_CONTROL1, 0x00010001 },
{ CX2072X_I2SPCM_CONTROL2, 0x00000000 },
{ CX2072X_I2SPCM_CONTROL3, 0x00000000 },
{ CX2072X_I2SPCM_CONTROL4, 0x00000000 },
{ CX2072X_I2SPCM_CONTROL5, 0x00000000 },
{ CX2072X_I2SPCM_CONTROL6, 0x00000000 },
{ CX2072X_UM_INTERRUPT_CRTL_E, 0x00000000 },
{ CX2072X_CODEC_TEST2, 0x00000000 },
{ CX2072X_CODEC_TEST9, 0x00000004 },
{ CX2072X_CODEC_TEST20, 0x00000600 },
{ CX2072X_CODEC_TEST26, 0x00000208 },
{ CX2072X_ANALOG_TEST4, 0x00000000 },
{ CX2072X_ANALOG_TEST5, 0x00000000 },
{ CX2072X_ANALOG_TEST6, 0x0000059a },
{ CX2072X_ANALOG_TEST7, 0x000000a7 },
{ CX2072X_ANALOG_TEST8, 0x00000017 },
{ CX2072X_ANALOG_TEST9, 0x00000000 },
{ CX2072X_ANALOG_TEST10, 0x00000285 },
{ CX2072X_ANALOG_TEST11, 0x00000000 },
{ CX2072X_ANALOG_TEST12, 0x00000000 },
{ CX2072X_ANALOG_TEST13, 0x00000000 },
{ CX2072X_DIGITAL_TEST1, 0x00000242 },
{ CX2072X_DIGITAL_TEST11, 0x00000000 },
{ CX2072X_DIGITAL_TEST12, 0x00000084 },
{ CX2072X_DIGITAL_TEST15, 0x00000077 },
{ CX2072X_DIGITAL_TEST16, 0x00000021 },
{ CX2072X_DIGITAL_TEST17, 0x00000018 },
{ CX2072X_DIGITAL_TEST18, 0x00000024 },
{ CX2072X_DIGITAL_TEST19, 0x00000001 },
{ CX2072X_DIGITAL_TEST20, 0x00000002 },
};
/*
* register initialization
*/
static const struct reg_sequence cx2072x_reg_init[] = {
{ CX2072X_ANALOG_TEST9, 0x080 }, /* DC offset Calibration */
{ CX2072X_CODEC_TEST26, 0x65f }, /* Disable the PA */
{ CX2072X_ANALOG_TEST10, 0x289 }, /* Set the speaker output gain */
{ CX2072X_CODEC_TEST20, 0xf05 },
{ CX2072X_CODEC_TESTXX, 0x380 },
{ CX2072X_CODEC_TEST26, 0xb90 },
{ CX2072X_CODEC_TEST9, 0x001 }, /* Enable 30 Hz High pass filter */
{ CX2072X_ANALOG_TEST3, 0x300 }, /* Disable PCBEEP pad */
{ CX2072X_CODEC_TEST24, 0x100 }, /* Disable SnM mode */
{ CX2072X_PORTD_PIN_CTRL, 0x020 }, /* Enable PortD input */
{ CX2072X_GPIO_ENABLE, 0x040 }, /* Enable GPIO7 pin for button */
{ CX2072X_GPIO_UM_ENABLE, 0x040 }, /* Enable UM for GPIO7 */
{ CX2072X_UM_RESPONSE, 0x080 }, /* Enable button response */
{ CX2072X_DIGITAL_TEST12, 0x0c4 }, /* Enable headset button */
{ CX2072X_DIGITAL_TEST0, 0x415 }, /* Power down class-D during idle */
{ CX2072X_I2SPCM_CONTROL2, 0x00f }, /* Enable I2S TX */
{ CX2072X_I2SPCM_CONTROL3, 0x00f }, /* Enable I2S RX */
};
static unsigned int cx2072x_register_size(unsigned int reg)
{
switch (reg) {
case CX2072X_VENDOR_ID:
case CX2072X_REVISION_ID:
case CX2072X_PORTA_PIN_SENSE:
case CX2072X_PORTB_PIN_SENSE:
case CX2072X_PORTD_PIN_SENSE:
case CX2072X_PORTE_PIN_SENSE:
case CX2072X_PORTF_PIN_SENSE:
case CX2072X_I2SPCM_CONTROL1:
case CX2072X_I2SPCM_CONTROL2:
case CX2072X_I2SPCM_CONTROL3:
case CX2072X_I2SPCM_CONTROL4:
case CX2072X_I2SPCM_CONTROL5:
case CX2072X_I2SPCM_CONTROL6:
case CX2072X_UM_INTERRUPT_CRTL_E:
case CX2072X_EQ_G_COEFF:
case CX2072X_SPKR_DRC_CONTROL:
case CX2072X_SPKR_DRC_TEST:
case CX2072X_DIGITAL_BIOS_TEST0:
case CX2072X_DIGITAL_BIOS_TEST2:
return 4;
case CX2072X_EQ_ENABLE_BYPASS:
case CX2072X_EQ_B0_COEFF:
case CX2072X_EQ_B1_COEFF:
case CX2072X_EQ_B2_COEFF:
case CX2072X_EQ_A1_COEFF:
case CX2072X_EQ_A2_COEFF:
case CX2072X_DAC1_CONVERTER_FORMAT:
case CX2072X_DAC2_CONVERTER_FORMAT:
case CX2072X_ADC1_CONVERTER_FORMAT:
case CX2072X_ADC2_CONVERTER_FORMAT:
case CX2072X_CODEC_TEST2:
case CX2072X_CODEC_TEST9:
case CX2072X_CODEC_TEST20:
case CX2072X_CODEC_TEST26:
case CX2072X_ANALOG_TEST3:
case CX2072X_ANALOG_TEST4:
case CX2072X_ANALOG_TEST5:
case CX2072X_ANALOG_TEST6:
case CX2072X_ANALOG_TEST7:
case CX2072X_ANALOG_TEST8:
case CX2072X_ANALOG_TEST9:
case CX2072X_ANALOG_TEST10:
case CX2072X_ANALOG_TEST11:
case CX2072X_ANALOG_TEST12:
case CX2072X_ANALOG_TEST13:
case CX2072X_DIGITAL_TEST0:
case CX2072X_DIGITAL_TEST1:
case CX2072X_DIGITAL_TEST11:
case CX2072X_DIGITAL_TEST12:
case CX2072X_DIGITAL_TEST15:
case CX2072X_DIGITAL_TEST16:
case CX2072X_DIGITAL_TEST17:
case CX2072X_DIGITAL_TEST18:
case CX2072X_DIGITAL_TEST19:
case CX2072X_DIGITAL_TEST20:
return 2;
default:
return 1;
}
}
static bool cx2072x_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CX2072X_VENDOR_ID:
case CX2072X_REVISION_ID:
case CX2072X_CURRENT_BCLK_FREQUENCY:
case CX2072X_AFG_POWER_STATE:
case CX2072X_UM_RESPONSE:
case CX2072X_GPIO_DATA:
case CX2072X_GPIO_ENABLE:
case CX2072X_GPIO_DIRECTION:
case CX2072X_GPIO_WAKE:
case CX2072X_GPIO_UM_ENABLE:
case CX2072X_GPIO_STICKY_MASK:
case CX2072X_DAC1_CONVERTER_FORMAT:
case CX2072X_DAC1_AMP_GAIN_RIGHT:
case CX2072X_DAC1_AMP_GAIN_LEFT:
case CX2072X_DAC1_POWER_STATE:
case CX2072X_DAC1_CONVERTER_STREAM_CHANNEL:
case CX2072X_DAC1_EAPD_ENABLE:
case CX2072X_DAC2_CONVERTER_FORMAT:
case CX2072X_DAC2_AMP_GAIN_RIGHT:
case CX2072X_DAC2_AMP_GAIN_LEFT:
case CX2072X_DAC2_POWER_STATE:
case CX2072X_DAC2_CONVERTER_STREAM_CHANNEL:
case CX2072X_ADC1_CONVERTER_FORMAT:
case CX2072X_ADC1_AMP_GAIN_RIGHT_0:
case CX2072X_ADC1_AMP_GAIN_LEFT_0:
case CX2072X_ADC1_AMP_GAIN_RIGHT_1:
case CX2072X_ADC1_AMP_GAIN_LEFT_1:
case CX2072X_ADC1_AMP_GAIN_RIGHT_2:
case CX2072X_ADC1_AMP_GAIN_LEFT_2:
case CX2072X_ADC1_AMP_GAIN_RIGHT_3:
case CX2072X_ADC1_AMP_GAIN_LEFT_3:
case CX2072X_ADC1_AMP_GAIN_RIGHT_4:
case CX2072X_ADC1_AMP_GAIN_LEFT_4:
case CX2072X_ADC1_AMP_GAIN_RIGHT_5:
case CX2072X_ADC1_AMP_GAIN_LEFT_5:
case CX2072X_ADC1_AMP_GAIN_RIGHT_6:
case CX2072X_ADC1_AMP_GAIN_LEFT_6:
case CX2072X_ADC1_CONNECTION_SELECT_CONTROL:
case CX2072X_ADC1_POWER_STATE:
case CX2072X_ADC1_CONVERTER_STREAM_CHANNEL:
case CX2072X_ADC2_CONVERTER_FORMAT:
case CX2072X_ADC2_AMP_GAIN_RIGHT_0:
case CX2072X_ADC2_AMP_GAIN_LEFT_0:
case CX2072X_ADC2_AMP_GAIN_RIGHT_1:
case CX2072X_ADC2_AMP_GAIN_LEFT_1:
case CX2072X_ADC2_AMP_GAIN_RIGHT_2:
case CX2072X_ADC2_AMP_GAIN_LEFT_2:
case CX2072X_ADC2_CONNECTION_SELECT_CONTROL:
case CX2072X_ADC2_POWER_STATE:
case CX2072X_ADC2_CONVERTER_STREAM_CHANNEL:
case CX2072X_PORTA_CONNECTION_SELECT_CTRL:
case CX2072X_PORTA_POWER_STATE:
case CX2072X_PORTA_PIN_CTRL:
case CX2072X_PORTA_UNSOLICITED_RESPONSE:
case CX2072X_PORTA_PIN_SENSE:
case CX2072X_PORTA_EAPD_BTL:
case CX2072X_PORTB_POWER_STATE:
case CX2072X_PORTB_PIN_CTRL:
case CX2072X_PORTB_UNSOLICITED_RESPONSE:
case CX2072X_PORTB_PIN_SENSE:
case CX2072X_PORTB_EAPD_BTL:
case CX2072X_PORTB_GAIN_RIGHT:
case CX2072X_PORTB_GAIN_LEFT:
case CX2072X_PORTC_POWER_STATE:
case CX2072X_PORTC_PIN_CTRL:
case CX2072X_PORTC_GAIN_RIGHT:
case CX2072X_PORTC_GAIN_LEFT:
case CX2072X_PORTD_POWER_STATE:
case CX2072X_PORTD_PIN_CTRL:
case CX2072X_PORTD_UNSOLICITED_RESPONSE:
case CX2072X_PORTD_PIN_SENSE:
case CX2072X_PORTD_GAIN_RIGHT:
case CX2072X_PORTD_GAIN_LEFT:
case CX2072X_PORTE_CONNECTION_SELECT_CTRL:
case CX2072X_PORTE_POWER_STATE:
case CX2072X_PORTE_PIN_CTRL:
case CX2072X_PORTE_UNSOLICITED_RESPONSE:
case CX2072X_PORTE_PIN_SENSE:
case CX2072X_PORTE_EAPD_BTL:
case CX2072X_PORTE_GAIN_RIGHT:
case CX2072X_PORTE_GAIN_LEFT:
case CX2072X_PORTF_POWER_STATE:
case CX2072X_PORTF_PIN_CTRL:
case CX2072X_PORTF_UNSOLICITED_RESPONSE:
case CX2072X_PORTF_PIN_SENSE:
case CX2072X_PORTF_GAIN_RIGHT:
case CX2072X_PORTF_GAIN_LEFT:
case CX2072X_PORTG_POWER_STATE:
case CX2072X_PORTG_PIN_CTRL:
case CX2072X_PORTG_CONNECTION_SELECT_CTRL:
case CX2072X_PORTG_EAPD_BTL:
case CX2072X_PORTM_POWER_STATE:
case CX2072X_PORTM_PIN_CTRL:
case CX2072X_PORTM_CONNECTION_SELECT_CTRL:
case CX2072X_PORTM_EAPD_BTL:
case CX2072X_MIXER_POWER_STATE:
case CX2072X_MIXER_GAIN_RIGHT_0:
case CX2072X_MIXER_GAIN_LEFT_0:
case CX2072X_MIXER_GAIN_RIGHT_1:
case CX2072X_MIXER_GAIN_LEFT_1:
case CX2072X_EQ_ENABLE_BYPASS:
case CX2072X_EQ_B0_COEFF:
case CX2072X_EQ_B1_COEFF:
case CX2072X_EQ_B2_COEFF:
case CX2072X_EQ_A1_COEFF:
case CX2072X_EQ_A2_COEFF:
case CX2072X_EQ_G_COEFF:
case CX2072X_SPKR_DRC_ENABLE_STEP:
case CX2072X_SPKR_DRC_CONTROL:
case CX2072X_SPKR_DRC_TEST:
case CX2072X_DIGITAL_BIOS_TEST0:
case CX2072X_DIGITAL_BIOS_TEST2:
case CX2072X_I2SPCM_CONTROL1:
case CX2072X_I2SPCM_CONTROL2:
case CX2072X_I2SPCM_CONTROL3:
case CX2072X_I2SPCM_CONTROL4:
case CX2072X_I2SPCM_CONTROL5:
case CX2072X_I2SPCM_CONTROL6:
case CX2072X_UM_INTERRUPT_CRTL_E:
case CX2072X_CODEC_TEST2:
case CX2072X_CODEC_TEST9:
case CX2072X_CODEC_TEST20:
case CX2072X_CODEC_TEST26:
case CX2072X_ANALOG_TEST4:
case CX2072X_ANALOG_TEST5:
case CX2072X_ANALOG_TEST6:
case CX2072X_ANALOG_TEST7:
case CX2072X_ANALOG_TEST8:
case CX2072X_ANALOG_TEST9:
case CX2072X_ANALOG_TEST10:
case CX2072X_ANALOG_TEST11:
case CX2072X_ANALOG_TEST12:
case CX2072X_ANALOG_TEST13:
case CX2072X_DIGITAL_TEST0:
case CX2072X_DIGITAL_TEST1:
case CX2072X_DIGITAL_TEST11:
case CX2072X_DIGITAL_TEST12:
case CX2072X_DIGITAL_TEST15:
case CX2072X_DIGITAL_TEST16:
case CX2072X_DIGITAL_TEST17:
case CX2072X_DIGITAL_TEST18:
case CX2072X_DIGITAL_TEST19:
case CX2072X_DIGITAL_TEST20:
return true;
default:
return false;
}
}
static bool cx2072x_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CX2072X_VENDOR_ID:
case CX2072X_REVISION_ID:
case CX2072X_UM_INTERRUPT_CRTL_E:
case CX2072X_DIGITAL_TEST11:
case CX2072X_PORTA_PIN_SENSE:
case CX2072X_PORTB_PIN_SENSE:
case CX2072X_PORTD_PIN_SENSE:
case CX2072X_PORTE_PIN_SENSE:
case CX2072X_PORTF_PIN_SENSE:
case CX2072X_EQ_G_COEFF:
case CX2072X_EQ_BAND:
return true;
default:
return false;
}
}
static int cx2072x_reg_raw_write(struct i2c_client *client,
unsigned int reg,
const void *val, size_t val_count)
{
struct device *dev = &client->dev;
u8 buf[2 + CX2072X_MAX_EQ_COEFF];
int ret;
if (WARN_ON(val_count + 2 > sizeof(buf)))
return -EINVAL;
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
memcpy(buf + 2, val, val_count);
ret = i2c_master_send(client, buf, val_count + 2);
if (ret != val_count + 2) {
dev_err(dev, "I2C write failed, ret = %d\n", ret);
return ret < 0 ? ret : -EIO;
}
return 0;
}
static int cx2072x_reg_write(void *context, unsigned int reg,
unsigned int value)
{
__le32 raw_value;
unsigned int size;
size = cx2072x_register_size(reg);
if (reg == CX2072X_UM_INTERRUPT_CRTL_E) {
/* Update the MSB byte only */
reg += 3;
size = 1;
value >>= 24;
}
raw_value = cpu_to_le32(value);
return cx2072x_reg_raw_write(context, reg, &raw_value, size);
}
static int cx2072x_reg_read(void *context, unsigned int reg,
unsigned int *value)
{
struct i2c_client *client = context;
struct device *dev = &client->dev;
__le32 recv_buf = 0;
struct i2c_msg msgs[2];
unsigned int size;
u8 send_buf[2];
int ret;
size = cx2072x_register_size(reg);
send_buf[0] = reg >> 8;
send_buf[1] = reg & 0xff;
msgs[0].addr = client->addr;
msgs[0].len = sizeof(send_buf);
msgs[0].buf = send_buf;
msgs[0].flags = 0;
msgs[1].addr = client->addr;
msgs[1].len = size;
msgs[1].buf = (u8 *)&recv_buf;
msgs[1].flags = I2C_M_RD;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret != ARRAY_SIZE(msgs)) {
dev_err(dev, "Failed to read register, ret = %d\n", ret);
return ret < 0 ? ret : -EIO;
}
*value = le32_to_cpu(recv_buf);
return 0;
}
/* get suggested pre_div valuce from mclk frequency */
static unsigned int get_div_from_mclk(unsigned int mclk)
{
unsigned int div = 8;
int i;
for (i = 0; i < ARRAY_SIZE(mclk_pre_div); i++) {
if (mclk <= mclk_pre_div[i].mclk) {
div = mclk_pre_div[i].div;
break;
}
}
return div;
}
static int cx2072x_config_pll(struct cx2072x_priv *cx2072x)
{
struct device *dev = cx2072x->dev;
unsigned int pre_div;
unsigned int pre_div_val;
unsigned int pll_input;
unsigned int pll_output;
unsigned int int_div;
unsigned int frac_div;
u64 frac_num;
unsigned int frac;
unsigned int sample_rate = cx2072x->sample_rate;
int pt_sample_per_sync = 2;
int pt_clock_per_sample = 96;
switch (sample_rate) {
case 48000:
case 32000:
case 24000:
case 16000:
break;
case 96000:
pt_sample_per_sync = 1;
pt_clock_per_sample = 48;
break;
case 192000:
pt_sample_per_sync = 0;
pt_clock_per_sample = 24;
break;
default:
dev_err(dev, "Unsupported sample rate %d\n", sample_rate);
return -EINVAL;
}
/* Configure PLL settings */
pre_div = get_div_from_mclk(cx2072x->mclk_rate);
pll_input = cx2072x->mclk_rate / pre_div;
pll_output = sample_rate * 3072;
int_div = pll_output / pll_input;
frac_div = pll_output - (int_div * pll_input);
if (frac_div) {
frac_div *= 1000;
frac_div /= pll_input;
frac_num = (u64)(4000 + frac_div) * ((1 << 20) - 4);
do_div(frac_num, 7);
frac = ((u32)frac_num + 499) / 1000;
}
pre_div_val = (pre_div - 1) * 2;
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST4,
0x40 | (pre_div_val << 8));
if (frac_div == 0) {
/* Int mode */
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST7, 0x100);
} else {
/* frac mode */
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST6,
frac & 0xfff);
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST7,
(u8)(frac >> 12));
}
int_div--;
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST8, int_div);
/* configure PLL tracking */
if (frac_div == 0) {
/* disable PLL tracking */
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST16, 0x00);
} else {
/* configure and enable PLL tracking */
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST16,
(pt_sample_per_sync << 4) & 0xf0);
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST17,
pt_clock_per_sample);
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST18,
pt_clock_per_sample * 3 / 2);
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST19, 0x01);
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST20, 0x02);
regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_TEST16,
0x01, 0x01);
}
return 0;
}
static int cx2072x_config_i2spcm(struct cx2072x_priv *cx2072x)
{
struct device *dev = cx2072x->dev;
unsigned int bclk_rate = 0;
int is_i2s = 0;
int has_one_bit_delay = 0;
int is_frame_inv = 0;
int is_bclk_inv = 0;
int pulse_len;
int frame_len = cx2072x->frame_size;
int sample_size = cx2072x->sample_size;
int i2s_right_slot;
int i2s_right_pause_interval = 0;
int i2s_right_pause_pos;
int is_big_endian = 1;
u64 div;
unsigned int mod;
union cx2072x_reg_i2spcm_ctrl_reg1 reg1;
union cx2072x_reg_i2spcm_ctrl_reg2 reg2;
union cx2072x_reg_i2spcm_ctrl_reg3 reg3;
union cx2072x_reg_i2spcm_ctrl_reg4 reg4;
union cx2072x_reg_i2spcm_ctrl_reg5 reg5;
union cx2072x_reg_i2spcm_ctrl_reg6 reg6;
union cx2072x_reg_digital_bios_test2 regdbt2;
const unsigned int fmt = cx2072x->dai_fmt;
if (frame_len <= 0) {
dev_err(dev, "Incorrect frame len %d\n", frame_len);
return -EINVAL;
}
if (sample_size <= 0) {
dev_err(dev, "Incorrect sample size %d\n", sample_size);
return -EINVAL;
}
dev_dbg(dev, "config_i2spcm set_dai_fmt- %08x\n", fmt);
regdbt2.ulval = 0xac;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
reg2.r.tx_master = 1;
reg3.r.rx_master = 1;
break;
case SND_SOC_DAIFMT_CBC_CFC:
reg2.r.tx_master = 0;
reg3.r.rx_master = 0;
break;
default:
dev_err(dev, "Unsupported DAI clocking mode\n");
return -EINVAL;
}
/* set format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
is_i2s = 1;
has_one_bit_delay = 1;
pulse_len = frame_len / 2;
break;
case SND_SOC_DAIFMT_RIGHT_J:
is_i2s = 1;
pulse_len = frame_len / 2;
break;
case SND_SOC_DAIFMT_LEFT_J:
is_i2s = 1;
pulse_len = frame_len / 2;
break;
default:
dev_err(dev, "Unsupported DAI format\n");
return -EINVAL;
}
/* clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
is_frame_inv = is_i2s;
is_bclk_inv = is_i2s;
break;
case SND_SOC_DAIFMT_IB_IF:
is_frame_inv = !is_i2s;
is_bclk_inv = !is_i2s;
break;
case SND_SOC_DAIFMT_IB_NF:
is_frame_inv = is_i2s;
is_bclk_inv = !is_i2s;
break;
case SND_SOC_DAIFMT_NB_IF:
is_frame_inv = !is_i2s;
is_bclk_inv = is_i2s;
break;
default:
dev_err(dev, "Unsupported DAI clock inversion\n");
return -EINVAL;
}
reg1.r.rx_data_one_line = 1;
reg1.r.tx_data_one_line = 1;
if (is_i2s) {
i2s_right_slot = (frame_len / 2) / BITS_PER_SLOT;
i2s_right_pause_interval = (frame_len / 2) % BITS_PER_SLOT;
i2s_right_pause_pos = i2s_right_slot * BITS_PER_SLOT;
}
reg1.r.rx_ws_pol = is_frame_inv;
reg1.r.rx_ws_wid = pulse_len - 1;
reg1.r.rx_frm_len = frame_len / BITS_PER_SLOT - 1;
reg1.r.rx_sa_size = (sample_size / BITS_PER_SLOT) - 1;
reg1.r.tx_ws_pol = reg1.r.rx_ws_pol;
reg1.r.tx_ws_wid = pulse_len - 1;
reg1.r.tx_frm_len = reg1.r.rx_frm_len;
reg1.r.tx_sa_size = reg1.r.rx_sa_size;
reg2.r.tx_endian_sel = !is_big_endian;
reg2.r.tx_dstart_dly = has_one_bit_delay;
if (cx2072x->en_aec_ref)
reg2.r.tx_dstart_dly = 0;
reg3.r.rx_endian_sel = !is_big_endian;
reg3.r.rx_dstart_dly = has_one_bit_delay;
reg4.ulval = 0;
if (is_i2s) {
reg2.r.tx_slot_1 = 0;
reg2.r.tx_slot_2 = i2s_right_slot;
reg3.r.rx_slot_1 = 0;
if (cx2072x->en_aec_ref)
reg3.r.rx_slot_2 = 0;
else
reg3.r.rx_slot_2 = i2s_right_slot;
reg6.r.rx_pause_start_pos = i2s_right_pause_pos;
reg6.r.rx_pause_cycles = i2s_right_pause_interval;
reg6.r.tx_pause_start_pos = i2s_right_pause_pos;
reg6.r.tx_pause_cycles = i2s_right_pause_interval;
} else {
dev_err(dev, "TDM mode is not implemented yet\n");
return -EINVAL;
}
regdbt2.r.i2s_bclk_invert = is_bclk_inv;
/* Configures the BCLK output */
bclk_rate = cx2072x->sample_rate * frame_len;
reg5.r.i2s_pcm_clk_div_chan_en = 0;
/* Disables bclk output before setting new value */
regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL5, 0);
if (reg2.r.tx_master) {
/* Configures BCLK rate */
div = PLL_OUT_HZ_48;
mod = do_div(div, bclk_rate);
if (mod) {
dev_err(dev, "Unsupported BCLK %dHz\n", bclk_rate);
return -EINVAL;
}
dev_dbg(dev, "enables BCLK %dHz output\n", bclk_rate);
reg5.r.i2s_pcm_clk_div = (u32)div - 1;
reg5.r.i2s_pcm_clk_div_chan_en = 1;
}
regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL1, reg1.ulval);
regmap_update_bits(cx2072x->regmap, CX2072X_I2SPCM_CONTROL2, 0xffffffc0,
reg2.ulval);
regmap_update_bits(cx2072x->regmap, CX2072X_I2SPCM_CONTROL3, 0xffffffc0,
reg3.ulval);
regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL4, reg4.ulval);
regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL6, reg6.ulval);
regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL5, reg5.ulval);
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST2,
regdbt2.ulval);
return 0;
}
static int afg_power_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *codec = snd_soc_dapm_to_component(w->dapm);
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST0,
0x00, 0x10);
break;
case SND_SOC_DAPM_PRE_PMD:
regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST0,
0x10, 0x10);
break;
}
return 0;
}
static const struct snd_kcontrol_new cx2072x_snd_controls[] = {
SOC_DOUBLE_R_TLV("PortD Boost Volume", CX2072X_PORTD_GAIN_LEFT,
CX2072X_PORTD_GAIN_RIGHT, 0, 3, 0, boost_tlv),
SOC_DOUBLE_R_TLV("PortC Boost Volume", CX2072X_PORTC_GAIN_LEFT,
CX2072X_PORTC_GAIN_RIGHT, 0, 3, 0, boost_tlv),
SOC_DOUBLE_R_TLV("PortB Boost Volume", CX2072X_PORTB_GAIN_LEFT,
CX2072X_PORTB_GAIN_RIGHT, 0, 3, 0, boost_tlv),
SOC_DOUBLE_R_TLV("PortD ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_1,
CX2072X_ADC1_AMP_GAIN_RIGHT_1, 0, 0x4a, 0, adc_tlv),
SOC_DOUBLE_R_TLV("PortC ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_2,
CX2072X_ADC1_AMP_GAIN_RIGHT_2, 0, 0x4a, 0, adc_tlv),
SOC_DOUBLE_R_TLV("PortB ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_0,
CX2072X_ADC1_AMP_GAIN_RIGHT_0, 0, 0x4a, 0, adc_tlv),
SOC_DOUBLE_R_TLV("DAC1 Volume", CX2072X_DAC1_AMP_GAIN_LEFT,
CX2072X_DAC1_AMP_GAIN_RIGHT, 0, 0x4a, 0, dac_tlv),
SOC_DOUBLE_R("DAC1 Switch", CX2072X_DAC1_AMP_GAIN_LEFT,
CX2072X_DAC1_AMP_GAIN_RIGHT, 7, 1, 0),
SOC_DOUBLE_R_TLV("DAC2 Volume", CX2072X_DAC2_AMP_GAIN_LEFT,
CX2072X_DAC2_AMP_GAIN_RIGHT, 0, 0x4a, 0, dac_tlv),
SOC_SINGLE_TLV("HPF Freq", CX2072X_CODEC_TEST9, 0, 0x3f, 0, hpf_tlv),
SOC_DOUBLE("HPF Switch", CX2072X_CODEC_TEST9, 8, 9, 1, 1),
SOC_SINGLE("PortA HP Amp Switch", CX2072X_PORTA_PIN_CTRL, 7, 1, 0),
};
static int cx2072x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *codec = dai->component;
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
struct device *dev = codec->dev;
const unsigned int sample_rate = params_rate(params);
int sample_size, frame_size;
/* Data sizes if not using TDM */
sample_size = params_width(params);
if (sample_size < 0)
return sample_size;
frame_size = snd_soc_params_to_frame_size(params);
if (frame_size < 0)
return frame_size;
if (cx2072x->mclk_rate == 0) {
dev_err(dev, "Master clock rate is not configured\n");
return -EINVAL;
}
if (cx2072x->bclk_ratio)
frame_size = cx2072x->bclk_ratio;
switch (sample_rate) {
case 48000:
case 32000:
case 24000:
case 16000:
case 96000:
case 192000:
break;
default:
dev_err(dev, "Unsupported sample rate %d\n", sample_rate);
return -EINVAL;
}
dev_dbg(dev, "Sample size %d bits, frame = %d bits, rate = %d Hz\n",
sample_size, frame_size, sample_rate);
cx2072x->frame_size = frame_size;
cx2072x->sample_size = sample_size;
cx2072x->sample_rate = sample_rate;
if (dai->id == CX2072X_DAI_DSP) {
cx2072x->en_aec_ref = true;
dev_dbg(cx2072x->dev, "enables aec reference\n");
regmap_write(cx2072x->regmap,
CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 3);
}
if (cx2072x->pll_changed) {
cx2072x_config_pll(cx2072x);
cx2072x->pll_changed = false;
}
if (cx2072x->i2spcm_changed) {
cx2072x_config_i2spcm(cx2072x);
cx2072x->i2spcm_changed = false;
}
return 0;
}
static int cx2072x_set_dai_bclk_ratio(struct snd_soc_dai *dai,
unsigned int ratio)
{
struct snd_soc_component *codec = dai->component;
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
cx2072x->bclk_ratio = ratio;
return 0;
}
static int cx2072x_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct snd_soc_component *codec = dai->component;
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
if (clk_set_rate(cx2072x->mclk, freq)) {
dev_err(codec->dev, "set clk rate failed\n");
return -EINVAL;
}
cx2072x->mclk_rate = freq;
return 0;
}
static int cx2072x_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *codec = dai->component;
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
struct device *dev = codec->dev;
dev_dbg(dev, "set_dai_fmt- %08x\n", fmt);
/* set master/slave */
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
dev_err(dev, "Unsupported DAI master mode\n");
return -EINVAL;
}
/* set format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
break;
default:
dev_err(dev, "Unsupported DAI format\n");
return -EINVAL;
}
/* clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
case SND_SOC_DAIFMT_IB_IF:
case SND_SOC_DAIFMT_IB_NF:
case SND_SOC_DAIFMT_NB_IF:
break;
default:
dev_err(dev, "Unsupported DAI clock inversion\n");
return -EINVAL;
}
cx2072x->dai_fmt = fmt;
return 0;
}
static const struct snd_kcontrol_new portaouten_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTA_PIN_CTRL, 6, 1, 0);
static const struct snd_kcontrol_new porteouten_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTE_PIN_CTRL, 6, 1, 0);
static const struct snd_kcontrol_new portgouten_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTG_PIN_CTRL, 6, 1, 0);
static const struct snd_kcontrol_new portmouten_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTM_PIN_CTRL, 6, 1, 0);
static const struct snd_kcontrol_new portbinen_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTB_PIN_CTRL, 5, 1, 0);
static const struct snd_kcontrol_new portcinen_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTC_PIN_CTRL, 5, 1, 0);
static const struct snd_kcontrol_new portdinen_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTD_PIN_CTRL, 5, 1, 0);
static const struct snd_kcontrol_new porteinen_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_PORTE_PIN_CTRL, 5, 1, 0);
static const struct snd_kcontrol_new i2sadc1l_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 0, 1, 0);
static const struct snd_kcontrol_new i2sadc1r_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 1, 1, 0);
static const struct snd_kcontrol_new i2sadc2l_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 2, 1, 0);
static const struct snd_kcontrol_new i2sadc2r_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 3, 1, 0);
static const struct snd_kcontrol_new i2sdac1l_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 0, 1, 0);
static const struct snd_kcontrol_new i2sdac1r_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 1, 1, 0);
static const struct snd_kcontrol_new i2sdac2l_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 2, 1, 0);
static const struct snd_kcontrol_new i2sdac2r_ctl =
SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 3, 1, 0);
static const char * const dac_enum_text[] = {
"DAC1 Switch", "DAC2 Switch",
};
static const struct soc_enum porta_dac_enum =
SOC_ENUM_SINGLE(CX2072X_PORTA_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text);
static const struct snd_kcontrol_new porta_mux =
SOC_DAPM_ENUM("PortA Mux", porta_dac_enum);
static const struct soc_enum portg_dac_enum =
SOC_ENUM_SINGLE(CX2072X_PORTG_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text);
static const struct snd_kcontrol_new portg_mux =
SOC_DAPM_ENUM("PortG Mux", portg_dac_enum);
static const struct soc_enum porte_dac_enum =
SOC_ENUM_SINGLE(CX2072X_PORTE_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text);
static const struct snd_kcontrol_new porte_mux =
SOC_DAPM_ENUM("PortE Mux", porte_dac_enum);
static const struct soc_enum portm_dac_enum =
SOC_ENUM_SINGLE(CX2072X_PORTM_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text);
static const struct snd_kcontrol_new portm_mux =
SOC_DAPM_ENUM("PortM Mux", portm_dac_enum);
static const char * const adc1in_sel_text[] = {
"PortB Switch", "PortD Switch", "PortC Switch", "Widget15 Switch",
"PortE Switch", "PortF Switch", "PortH Switch"
};
static const struct soc_enum adc1in_sel_enum =
SOC_ENUM_SINGLE(CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 0, 7, adc1in_sel_text);
static const struct snd_kcontrol_new adc1_mux =
SOC_DAPM_ENUM("ADC1 Mux", adc1in_sel_enum);
static const char * const adc2in_sel_text[] = {
"PortC Switch", "Widget15 Switch", "PortH Switch"
};
static const struct soc_enum adc2in_sel_enum =
SOC_ENUM_SINGLE(CX2072X_ADC2_CONNECTION_SELECT_CONTROL, 0, 3, adc2in_sel_text);
static const struct snd_kcontrol_new adc2_mux =
SOC_DAPM_ENUM("ADC2 Mux", adc2in_sel_enum);
static const struct snd_kcontrol_new wid15_mix[] = {
SOC_DAPM_SINGLE("DAC1L Switch", CX2072X_MIXER_GAIN_LEFT_0, 7, 1, 1),
SOC_DAPM_SINGLE("DAC1R Switch", CX2072X_MIXER_GAIN_RIGHT_0, 7, 1, 1),
SOC_DAPM_SINGLE("DAC2L Switch", CX2072X_MIXER_GAIN_LEFT_1, 7, 1, 1),
SOC_DAPM_SINGLE("DAC2R Switch", CX2072X_MIXER_GAIN_RIGHT_1, 7, 1, 1),
};
#define CX2072X_DAPM_SUPPLY_S(wname, wsubseq, wreg, wshift, wmask, won_val, \
woff_val, wevent, wflags) \
{.id = snd_soc_dapm_supply, .name = wname, .kcontrol_news = NULL, \
.num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \
.on_val = won_val, .off_val = woff_val, \
.subseq = wsubseq, .event = wevent, .event_flags = wflags}
#define CX2072X_DAPM_SWITCH(wname, wreg, wshift, wmask, won_val, woff_val, \
wevent, wflags) \
{.id = snd_soc_dapm_switch, .name = wname, .kcontrol_news = NULL, \
.num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \
.on_val = won_val, .off_val = woff_val, \
.event = wevent, .event_flags = wflags}
#define CX2072X_DAPM_SWITCH(wname, wreg, wshift, wmask, won_val, woff_val, \
wevent, wflags) \
{.id = snd_soc_dapm_switch, .name = wname, .kcontrol_news = NULL, \
.num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \
.on_val = won_val, .off_val = woff_val, \
.event = wevent, .event_flags = wflags}
#define CX2072X_DAPM_REG_E(wid, wname, wreg, wshift, wmask, won_val, woff_val, \
wevent, wflags) \
{.id = wid, .name = wname, .kcontrol_news = NULL, .num_kcontrols = 0, \
.reg = wreg, .shift = wshift, .mask = wmask, \
.on_val = won_val, .off_val = woff_val, \
.event = wevent, .event_flags = wflags}
static const struct snd_soc_dapm_widget cx2072x_dapm_widgets[] = {
/*Playback*/
SND_SOC_DAPM_AIF_IN("In AIF", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SWITCH("I2S DAC1L", SND_SOC_NOPM, 0, 0, &i2sdac1l_ctl),
SND_SOC_DAPM_SWITCH("I2S DAC1R", SND_SOC_NOPM, 0, 0, &i2sdac1r_ctl),
SND_SOC_DAPM_SWITCH("I2S DAC2L", SND_SOC_NOPM, 0, 0, &i2sdac2l_ctl),
SND_SOC_DAPM_SWITCH("I2S DAC2R", SND_SOC_NOPM, 0, 0, &i2sdac2r_ctl),
SND_SOC_DAPM_REG(snd_soc_dapm_dac, "DAC1", CX2072X_DAC1_POWER_STATE,
0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_dac, "DAC2", CX2072X_DAC2_POWER_STATE,
0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_MUX("PortA Mux", SND_SOC_NOPM, 0, 0, &porta_mux),
SND_SOC_DAPM_MUX("PortG Mux", SND_SOC_NOPM, 0, 0, &portg_mux),
SND_SOC_DAPM_MUX("PortE Mux", SND_SOC_NOPM, 0, 0, &porte_mux),
SND_SOC_DAPM_MUX("PortM Mux", SND_SOC_NOPM, 0, 0, &portm_mux),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortA Power",
CX2072X_PORTA_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortM Power",
CX2072X_PORTM_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortG Power",
CX2072X_PORTG_POWER_STATE, 0, 0xfff, 0x00, 0x03),
CX2072X_DAPM_SUPPLY_S("AFG Power", 0, CX2072X_AFG_POWER_STATE,
0, 0xfff, 0x00, 0x03, afg_power_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SWITCH("PortA Out En", SND_SOC_NOPM, 0, 0,
&portaouten_ctl),
SND_SOC_DAPM_SWITCH("PortE Out En", SND_SOC_NOPM, 0, 0,
&porteouten_ctl),
SND_SOC_DAPM_SWITCH("PortG Out En", SND_SOC_NOPM, 0, 0,
&portgouten_ctl),
SND_SOC_DAPM_SWITCH("PortM Out En", SND_SOC_NOPM, 0, 0,
&portmouten_ctl),
SND_SOC_DAPM_OUTPUT("PORTA"),
SND_SOC_DAPM_OUTPUT("PORTG"),
SND_SOC_DAPM_OUTPUT("PORTE"),
SND_SOC_DAPM_OUTPUT("PORTM"),
SND_SOC_DAPM_OUTPUT("AEC REF"),
/*Capture*/
SND_SOC_DAPM_AIF_OUT("Out AIF", "Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SWITCH("I2S ADC1L", SND_SOC_NOPM, 0, 0, &i2sadc1l_ctl),
SND_SOC_DAPM_SWITCH("I2S ADC1R", SND_SOC_NOPM, 0, 0, &i2sadc1r_ctl),
SND_SOC_DAPM_SWITCH("I2S ADC2L", SND_SOC_NOPM, 0, 0, &i2sadc2l_ctl),
SND_SOC_DAPM_SWITCH("I2S ADC2R", SND_SOC_NOPM, 0, 0, &i2sadc2r_ctl),
SND_SOC_DAPM_REG(snd_soc_dapm_adc, "ADC1", CX2072X_ADC1_POWER_STATE,
0, 0xff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_adc, "ADC2", CX2072X_ADC2_POWER_STATE,
0, 0xff, 0x00, 0x03),
SND_SOC_DAPM_MUX("ADC1 Mux", SND_SOC_NOPM, 0, 0, &adc1_mux),
SND_SOC_DAPM_MUX("ADC2 Mux", SND_SOC_NOPM, 0, 0, &adc2_mux),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortB Power",
CX2072X_PORTB_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortC Power",
CX2072X_PORTC_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortD Power",
CX2072X_PORTD_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortE Power",
CX2072X_PORTE_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_REG(snd_soc_dapm_supply, "Widget15 Power",
CX2072X_MIXER_POWER_STATE, 0, 0xfff, 0x00, 0x03),
SND_SOC_DAPM_MIXER("Widget15 Mixer", SND_SOC_NOPM, 0, 0,
wid15_mix, ARRAY_SIZE(wid15_mix)),
SND_SOC_DAPM_SWITCH("PortB In En", SND_SOC_NOPM, 0, 0, &portbinen_ctl),
SND_SOC_DAPM_SWITCH("PortC In En", SND_SOC_NOPM, 0, 0, &portcinen_ctl),
SND_SOC_DAPM_SWITCH("PortD In En", SND_SOC_NOPM, 0, 0, &portdinen_ctl),
SND_SOC_DAPM_SWITCH("PortE In En", SND_SOC_NOPM, 0, 0, &porteinen_ctl),
SND_SOC_DAPM_MICBIAS("Headset Bias", CX2072X_ANALOG_TEST11, 1, 0),
SND_SOC_DAPM_MICBIAS("PortB Mic Bias", CX2072X_PORTB_PIN_CTRL, 2, 0),
SND_SOC_DAPM_MICBIAS("PortD Mic Bias", CX2072X_PORTD_PIN_CTRL, 2, 0),
SND_SOC_DAPM_MICBIAS("PortE Mic Bias", CX2072X_PORTE_PIN_CTRL, 2, 0),
SND_SOC_DAPM_INPUT("PORTB"),
SND_SOC_DAPM_INPUT("PORTC"),
SND_SOC_DAPM_INPUT("PORTD"),
SND_SOC_DAPM_INPUT("PORTEIN"),
};
static const struct snd_soc_dapm_route cx2072x_intercon[] = {
/* Playback */
{"In AIF", NULL, "AFG Power"},
{"I2S DAC1L", "Switch", "In AIF"},
{"I2S DAC1R", "Switch", "In AIF"},
{"I2S DAC2L", "Switch", "In AIF"},
{"I2S DAC2R", "Switch", "In AIF"},
{"DAC1", NULL, "I2S DAC1L"},
{"DAC1", NULL, "I2S DAC1R"},
{"DAC2", NULL, "I2S DAC2L"},
{"DAC2", NULL, "I2S DAC2R"},
{"PortA Mux", "DAC1 Switch", "DAC1"},
{"PortA Mux", "DAC2 Switch", "DAC2"},
{"PortG Mux", "DAC1 Switch", "DAC1"},
{"PortG Mux", "DAC2 Switch", "DAC2"},
{"PortE Mux", "DAC1 Switch", "DAC1"},
{"PortE Mux", "DAC2 Switch", "DAC2"},
{"PortM Mux", "DAC1 Switch", "DAC1"},
{"PortM Mux", "DAC2 Switch", "DAC2"},
{"Widget15 Mixer", "DAC1L Switch", "DAC1"},
{"Widget15 Mixer", "DAC1R Switch", "DAC2"},
{"Widget15 Mixer", "DAC2L Switch", "DAC1"},
{"Widget15 Mixer", "DAC2R Switch", "DAC2"},
{"Widget15 Mixer", NULL, "Widget15 Power"},
{"PortA Out En", "Switch", "PortA Mux"},
{"PortG Out En", "Switch", "PortG Mux"},
{"PortE Out En", "Switch", "PortE Mux"},
{"PortM Out En", "Switch", "PortM Mux"},
{"PortA Mux", NULL, "PortA Power"},
{"PortG Mux", NULL, "PortG Power"},
{"PortE Mux", NULL, "PortE Power"},
{"PortM Mux", NULL, "PortM Power"},
{"PortA Out En", NULL, "PortA Power"},
{"PortG Out En", NULL, "PortG Power"},
{"PortE Out En", NULL, "PortE Power"},
{"PortM Out En", NULL, "PortM Power"},
{"PORTA", NULL, "PortA Out En"},
{"PORTG", NULL, "PortG Out En"},
{"PORTE", NULL, "PortE Out En"},
{"PORTM", NULL, "PortM Out En"},
/* Capture */
{"PORTD", NULL, "Headset Bias"},
{"PortB In En", "Switch", "PORTB"},
{"PortC In En", "Switch", "PORTC"},
{"PortD In En", "Switch", "PORTD"},
{"PortE In En", "Switch", "PORTEIN"},
{"ADC1 Mux", "PortB Switch", "PortB In En"},
{"ADC1 Mux", "PortC Switch", "PortC In En"},
{"ADC1 Mux", "PortD Switch", "PortD In En"},
{"ADC1 Mux", "PortE Switch", "PortE In En"},
{"ADC1 Mux", "Widget15 Switch", "Widget15 Mixer"},
{"ADC2 Mux", "PortC Switch", "PortC In En"},
{"ADC2 Mux", "Widget15 Switch", "Widget15 Mixer"},
{"ADC1", NULL, "ADC1 Mux"},
{"ADC2", NULL, "ADC2 Mux"},
{"I2S ADC1L", "Switch", "ADC1"},
{"I2S ADC1R", "Switch", "ADC1"},
{"I2S ADC2L", "Switch", "ADC2"},
{"I2S ADC2R", "Switch", "ADC2"},
{"Out AIF", NULL, "I2S ADC1L"},
{"Out AIF", NULL, "I2S ADC1R"},
{"Out AIF", NULL, "I2S ADC2L"},
{"Out AIF", NULL, "I2S ADC2R"},
{"Out AIF", NULL, "AFG Power"},
{"AEC REF", NULL, "Out AIF"},
{"PortB In En", NULL, "PortB Power"},
{"PortC In En", NULL, "PortC Power"},
{"PortD In En", NULL, "PortD Power"},
{"PortE In En", NULL, "PortE Power"},
};
static int cx2072x_set_bias_level(struct snd_soc_component *codec,
enum snd_soc_bias_level level)
{
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
const enum snd_soc_bias_level old_level =
snd_soc_component_get_bias_level(codec);
if (level == SND_SOC_BIAS_STANDBY && old_level == SND_SOC_BIAS_OFF)
regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 0);
else if (level == SND_SOC_BIAS_OFF && old_level != SND_SOC_BIAS_OFF)
regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 3);
return 0;
}
/*
* FIXME: the whole jack detection code below is pretty platform-specific;
* it has lots of implicit assumptions about the pins, etc.
* However, since we have no other code and reference, take this hard-coded
* setup for now. Once when we have different platform implementations,
* this needs to be rewritten in a more generic form, or moving into the
* platform data.
*/
static void cx2072x_enable_jack_detect(struct snd_soc_component *codec)
{
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(codec);
/* No-sticky input type */
regmap_write(cx2072x->regmap, CX2072X_GPIO_STICKY_MASK, 0x1f);
/* Use GPOI0 as interrupt pin */
regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0x12 << 24);
/* Enables unsolitited message on PortA */
regmap_write(cx2072x->regmap, CX2072X_PORTA_UNSOLICITED_RESPONSE, 0x80);
/* support both nokia and apple headset set. Monitor time = 275 ms */
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST15, 0x73);
/* Disable TIP detection */
regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST12, 0x300);
/* Switch MusicD3Live pin to GPIO */
regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST1, 0);
snd_soc_dapm_mutex_lock(dapm);
snd_soc_dapm_force_enable_pin_unlocked(dapm, "PORTD");
snd_soc_dapm_force_enable_pin_unlocked(dapm, "Headset Bias");
snd_soc_dapm_force_enable_pin_unlocked(dapm, "PortD Mic Bias");
snd_soc_dapm_mutex_unlock(dapm);
}
static void cx2072x_disable_jack_detect(struct snd_soc_component *codec)
{
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0);
regmap_write(cx2072x->regmap, CX2072X_PORTA_UNSOLICITED_RESPONSE, 0);
}
static int cx2072x_jack_status_check(void *data)
{
struct snd_soc_component *codec = data;
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
unsigned int jack;
unsigned int type = 0;
int state = 0;
mutex_lock(&cx2072x->lock);
regmap_read(cx2072x->regmap, CX2072X_PORTA_PIN_SENSE, &jack);
jack = jack >> 24;
regmap_read(cx2072x->regmap, CX2072X_DIGITAL_TEST11, &type);
if (jack == 0x80) {
type = type >> 8;
if (type & 0x8) {
/* Apple headset */
state |= SND_JACK_HEADSET;
if (type & 0x2)
state |= SND_JACK_BTN_0;
} else {
/*
* Nokia headset (type & 0x4) and
* regular Headphone
*/
state |= SND_JACK_HEADPHONE;
}
}
/* clear interrupt */
regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0x12 << 24);
mutex_unlock(&cx2072x->lock);
dev_dbg(codec->dev, "CX2072X_HSDETECT type=0x%X,Jack state = %x\n",
type, state);
return state;
}
static const struct snd_soc_jack_gpio cx2072x_jack_gpio = {
.name = "headset",
.report = SND_JACK_HEADSET | SND_JACK_BTN_0,
.debounce_time = 150,
.wake = true,
.jack_status_check = cx2072x_jack_status_check,
};
static int cx2072x_set_jack(struct snd_soc_component *codec,
struct snd_soc_jack *jack, void *data)
{
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
int err;
if (!jack) {
cx2072x_disable_jack_detect(codec);
return 0;
}
if (!cx2072x->jack_gpio.gpiod_dev) {
cx2072x->jack_gpio = cx2072x_jack_gpio;
cx2072x->jack_gpio.gpiod_dev = codec->dev;
cx2072x->jack_gpio.data = codec;
err = snd_soc_jack_add_gpios(jack, 1, &cx2072x->jack_gpio);
if (err) {
cx2072x->jack_gpio.gpiod_dev = NULL;
return err;
}
}
cx2072x_enable_jack_detect(codec);
return 0;
}
static int cx2072x_probe(struct snd_soc_component *codec)
{
struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec);
cx2072x->codec = codec;
/*
* FIXME: below is, again, a very platform-specific init sequence,
* but we keep the code here just for simplicity. It seems that all
* existing hardware implementations require this, so there is no very
* much reason to move this out of the codec driver to the platform
* data.
* But of course it's no "right" thing; if you are a good boy, don't
* read and follow the code like this!
*/
pm_runtime_get_sync(codec->dev);
regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 0);
regmap_multi_reg_write(cx2072x->regmap, cx2072x_reg_init,
ARRAY_SIZE(cx2072x_reg_init));
/* configure PortC as input device */
regmap_update_bits(cx2072x->regmap, CX2072X_PORTC_PIN_CTRL,
0x20, 0x20);
regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST2,
0x84, 0xff);
regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 3);
pm_runtime_put(codec->dev);
return 0;
}
static const struct snd_soc_component_driver soc_codec_driver_cx2072x = {
.probe = cx2072x_probe,
.set_bias_level = cx2072x_set_bias_level,
.set_jack = cx2072x_set_jack,
.controls = cx2072x_snd_controls,
.num_controls = ARRAY_SIZE(cx2072x_snd_controls),
.dapm_widgets = cx2072x_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cx2072x_dapm_widgets),
.dapm_routes = cx2072x_intercon,
.num_dapm_routes = ARRAY_SIZE(cx2072x_intercon),
.endianness = 1,
};
/*
* DAI ops
*/
static const struct snd_soc_dai_ops cx2072x_dai_ops = {
.set_sysclk = cx2072x_set_dai_sysclk,
.set_fmt = cx2072x_set_dai_fmt,
.hw_params = cx2072x_hw_params,
.set_bclk_ratio = cx2072x_set_dai_bclk_ratio,
};
static int cx2072x_dsp_dai_probe(struct snd_soc_dai *dai)
{
struct cx2072x_priv *cx2072x =
snd_soc_component_get_drvdata(dai->component);
cx2072x->en_aec_ref = true;
return 0;
}
#define CX2072X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE)
static struct snd_soc_dai_driver soc_codec_cx2072x_dai[] = {
{ /* playback and capture */
.name = "cx2072x-hifi",
.id = CX2072X_DAI_HIFI,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = CX2072X_RATES_DSP,
.formats = CX2072X_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = CX2072X_RATES_DSP,
.formats = CX2072X_FORMATS,
},
.ops = &cx2072x_dai_ops,
.symmetric_rate = 1,
},
{ /* plabayck only, return echo reference to Conexant DSP chip */
.name = "cx2072x-dsp",
.id = CX2072X_DAI_DSP,
.probe = cx2072x_dsp_dai_probe,
.playback = {
.stream_name = "DSP Playback",
.channels_min = 2,
.channels_max = 2,
.rates = CX2072X_RATES_DSP,
.formats = CX2072X_FORMATS,
},
.ops = &cx2072x_dai_ops,
},
{ /* plabayck only, return echo reference through I2S TX */
.name = "cx2072x-aec",
.id = 3,
.capture = {
.stream_name = "AEC Capture",
.channels_min = 2,
.channels_max = 2,
.rates = CX2072X_RATES_DSP,
.formats = CX2072X_FORMATS,
},
},
};
static const struct regmap_config cx2072x_regmap = {
.reg_bits = 16,
.val_bits = 32,
.max_register = CX2072X_REG_MAX,
.reg_defaults = cx2072x_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cx2072x_reg_defaults),
.cache_type = REGCACHE_RBTREE,
.readable_reg = cx2072x_readable_register,
.volatile_reg = cx2072x_volatile_register,
/* Needs custom read/write functions for various register lengths */
.reg_read = cx2072x_reg_read,
.reg_write = cx2072x_reg_write,
};
static int __maybe_unused cx2072x_runtime_suspend(struct device *dev)
{
struct cx2072x_priv *cx2072x = dev_get_drvdata(dev);
clk_disable_unprepare(cx2072x->mclk);
return 0;
}
static int __maybe_unused cx2072x_runtime_resume(struct device *dev)
{
struct cx2072x_priv *cx2072x = dev_get_drvdata(dev);
return clk_prepare_enable(cx2072x->mclk);
}
static int cx2072x_i2c_probe(struct i2c_client *i2c)
{
struct cx2072x_priv *cx2072x;
unsigned int ven_id, rev_id;
int ret;
cx2072x = devm_kzalloc(&i2c->dev, sizeof(struct cx2072x_priv),
GFP_KERNEL);
if (!cx2072x)
return -ENOMEM;
cx2072x->regmap = devm_regmap_init(&i2c->dev, NULL, i2c,
&cx2072x_regmap);
if (IS_ERR(cx2072x->regmap))
return PTR_ERR(cx2072x->regmap);
mutex_init(&cx2072x->lock);
i2c_set_clientdata(i2c, cx2072x);
cx2072x->dev = &i2c->dev;
cx2072x->pll_changed = true;
cx2072x->i2spcm_changed = true;
cx2072x->bclk_ratio = 0;
cx2072x->mclk = devm_clk_get(cx2072x->dev, "mclk");
if (IS_ERR(cx2072x->mclk)) {
dev_err(cx2072x->dev, "Failed to get MCLK\n");
return PTR_ERR(cx2072x->mclk);
}
regmap_read(cx2072x->regmap, CX2072X_VENDOR_ID, &ven_id);
regmap_read(cx2072x->regmap, CX2072X_REVISION_ID, &rev_id);
dev_info(cx2072x->dev, "codec version: %08x,%08x\n", ven_id, rev_id);
ret = devm_snd_soc_register_component(cx2072x->dev,
&soc_codec_driver_cx2072x,
soc_codec_cx2072x_dai,
ARRAY_SIZE(soc_codec_cx2072x_dai));
if (ret < 0)
return ret;
pm_runtime_use_autosuspend(cx2072x->dev);
pm_runtime_enable(cx2072x->dev);
return 0;
}
static void cx2072x_i2c_remove(struct i2c_client *i2c)
{
pm_runtime_disable(&i2c->dev);
}
static const struct i2c_device_id cx2072x_i2c_id[] = {
{ "cx20721", 0 },
{ "cx20723", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, cx2072x_i2c_id);
#ifdef CONFIG_ACPI
static struct acpi_device_id cx2072x_acpi_match[] = {
{ "14F10720", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, cx2072x_acpi_match);
#endif
static const struct dev_pm_ops cx2072x_runtime_pm = {
SET_RUNTIME_PM_OPS(cx2072x_runtime_suspend, cx2072x_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct i2c_driver cx2072x_i2c_driver = {
.driver = {
.name = "cx2072x",
.acpi_match_table = ACPI_PTR(cx2072x_acpi_match),
.pm = &cx2072x_runtime_pm,
},
.probe_new = cx2072x_i2c_probe,
.remove = cx2072x_i2c_remove,
.id_table = cx2072x_i2c_id,
};
module_i2c_driver(cx2072x_i2c_driver);
MODULE_DESCRIPTION("ASoC cx2072x Codec Driver");
MODULE_AUTHOR("Simon Ho <simon.ho@conexant.com>");
MODULE_LICENSE("GPL");