1998 lines
57 KiB
Ada
1998 lines
57 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
|
|
-- --
|
|
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNARL is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
|
-- --
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
|
-- --
|
|
-- You should have received a copy of the GNU General Public License and --
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
|
-- <http://www.gnu.org/licenses/>. --
|
|
-- --
|
|
-- GNARL was developed by the GNARL team at Florida State University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
-- This is a Solaris (native) version of this package
|
|
|
|
-- This package contains all the GNULL primitives that interface directly with
|
|
-- the underlying OS.
|
|
|
|
with Interfaces.C;
|
|
|
|
with System.Multiprocessors;
|
|
with System.Tasking.Debug;
|
|
with System.Interrupt_Management;
|
|
with System.OS_Constants;
|
|
with System.OS_Primitives;
|
|
with System.Task_Info;
|
|
|
|
pragma Warnings (Off);
|
|
with System.OS_Lib;
|
|
pragma Warnings (On);
|
|
|
|
with System.Soft_Links;
|
|
-- We use System.Soft_Links instead of System.Tasking.Initialization
|
|
-- because the later is a higher level package that we shouldn't depend on.
|
|
-- For example when using the restricted run time, it is replaced by
|
|
-- System.Tasking.Restricted.Stages.
|
|
|
|
package body System.Task_Primitives.Operations is
|
|
|
|
package OSC renames System.OS_Constants;
|
|
package SSL renames System.Soft_Links;
|
|
|
|
use System.Tasking.Debug;
|
|
use System.Tasking;
|
|
use Interfaces.C;
|
|
use System.OS_Interface;
|
|
use System.Parameters;
|
|
use System.OS_Primitives;
|
|
|
|
----------------
|
|
-- Local Data --
|
|
----------------
|
|
|
|
-- The following are logically constants, but need to be initialized
|
|
-- at run time.
|
|
|
|
Environment_Task_Id : Task_Id;
|
|
-- A variable to hold Task_Id for the environment task.
|
|
-- If we use this variable to get the Task_Id, we need the following
|
|
-- ATCB_Key only for non-Ada threads.
|
|
|
|
Unblocked_Signal_Mask : aliased sigset_t;
|
|
-- The set of signals that should unblocked in all tasks
|
|
|
|
ATCB_Key : aliased thread_key_t;
|
|
-- Key used to find the Ada Task_Id associated with a thread,
|
|
-- at least for C threads unknown to the Ada run-time system.
|
|
|
|
Single_RTS_Lock : aliased RTS_Lock;
|
|
-- This is a lock to allow only one thread of control in the RTS at
|
|
-- a time; it is used to execute in mutual exclusion from all other tasks.
|
|
-- Used to protect All_Tasks_List
|
|
|
|
Next_Serial_Number : Task_Serial_Number := 100;
|
|
-- We start at 100, to reserve some special values for
|
|
-- using in error checking.
|
|
-- The following are internal configuration constants needed.
|
|
|
|
Abort_Handler_Installed : Boolean := False;
|
|
-- True if a handler for the abort signal is installed
|
|
|
|
Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
|
|
-- Constant to indicate that the thread identifier has not yet been
|
|
-- initialized.
|
|
|
|
----------------------
|
|
-- Priority Support --
|
|
----------------------
|
|
|
|
Priority_Ceiling_Emulation : constant Boolean := True;
|
|
-- controls whether we emulate priority ceiling locking
|
|
|
|
-- To get a scheduling close to annex D requirements, we use the real-time
|
|
-- class provided for LWPs and map each task/thread to a specific and
|
|
-- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
|
|
|
|
-- The real time class can only be set when the process has root
|
|
-- privileges, so in the other cases, we use the normal thread scheduling
|
|
-- and priority handling.
|
|
|
|
Using_Real_Time_Class : Boolean := False;
|
|
-- indicates whether the real time class is being used (i.e. the process
|
|
-- has root privileges).
|
|
|
|
Prio_Param : aliased struct_pcparms;
|
|
-- Hold priority info (Real_Time) initialized during the package
|
|
-- elaboration.
|
|
|
|
-----------------------------------
|
|
-- External Configuration Values --
|
|
-----------------------------------
|
|
|
|
Time_Slice_Val : Integer;
|
|
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
|
|
|
|
Locking_Policy : Character;
|
|
pragma Import (C, Locking_Policy, "__gl_locking_policy");
|
|
|
|
Dispatching_Policy : Character;
|
|
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
|
|
|
|
Foreign_Task_Elaborated : aliased Boolean := True;
|
|
-- Used to identified fake tasks (i.e., non-Ada Threads)
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function sysconf (name : System.OS_Interface.int) return processorid_t;
|
|
pragma Import (C, sysconf, "sysconf");
|
|
|
|
SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
|
|
|
|
function Num_Procs
|
|
(name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
|
|
return processorid_t renames sysconf;
|
|
|
|
procedure Abort_Handler
|
|
(Sig : Signal;
|
|
Code : not null access siginfo_t;
|
|
Context : not null access ucontext_t);
|
|
-- Target-dependent binding of inter-thread Abort signal to
|
|
-- the raising of the Abort_Signal exception.
|
|
-- See also comments in 7staprop.adb
|
|
|
|
------------
|
|
-- Checks --
|
|
------------
|
|
|
|
function Check_Initialize_Lock
|
|
(L : Lock_Ptr;
|
|
Level : Lock_Level) return Boolean;
|
|
pragma Inline (Check_Initialize_Lock);
|
|
|
|
function Check_Lock (L : Lock_Ptr) return Boolean;
|
|
pragma Inline (Check_Lock);
|
|
|
|
function Record_Lock (L : Lock_Ptr) return Boolean;
|
|
pragma Inline (Record_Lock);
|
|
|
|
function Check_Sleep (Reason : Task_States) return Boolean;
|
|
pragma Inline (Check_Sleep);
|
|
|
|
function Record_Wakeup
|
|
(L : Lock_Ptr;
|
|
Reason : Task_States) return Boolean;
|
|
pragma Inline (Record_Wakeup);
|
|
|
|
function Check_Wakeup
|
|
(T : Task_Id;
|
|
Reason : Task_States) return Boolean;
|
|
pragma Inline (Check_Wakeup);
|
|
|
|
function Check_Unlock (L : Lock_Ptr) return Boolean;
|
|
pragma Inline (Check_Unlock);
|
|
|
|
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
|
|
pragma Inline (Check_Finalize_Lock);
|
|
|
|
--------------------
|
|
-- Local Packages --
|
|
--------------------
|
|
|
|
package Specific is
|
|
|
|
procedure Initialize (Environment_Task : Task_Id);
|
|
pragma Inline (Initialize);
|
|
-- Initialize various data needed by this package
|
|
|
|
function Is_Valid_Task return Boolean;
|
|
pragma Inline (Is_Valid_Task);
|
|
-- Does executing thread have a TCB?
|
|
|
|
procedure Set (Self_Id : Task_Id);
|
|
pragma Inline (Set);
|
|
-- Set the self id for the current task
|
|
|
|
function Self return Task_Id;
|
|
pragma Inline (Self);
|
|
-- Return a pointer to the Ada Task Control Block of the calling task
|
|
|
|
end Specific;
|
|
|
|
package body Specific is separate;
|
|
-- The body of this package is target specific
|
|
|
|
----------------------------------
|
|
-- ATCB allocation/deallocation --
|
|
----------------------------------
|
|
|
|
package body ATCB_Allocation is separate;
|
|
-- The body of this package is shared across several targets
|
|
|
|
---------------------------------
|
|
-- Support for foreign threads --
|
|
---------------------------------
|
|
|
|
function Register_Foreign_Thread
|
|
(Thread : Thread_Id;
|
|
Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
|
|
-- Allocate and initialize a new ATCB for the current Thread. The size of
|
|
-- the secondary stack can be optionally specified.
|
|
|
|
function Register_Foreign_Thread
|
|
(Thread : Thread_Id;
|
|
Sec_Stack_Size : Size_Type := Unspecified_Size)
|
|
return Task_Id is separate;
|
|
|
|
------------
|
|
-- Checks --
|
|
------------
|
|
|
|
Check_Count : Integer := 0;
|
|
Lock_Count : Integer := 0;
|
|
Unlock_Count : Integer := 0;
|
|
|
|
-------------------
|
|
-- Abort_Handler --
|
|
-------------------
|
|
|
|
procedure Abort_Handler
|
|
(Sig : Signal;
|
|
Code : not null access siginfo_t;
|
|
Context : not null access ucontext_t)
|
|
is
|
|
pragma Unreferenced (Sig);
|
|
pragma Unreferenced (Code);
|
|
pragma Unreferenced (Context);
|
|
|
|
Self_ID : constant Task_Id := Self;
|
|
Old_Set : aliased sigset_t;
|
|
|
|
Result : Interfaces.C.int;
|
|
pragma Warnings (Off, Result);
|
|
|
|
begin
|
|
-- It's not safe to raise an exception when using GCC ZCX mechanism.
|
|
-- Note that we still need to install a signal handler, since in some
|
|
-- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
|
|
-- need to send the Abort signal to a task.
|
|
|
|
if ZCX_By_Default then
|
|
return;
|
|
end if;
|
|
|
|
if Self_ID.Deferral_Level = 0
|
|
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
|
|
and then not Self_ID.Aborting
|
|
then
|
|
Self_ID.Aborting := True;
|
|
|
|
-- Make sure signals used for RTS internal purpose are unmasked
|
|
|
|
Result :=
|
|
thr_sigsetmask
|
|
(SIG_UNBLOCK,
|
|
Unblocked_Signal_Mask'Unchecked_Access,
|
|
Old_Set'Unchecked_Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
raise Standard'Abort_Signal;
|
|
end if;
|
|
end Abort_Handler;
|
|
|
|
-----------------
|
|
-- Stack_Guard --
|
|
-----------------
|
|
|
|
-- The underlying thread system sets a guard page at the
|
|
-- bottom of a thread stack, so nothing is needed.
|
|
|
|
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
|
|
pragma Unreferenced (T);
|
|
pragma Unreferenced (On);
|
|
begin
|
|
null;
|
|
end Stack_Guard;
|
|
|
|
-------------------
|
|
-- Get_Thread_Id --
|
|
-------------------
|
|
|
|
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
|
|
begin
|
|
return T.Common.LL.Thread;
|
|
end Get_Thread_Id;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize (Environment_Task : ST.Task_Id) is
|
|
act : aliased struct_sigaction;
|
|
old_act : aliased struct_sigaction;
|
|
Tmp_Set : aliased sigset_t;
|
|
Result : Interfaces.C.int;
|
|
|
|
procedure Configure_Processors;
|
|
-- Processors configuration
|
|
-- The user can specify a processor which the program should run
|
|
-- on to emulate a single-processor system. This can be easily
|
|
-- done by setting environment variable GNAT_PROCESSOR to one of
|
|
-- the following :
|
|
--
|
|
-- -2 : use the default configuration (run the program on all
|
|
-- available processors) - this is the same as having
|
|
-- GNAT_PROCESSOR unset
|
|
-- -1 : let the RTS choose one processor and run the program on
|
|
-- that processor
|
|
-- 0 .. Last_Proc : run the program on the specified processor
|
|
--
|
|
-- Last_Proc is equal to the value of the system variable
|
|
-- _SC_NPROCESSORS_CONF, minus one.
|
|
|
|
procedure Configure_Processors is
|
|
Proc_Acc : constant System.OS_Lib.String_Access :=
|
|
System.OS_Lib.Getenv ("GNAT_PROCESSOR");
|
|
Proc : aliased processorid_t; -- User processor #
|
|
Last_Proc : processorid_t; -- Last processor #
|
|
|
|
begin
|
|
if Proc_Acc.all'Length /= 0 then
|
|
|
|
-- Environment variable is defined
|
|
|
|
Last_Proc := Num_Procs - 1;
|
|
|
|
if Last_Proc /= -1 then
|
|
Proc := processorid_t'Value (Proc_Acc.all);
|
|
|
|
if Proc <= -2 or else Proc > Last_Proc then
|
|
|
|
-- Use the default configuration
|
|
|
|
null;
|
|
|
|
elsif Proc = -1 then
|
|
|
|
-- Choose a processor
|
|
|
|
Result := 0;
|
|
while Proc < Last_Proc loop
|
|
Proc := Proc + 1;
|
|
Result := p_online (Proc, PR_STATUS);
|
|
exit when Result = PR_ONLINE;
|
|
end loop;
|
|
|
|
pragma Assert (Result = PR_ONLINE);
|
|
Result := processor_bind (P_PID, P_MYID, Proc, null);
|
|
pragma Assert (Result = 0);
|
|
|
|
else
|
|
-- Use user processor
|
|
|
|
Result := processor_bind (P_PID, P_MYID, Proc, null);
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
exception
|
|
when Constraint_Error =>
|
|
|
|
-- Illegal environment variable GNAT_PROCESSOR - ignored
|
|
|
|
null;
|
|
end Configure_Processors;
|
|
|
|
function State
|
|
(Int : System.Interrupt_Management.Interrupt_ID) return Character;
|
|
pragma Import (C, State, "__gnat_get_interrupt_state");
|
|
-- Get interrupt state. Defined in a-init.c
|
|
-- The input argument is the interrupt number,
|
|
-- and the result is one of the following:
|
|
|
|
Default : constant Character := 's';
|
|
-- 'n' this interrupt not set by any Interrupt_State pragma
|
|
-- 'u' Interrupt_State pragma set state to User
|
|
-- 'r' Interrupt_State pragma set state to Runtime
|
|
-- 's' Interrupt_State pragma set state to System (use "default"
|
|
-- system handler)
|
|
|
|
-- Start of processing for Initialize
|
|
|
|
begin
|
|
Environment_Task_Id := Environment_Task;
|
|
|
|
Interrupt_Management.Initialize;
|
|
|
|
-- Prepare the set of signals that should unblocked in all tasks
|
|
|
|
Result := sigemptyset (Unblocked_Signal_Mask'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
for J in Interrupt_Management.Interrupt_ID loop
|
|
if System.Interrupt_Management.Keep_Unmasked (J) then
|
|
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end loop;
|
|
|
|
if Dispatching_Policy = 'F' then
|
|
declare
|
|
Result : Interfaces.C.long;
|
|
Class_Info : aliased struct_pcinfo;
|
|
Secs, Nsecs : Interfaces.C.long;
|
|
|
|
begin
|
|
-- If a pragma Time_Slice is specified, takes the value in account
|
|
|
|
if Time_Slice_Val > 0 then
|
|
|
|
-- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
|
|
|
|
Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
|
|
Nsecs :=
|
|
Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
|
|
|
|
-- Otherwise, default to no time slicing (i.e run until blocked)
|
|
|
|
else
|
|
Secs := RT_TQINF;
|
|
Nsecs := RT_TQINF;
|
|
end if;
|
|
|
|
-- Get the real time class id
|
|
|
|
Class_Info.pc_clname (1) := 'R';
|
|
Class_Info.pc_clname (2) := 'T';
|
|
Class_Info.pc_clname (3) := ASCII.NUL;
|
|
|
|
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
|
|
Class_Info'Address);
|
|
|
|
-- Request the real time class
|
|
|
|
Prio_Param.pc_cid := Class_Info.pc_cid;
|
|
Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
|
|
Prio_Param.rt_tqsecs := Secs;
|
|
Prio_Param.rt_tqnsecs := Nsecs;
|
|
|
|
Result :=
|
|
priocntl
|
|
(PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
|
|
|
|
Using_Real_Time_Class := Result /= -1;
|
|
end;
|
|
end if;
|
|
|
|
Specific.Initialize (Environment_Task);
|
|
|
|
-- The following is done in Enter_Task, but this is too late for the
|
|
-- Environment Task, since we need to call Self in Check_Locks when
|
|
-- the run time is compiled with assertions on.
|
|
|
|
Specific.Set (Environment_Task);
|
|
|
|
-- Initialize the lock used to synchronize chain of all ATCBs
|
|
|
|
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
|
|
|
|
-- Make environment task known here because it doesn't go through
|
|
-- Activate_Tasks, which does it for all other tasks.
|
|
|
|
Known_Tasks (Known_Tasks'First) := Environment_Task;
|
|
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
|
|
|
|
Enter_Task (Environment_Task);
|
|
|
|
Configure_Processors;
|
|
|
|
if State
|
|
(System.Interrupt_Management.Abort_Task_Interrupt) /= Default
|
|
then
|
|
-- Set sa_flags to SA_NODEFER so that during the handler execution
|
|
-- we do not change the Signal_Mask to be masked for the Abort_Signal
|
|
-- This is a temporary fix to the problem that the Signal_Mask is
|
|
-- not restored after the exception (longjmp) from the handler.
|
|
-- The right fix should be made in sigsetjmp so that we save
|
|
-- the Signal_Set and restore it after a longjmp.
|
|
-- In that case, this field should be changed back to 0. ???
|
|
|
|
act.sa_flags := 16;
|
|
|
|
act.sa_handler := Abort_Handler'Address;
|
|
Result := sigemptyset (Tmp_Set'Access);
|
|
pragma Assert (Result = 0);
|
|
act.sa_mask := Tmp_Set;
|
|
|
|
Result :=
|
|
sigaction
|
|
(Signal (System.Interrupt_Management.Abort_Task_Interrupt),
|
|
act'Unchecked_Access,
|
|
old_act'Unchecked_Access);
|
|
pragma Assert (Result = 0);
|
|
Abort_Handler_Installed := True;
|
|
end if;
|
|
end Initialize;
|
|
|
|
---------------------
|
|
-- Initialize_Lock --
|
|
---------------------
|
|
|
|
-- Note: mutexes and cond_variables needed per-task basis are initialized
|
|
-- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
|
|
-- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
|
|
-- status change of RTS. Therefore raising Storage_Error in the following
|
|
-- routines should be able to be handled safely.
|
|
|
|
procedure Initialize_Lock
|
|
(Prio : System.Any_Priority;
|
|
L : not null access Lock)
|
|
is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
|
|
|
|
if Priority_Ceiling_Emulation then
|
|
L.Ceiling := Prio;
|
|
end if;
|
|
|
|
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
end Initialize_Lock;
|
|
|
|
procedure Initialize_Lock
|
|
(L : not null access RTS_Lock;
|
|
Level : Lock_Level)
|
|
is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert
|
|
(Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
|
|
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
end Initialize_Lock;
|
|
|
|
-------------------
|
|
-- Finalize_Lock --
|
|
-------------------
|
|
|
|
procedure Finalize_Lock (L : not null access Lock) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
|
|
Result := mutex_destroy (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Finalize_Lock;
|
|
|
|
procedure Finalize_Lock (L : not null access RTS_Lock) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
|
|
Result := mutex_destroy (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Finalize_Lock;
|
|
|
|
----------------
|
|
-- Write_Lock --
|
|
----------------
|
|
|
|
procedure Write_Lock
|
|
(L : not null access Lock;
|
|
Ceiling_Violation : out Boolean)
|
|
is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert (Check_Lock (Lock_Ptr (L)));
|
|
|
|
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
|
|
declare
|
|
Self_Id : constant Task_Id := Self;
|
|
Saved_Priority : System.Any_Priority;
|
|
|
|
begin
|
|
if Self_Id.Common.LL.Active_Priority > L.Ceiling then
|
|
Ceiling_Violation := True;
|
|
return;
|
|
end if;
|
|
|
|
Saved_Priority := Self_Id.Common.LL.Active_Priority;
|
|
|
|
if Self_Id.Common.LL.Active_Priority < L.Ceiling then
|
|
Set_Priority (Self_Id, L.Ceiling);
|
|
end if;
|
|
|
|
Result := mutex_lock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
Ceiling_Violation := False;
|
|
|
|
L.Saved_Priority := Saved_Priority;
|
|
end;
|
|
|
|
else
|
|
Result := mutex_lock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
Ceiling_Violation := False;
|
|
end if;
|
|
|
|
pragma Assert (Record_Lock (Lock_Ptr (L)));
|
|
end Write_Lock;
|
|
|
|
procedure Write_Lock (L : not null access RTS_Lock) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
|
|
Result := mutex_lock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
|
|
end Write_Lock;
|
|
|
|
procedure Write_Lock (T : Task_Id) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
|
|
Result := mutex_lock (T.Common.LL.L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
|
|
end Write_Lock;
|
|
|
|
---------------
|
|
-- Read_Lock --
|
|
---------------
|
|
|
|
procedure Read_Lock
|
|
(L : not null access Lock;
|
|
Ceiling_Violation : out Boolean) is
|
|
begin
|
|
Write_Lock (L, Ceiling_Violation);
|
|
end Read_Lock;
|
|
|
|
------------
|
|
-- Unlock --
|
|
------------
|
|
|
|
procedure Unlock (L : not null access Lock) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert (Check_Unlock (Lock_Ptr (L)));
|
|
|
|
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
|
|
declare
|
|
Self_Id : constant Task_Id := Self;
|
|
|
|
begin
|
|
Result := mutex_unlock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
|
|
Set_Priority (Self_Id, L.Saved_Priority);
|
|
end if;
|
|
end;
|
|
else
|
|
Result := mutex_unlock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end Unlock;
|
|
|
|
procedure Unlock (L : not null access RTS_Lock) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
|
|
Result := mutex_unlock (L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Unlock;
|
|
|
|
procedure Unlock (T : Task_Id) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
|
|
Result := mutex_unlock (T.Common.LL.L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Unlock;
|
|
|
|
-----------------
|
|
-- Set_Ceiling --
|
|
-----------------
|
|
|
|
-- Dynamic priority ceilings are not supported by the underlying system
|
|
|
|
procedure Set_Ceiling
|
|
(L : not null access Lock;
|
|
Prio : System.Any_Priority)
|
|
is
|
|
pragma Unreferenced (L, Prio);
|
|
begin
|
|
null;
|
|
end Set_Ceiling;
|
|
|
|
-- For the time delay implementation, we need to make sure we
|
|
-- achieve following criteria:
|
|
|
|
-- 1) We have to delay at least for the amount requested.
|
|
-- 2) We have to give up CPU even though the actual delay does not
|
|
-- result in blocking.
|
|
-- 3) Except for restricted run-time systems that do not support
|
|
-- ATC or task abort, the delay must be interrupted by the
|
|
-- abort_task operation.
|
|
-- 4) The implementation has to be efficient so that the delay overhead
|
|
-- is relatively cheap.
|
|
-- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
|
|
-- requirement we still want to provide the effect in all cases.
|
|
-- The reason is that users may want to use short delays to implement
|
|
-- their own scheduling effect in the absence of language provided
|
|
-- scheduling policies.
|
|
|
|
---------------------
|
|
-- Monotonic_Clock --
|
|
---------------------
|
|
|
|
function Monotonic_Clock return Duration is
|
|
TS : aliased timespec;
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
|
|
pragma Assert (Result = 0);
|
|
return To_Duration (TS);
|
|
end Monotonic_Clock;
|
|
|
|
-------------------
|
|
-- RT_Resolution --
|
|
-------------------
|
|
|
|
function RT_Resolution return Duration is
|
|
TS : aliased timespec;
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
return To_Duration (TS);
|
|
end RT_Resolution;
|
|
|
|
-----------
|
|
-- Yield --
|
|
-----------
|
|
|
|
procedure Yield (Do_Yield : Boolean := True) is
|
|
begin
|
|
if Do_Yield then
|
|
System.OS_Interface.thr_yield;
|
|
end if;
|
|
end Yield;
|
|
|
|
-----------
|
|
-- Self ---
|
|
-----------
|
|
|
|
function Self return Task_Id renames Specific.Self;
|
|
|
|
------------------
|
|
-- Set_Priority --
|
|
------------------
|
|
|
|
procedure Set_Priority
|
|
(T : Task_Id;
|
|
Prio : System.Any_Priority;
|
|
Loss_Of_Inheritance : Boolean := False)
|
|
is
|
|
pragma Unreferenced (Loss_Of_Inheritance);
|
|
|
|
Result : Interfaces.C.int;
|
|
pragma Unreferenced (Result);
|
|
|
|
Param : aliased struct_pcparms;
|
|
|
|
use Task_Info;
|
|
|
|
begin
|
|
T.Common.Current_Priority := Prio;
|
|
|
|
if Priority_Ceiling_Emulation then
|
|
T.Common.LL.Active_Priority := Prio;
|
|
end if;
|
|
|
|
if Using_Real_Time_Class then
|
|
Param.pc_cid := Prio_Param.pc_cid;
|
|
Param.rt_pri := pri_t (Prio);
|
|
Param.rt_tqsecs := Prio_Param.rt_tqsecs;
|
|
Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
|
|
|
|
Result := Interfaces.C.int (
|
|
priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
|
|
Param'Address));
|
|
|
|
else
|
|
if T.Common.Task_Info /= null
|
|
and then not T.Common.Task_Info.Bound_To_LWP
|
|
then
|
|
-- The task is not bound to a LWP, so use thr_setprio
|
|
|
|
Result :=
|
|
thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
|
|
|
|
else
|
|
-- The task is bound to a LWP, use priocntl
|
|
-- ??? TBD
|
|
|
|
null;
|
|
end if;
|
|
end if;
|
|
end Set_Priority;
|
|
|
|
------------------
|
|
-- Get_Priority --
|
|
------------------
|
|
|
|
function Get_Priority (T : Task_Id) return System.Any_Priority is
|
|
begin
|
|
return T.Common.Current_Priority;
|
|
end Get_Priority;
|
|
|
|
----------------
|
|
-- Enter_Task --
|
|
----------------
|
|
|
|
procedure Enter_Task (Self_ID : Task_Id) is
|
|
begin
|
|
Self_ID.Common.LL.Thread := thr_self;
|
|
Self_ID.Common.LL.LWP := lwp_self;
|
|
|
|
Set_Task_Affinity (Self_ID);
|
|
Specific.Set (Self_ID);
|
|
|
|
-- We need the above code even if we do direct fetch of Task_Id in Self
|
|
-- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
|
|
end Enter_Task;
|
|
|
|
-------------------
|
|
-- Is_Valid_Task --
|
|
-------------------
|
|
|
|
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
|
|
|
|
-----------------------------
|
|
-- Register_Foreign_Thread --
|
|
-----------------------------
|
|
|
|
function Register_Foreign_Thread return Task_Id is
|
|
begin
|
|
if Is_Valid_Task then
|
|
return Self;
|
|
else
|
|
return Register_Foreign_Thread (thr_self);
|
|
end if;
|
|
end Register_Foreign_Thread;
|
|
|
|
--------------------
|
|
-- Initialize_TCB --
|
|
--------------------
|
|
|
|
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
|
|
Result : Interfaces.C.int := 0;
|
|
|
|
begin
|
|
-- Give the task a unique serial number
|
|
|
|
Self_ID.Serial_Number := Next_Serial_Number;
|
|
Next_Serial_Number := Next_Serial_Number + 1;
|
|
pragma Assert (Next_Serial_Number /= 0);
|
|
|
|
Self_ID.Common.LL.Thread := Null_Thread_Id;
|
|
|
|
Result :=
|
|
mutex_init
|
|
(Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
|
|
Self_ID.Common.LL.L.Level :=
|
|
Private_Task_Serial_Number (Self_ID.Serial_Number);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
|
|
if Result = 0 then
|
|
Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
end if;
|
|
|
|
if Result = 0 then
|
|
Succeeded := True;
|
|
else
|
|
Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Succeeded := False;
|
|
end if;
|
|
end Initialize_TCB;
|
|
|
|
-----------------
|
|
-- Create_Task --
|
|
-----------------
|
|
|
|
procedure Create_Task
|
|
(T : Task_Id;
|
|
Wrapper : System.Address;
|
|
Stack_Size : System.Parameters.Size_Type;
|
|
Priority : System.Any_Priority;
|
|
Succeeded : out Boolean)
|
|
is
|
|
pragma Unreferenced (Priority);
|
|
|
|
Result : Interfaces.C.int;
|
|
Adjusted_Stack_Size : Interfaces.C.size_t;
|
|
Opts : Interfaces.C.int := THR_DETACHED;
|
|
|
|
Page_Size : constant System.Parameters.Size_Type := 4096;
|
|
-- This constant is for reserving extra space at the
|
|
-- end of the stack, which can be used by the stack
|
|
-- checking as guard page. The idea is that we need
|
|
-- to have at least Stack_Size bytes available for
|
|
-- actual use.
|
|
|
|
use System.Task_Info;
|
|
use type System.Multiprocessors.CPU_Range;
|
|
|
|
begin
|
|
-- Check whether both Dispatching_Domain and CPU are specified for the
|
|
-- task, and the CPU value is not contained within the range of
|
|
-- processors for the domain.
|
|
|
|
if T.Common.Domain /= null
|
|
and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
|
|
and then
|
|
(T.Common.Base_CPU not in T.Common.Domain'Range
|
|
or else not T.Common.Domain (T.Common.Base_CPU))
|
|
then
|
|
Succeeded := False;
|
|
return;
|
|
end if;
|
|
|
|
Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
|
|
|
|
-- Since the initial signal mask of a thread is inherited from the
|
|
-- creator, and the Environment task has all its signals masked, we
|
|
-- do not need to manipulate caller's signal mask at this point.
|
|
-- All tasks in RTS will have All_Tasks_Mask initially.
|
|
|
|
if T.Common.Task_Info /= null then
|
|
if T.Common.Task_Info.New_LWP then
|
|
Opts := Opts + THR_NEW_LWP;
|
|
end if;
|
|
|
|
if T.Common.Task_Info.Bound_To_LWP then
|
|
Opts := Opts + THR_BOUND;
|
|
end if;
|
|
|
|
else
|
|
Opts := THR_DETACHED + THR_BOUND;
|
|
end if;
|
|
|
|
-- Note: the use of Unrestricted_Access in the following call is needed
|
|
-- because otherwise we have an error of getting a access-to-volatile
|
|
-- value which points to a non-volatile object. But in this case it is
|
|
-- safe to do this, since we know we have no problems with aliasing and
|
|
-- Unrestricted_Access bypasses this check.
|
|
|
|
Result :=
|
|
thr_create
|
|
(System.Null_Address,
|
|
Adjusted_Stack_Size,
|
|
Thread_Body_Access (Wrapper),
|
|
To_Address (T),
|
|
Opts,
|
|
T.Common.LL.Thread'Unrestricted_Access);
|
|
|
|
Succeeded := Result = 0;
|
|
pragma Assert
|
|
(Result = 0
|
|
or else Result = ENOMEM
|
|
or else Result = EAGAIN);
|
|
end Create_Task;
|
|
|
|
------------------
|
|
-- Finalize_TCB --
|
|
------------------
|
|
|
|
procedure Finalize_TCB (T : Task_Id) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
T.Common.LL.Thread := Null_Thread_Id;
|
|
|
|
Result := mutex_destroy (T.Common.LL.L.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result := cond_destroy (T.Common.LL.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if T.Known_Tasks_Index /= -1 then
|
|
Known_Tasks (T.Known_Tasks_Index) := null;
|
|
end if;
|
|
|
|
ATCB_Allocation.Free_ATCB (T);
|
|
end Finalize_TCB;
|
|
|
|
---------------
|
|
-- Exit_Task --
|
|
---------------
|
|
|
|
-- This procedure must be called with abort deferred. It can no longer
|
|
-- call Self or access the current task's ATCB, since the ATCB has been
|
|
-- deallocated.
|
|
|
|
procedure Exit_Task is
|
|
begin
|
|
Specific.Set (null);
|
|
end Exit_Task;
|
|
|
|
----------------
|
|
-- Abort_Task --
|
|
----------------
|
|
|
|
procedure Abort_Task (T : Task_Id) is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
if Abort_Handler_Installed then
|
|
pragma Assert (T /= Self);
|
|
Result :=
|
|
thr_kill
|
|
(T.Common.LL.Thread,
|
|
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end Abort_Task;
|
|
|
|
-----------
|
|
-- Sleep --
|
|
-----------
|
|
|
|
procedure Sleep
|
|
(Self_ID : Task_Id;
|
|
Reason : Task_States)
|
|
is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert (Check_Sleep (Reason));
|
|
|
|
Result :=
|
|
cond_wait
|
|
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
|
|
|
|
pragma Assert
|
|
(Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
|
|
pragma Assert (Result = 0 or else Result = EINTR);
|
|
end Sleep;
|
|
|
|
-- Note that we are relying heavily here on GNAT representing
|
|
-- Calendar.Time, System.Real_Time.Time, Duration,
|
|
-- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
|
|
-- nanoseconds.
|
|
|
|
-- This allows us to always pass the timeout value as a Duration
|
|
|
|
-- ???
|
|
-- We are taking liberties here with the semantics of the delays. That is,
|
|
-- we make no distinction between delays on the Calendar clock and delays
|
|
-- on the Real_Time clock. That is technically incorrect, if the Calendar
|
|
-- clock happens to be reset or adjusted. To solve this defect will require
|
|
-- modification to the compiler interface, so that it can pass through more
|
|
-- information, to tell us here which clock to use.
|
|
|
|
-- cond_timedwait will return if any of the following happens:
|
|
-- 1) some other task did cond_signal on this condition variable
|
|
-- In this case, the return value is 0
|
|
-- 2) the call just returned, for no good reason
|
|
-- This is called a "spurious wakeup".
|
|
-- In this case, the return value may also be 0.
|
|
-- 3) the time delay expires
|
|
-- In this case, the return value is ETIME
|
|
-- 4) this task received a signal, which was handled by some
|
|
-- handler procedure, and now the thread is resuming execution
|
|
-- UNIX calls this an "interrupted" system call.
|
|
-- In this case, the return value is EINTR
|
|
|
|
-- If the cond_timedwait returns 0 or EINTR, it is still possible that the
|
|
-- time has actually expired, and by chance a signal or cond_signal
|
|
-- occurred at around the same time.
|
|
|
|
-- We have also observed that on some OS's the value ETIME will be
|
|
-- returned, but the clock will show that the full delay has not yet
|
|
-- expired.
|
|
|
|
-- For these reasons, we need to check the clock after return from
|
|
-- cond_timedwait. If the time has expired, we will set Timedout = True.
|
|
|
|
-- This check might be omitted for systems on which the cond_timedwait()
|
|
-- never returns early or wakes up spuriously.
|
|
|
|
-- Annex D requires that completion of a delay cause the task to go to the
|
|
-- end of its priority queue, regardless of whether the task actually was
|
|
-- suspended by the delay. Since cond_timedwait does not do this on
|
|
-- Solaris, we add a call to thr_yield at the end. We might do this at the
|
|
-- beginning, instead, but then the round-robin effect would not be the
|
|
-- same; the delayed task would be ahead of other tasks of the same
|
|
-- priority that awoke while it was sleeping.
|
|
|
|
-- For Timed_Sleep, we are expecting possible cond_signals to indicate
|
|
-- other events (e.g., completion of a RV or completion of the abortable
|
|
-- part of an async. select), we want to always return if interrupted. The
|
|
-- caller will be responsible for checking the task state to see whether
|
|
-- the wakeup was spurious, and to go back to sleep again in that case. We
|
|
-- don't need to check for pending abort or priority change on the way in
|
|
-- our out; that is the caller's responsibility.
|
|
|
|
-- For Timed_Delay, we are not expecting any cond_signals or other
|
|
-- interruptions, except for priority changes and aborts. Therefore, we
|
|
-- don't want to return unless the delay has actually expired, or the call
|
|
-- has been aborted. In this case, since we want to implement the entire
|
|
-- delay statement semantics, we do need to check for pending abort and
|
|
-- priority changes. We can quietly handle priority changes inside the
|
|
-- procedure, since there is no entry-queue reordering involved.
|
|
|
|
-----------------
|
|
-- Timed_Sleep --
|
|
-----------------
|
|
|
|
procedure Timed_Sleep
|
|
(Self_ID : Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes;
|
|
Reason : System.Tasking.Task_States;
|
|
Timedout : out Boolean;
|
|
Yielded : out Boolean)
|
|
is
|
|
Base_Time : constant Duration := Monotonic_Clock;
|
|
Check_Time : Duration := Base_Time;
|
|
Abs_Time : Duration;
|
|
Request : aliased timespec;
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
pragma Assert (Check_Sleep (Reason));
|
|
Timedout := True;
|
|
Yielded := False;
|
|
|
|
Abs_Time :=
|
|
(if Mode = Relative
|
|
then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
|
|
else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
|
|
|
|
if Abs_Time > Check_Time then
|
|
Request := To_Timespec (Abs_Time);
|
|
loop
|
|
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
|
|
|
|
Result :=
|
|
cond_timedwait
|
|
(Self_ID.Common.LL.CV'Access,
|
|
Self_ID.Common.LL.L.L'Access, Request'Access);
|
|
Yielded := True;
|
|
Check_Time := Monotonic_Clock;
|
|
|
|
exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
|
|
|
|
if Result = 0 or Result = EINTR then
|
|
|
|
-- Somebody may have called Wakeup for us
|
|
|
|
Timedout := False;
|
|
exit;
|
|
end if;
|
|
|
|
pragma Assert (Result = ETIME);
|
|
end loop;
|
|
end if;
|
|
|
|
pragma Assert
|
|
(Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
|
|
end Timed_Sleep;
|
|
|
|
-----------------
|
|
-- Timed_Delay --
|
|
-----------------
|
|
|
|
procedure Timed_Delay
|
|
(Self_ID : Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes)
|
|
is
|
|
Base_Time : constant Duration := Monotonic_Clock;
|
|
Check_Time : Duration := Base_Time;
|
|
Abs_Time : Duration;
|
|
Request : aliased timespec;
|
|
Result : Interfaces.C.int;
|
|
Yielded : Boolean := False;
|
|
|
|
begin
|
|
Write_Lock (Self_ID);
|
|
|
|
Abs_Time :=
|
|
(if Mode = Relative
|
|
then Time + Check_Time
|
|
else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
|
|
|
|
if Abs_Time > Check_Time then
|
|
Request := To_Timespec (Abs_Time);
|
|
Self_ID.Common.State := Delay_Sleep;
|
|
|
|
pragma Assert (Check_Sleep (Delay_Sleep));
|
|
|
|
loop
|
|
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
|
|
|
|
Result :=
|
|
cond_timedwait
|
|
(Self_ID.Common.LL.CV'Access,
|
|
Self_ID.Common.LL.L.L'Access,
|
|
Request'Access);
|
|
Yielded := True;
|
|
Check_Time := Monotonic_Clock;
|
|
|
|
exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
|
|
|
|
pragma Assert
|
|
(Result = 0 or else
|
|
Result = ETIME or else
|
|
Result = EINTR);
|
|
end loop;
|
|
|
|
pragma Assert
|
|
(Record_Wakeup
|
|
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
|
|
|
|
Self_ID.Common.State := Runnable;
|
|
end if;
|
|
|
|
Unlock (Self_ID);
|
|
|
|
if not Yielded then
|
|
thr_yield;
|
|
end if;
|
|
end Timed_Delay;
|
|
|
|
------------
|
|
-- Wakeup --
|
|
------------
|
|
|
|
procedure Wakeup
|
|
(T : Task_Id;
|
|
Reason : Task_States)
|
|
is
|
|
Result : Interfaces.C.int;
|
|
begin
|
|
pragma Assert (Check_Wakeup (T, Reason));
|
|
Result := cond_signal (T.Common.LL.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
end Wakeup;
|
|
|
|
---------------------------
|
|
-- Check_Initialize_Lock --
|
|
---------------------------
|
|
|
|
-- The following code is intended to check some of the invariant assertions
|
|
-- related to lock usage, on which we depend.
|
|
|
|
function Check_Initialize_Lock
|
|
(L : Lock_Ptr;
|
|
Level : Lock_Level) return Boolean
|
|
is
|
|
Self_ID : constant Task_Id := Self;
|
|
|
|
begin
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that the lock is not yet initialized
|
|
|
|
if L.Level /= 0 then
|
|
return False;
|
|
end if;
|
|
|
|
L.Level := Lock_Level'Pos (Level) + 1;
|
|
return True;
|
|
end Check_Initialize_Lock;
|
|
|
|
----------------
|
|
-- Check_Lock --
|
|
----------------
|
|
|
|
function Check_Lock (L : Lock_Ptr) return Boolean is
|
|
Self_ID : constant Task_Id := Self;
|
|
P : Lock_Ptr;
|
|
|
|
begin
|
|
-- Check that the argument is not null
|
|
|
|
if L = null then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that L is not frozen
|
|
|
|
if L.Frozen then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that caller is not holding this lock already
|
|
|
|
if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that TCB lock order rules are satisfied
|
|
|
|
P := Self_ID.Common.LL.Locks;
|
|
if P /= null then
|
|
if P.Level >= L.Level
|
|
and then (P.Level > 2 or else L.Level > 2)
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
return True;
|
|
end Check_Lock;
|
|
|
|
-----------------
|
|
-- Record_Lock --
|
|
-----------------
|
|
|
|
function Record_Lock (L : Lock_Ptr) return Boolean is
|
|
Self_ID : constant Task_Id := Self;
|
|
P : Lock_Ptr;
|
|
|
|
begin
|
|
Lock_Count := Lock_Count + 1;
|
|
|
|
-- There should be no owner for this lock at this point
|
|
|
|
if L.Owner /= null then
|
|
return False;
|
|
end if;
|
|
|
|
-- Record new owner
|
|
|
|
L.Owner := To_Owner_ID (To_Address (Self_ID));
|
|
|
|
-- Check that TCB lock order rules are satisfied
|
|
|
|
P := Self_ID.Common.LL.Locks;
|
|
|
|
if P /= null then
|
|
L.Next := P;
|
|
end if;
|
|
|
|
Self_ID.Common.LL.Locking := null;
|
|
Self_ID.Common.LL.Locks := L;
|
|
return True;
|
|
end Record_Lock;
|
|
|
|
-----------------
|
|
-- Check_Sleep --
|
|
-----------------
|
|
|
|
function Check_Sleep (Reason : Task_States) return Boolean is
|
|
pragma Unreferenced (Reason);
|
|
|
|
Self_ID : constant Task_Id := Self;
|
|
P : Lock_Ptr;
|
|
|
|
begin
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that caller is holding own lock, on top of list
|
|
|
|
if Self_ID.Common.LL.Locks /=
|
|
To_Lock_Ptr (Self_ID.Common.LL.L'Access)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that TCB lock order rules are satisfied
|
|
|
|
if Self_ID.Common.LL.Locks.Next /= null then
|
|
return False;
|
|
end if;
|
|
|
|
Self_ID.Common.LL.L.Owner := null;
|
|
P := Self_ID.Common.LL.Locks;
|
|
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
|
|
P.Next := null;
|
|
return True;
|
|
end Check_Sleep;
|
|
|
|
-------------------
|
|
-- Record_Wakeup --
|
|
-------------------
|
|
|
|
function Record_Wakeup
|
|
(L : Lock_Ptr;
|
|
Reason : Task_States) return Boolean
|
|
is
|
|
pragma Unreferenced (Reason);
|
|
|
|
Self_ID : constant Task_Id := Self;
|
|
P : Lock_Ptr;
|
|
|
|
begin
|
|
-- Record new owner
|
|
|
|
L.Owner := To_Owner_ID (To_Address (Self_ID));
|
|
|
|
-- Check that TCB lock order rules are satisfied
|
|
|
|
P := Self_ID.Common.LL.Locks;
|
|
|
|
if P /= null then
|
|
L.Next := P;
|
|
end if;
|
|
|
|
Self_ID.Common.LL.Locking := null;
|
|
Self_ID.Common.LL.Locks := L;
|
|
return True;
|
|
end Record_Wakeup;
|
|
|
|
------------------
|
|
-- Check_Wakeup --
|
|
------------------
|
|
|
|
function Check_Wakeup
|
|
(T : Task_Id;
|
|
Reason : Task_States) return Boolean
|
|
is
|
|
Self_ID : constant Task_Id := Self;
|
|
|
|
begin
|
|
-- Is caller holding T's lock?
|
|
|
|
if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Are reasons for wakeup and sleep consistent?
|
|
|
|
if T.Common.State /= Reason then
|
|
return False;
|
|
end if;
|
|
|
|
return True;
|
|
end Check_Wakeup;
|
|
|
|
------------------
|
|
-- Check_Unlock --
|
|
------------------
|
|
|
|
function Check_Unlock (L : Lock_Ptr) return Boolean is
|
|
Self_ID : constant Task_Id := Self;
|
|
P : Lock_Ptr;
|
|
|
|
begin
|
|
Unlock_Count := Unlock_Count + 1;
|
|
|
|
if L = null then
|
|
return False;
|
|
end if;
|
|
|
|
if L.Buddy /= null then
|
|
return False;
|
|
end if;
|
|
|
|
-- Magic constant 4???
|
|
|
|
if L.Level = 4 then
|
|
Check_Count := Unlock_Count;
|
|
end if;
|
|
|
|
-- Magic constant 1000???
|
|
|
|
if Unlock_Count - Check_Count > 1000 then
|
|
Check_Count := Unlock_Count;
|
|
end if;
|
|
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that caller is holding this lock, on top of list
|
|
|
|
if Self_ID.Common.LL.Locks /= L then
|
|
return False;
|
|
end if;
|
|
|
|
-- Record there is no owner now
|
|
|
|
L.Owner := null;
|
|
P := Self_ID.Common.LL.Locks;
|
|
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
|
|
P.Next := null;
|
|
return True;
|
|
end Check_Unlock;
|
|
|
|
-------------------------
|
|
-- Check_Finalize_Lock --
|
|
-------------------------
|
|
|
|
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
|
|
Self_ID : constant Task_Id := Self;
|
|
|
|
begin
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that no one is holding this lock
|
|
|
|
if L.Owner /= null then
|
|
return False;
|
|
end if;
|
|
|
|
L.Frozen := True;
|
|
return True;
|
|
end Check_Finalize_Lock;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize (S : in out Suspension_Object) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
-- Initialize internal state (always to zero (RM D.10(6)))
|
|
|
|
S.State := False;
|
|
S.Waiting := False;
|
|
|
|
-- Initialize internal mutex
|
|
|
|
Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
|
|
-- Initialize internal condition variable
|
|
|
|
Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
|
|
pragma Assert (Result = 0 or else Result = ENOMEM);
|
|
|
|
if Result /= 0 then
|
|
Result := mutex_destroy (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error;
|
|
end if;
|
|
end if;
|
|
end Initialize;
|
|
|
|
--------------
|
|
-- Finalize --
|
|
--------------
|
|
|
|
procedure Finalize (S : in out Suspension_Object) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
-- Destroy internal mutex
|
|
|
|
Result := mutex_destroy (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Destroy internal condition variable
|
|
|
|
Result := cond_destroy (S.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
end Finalize;
|
|
|
|
-------------------
|
|
-- Current_State --
|
|
-------------------
|
|
|
|
function Current_State (S : Suspension_Object) return Boolean is
|
|
begin
|
|
-- We do not want to use lock on this read operation. State is marked
|
|
-- as Atomic so that we ensure that the value retrieved is correct.
|
|
|
|
return S.State;
|
|
end Current_State;
|
|
|
|
---------------
|
|
-- Set_False --
|
|
---------------
|
|
|
|
procedure Set_False (S : in out Suspension_Object) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
S.State := False;
|
|
|
|
Result := mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end Set_False;
|
|
|
|
--------------
|
|
-- Set_True --
|
|
--------------
|
|
|
|
procedure Set_True (S : in out Suspension_Object) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- If there is already a task waiting on this suspension object then
|
|
-- we resume it, leaving the state of the suspension object to False,
|
|
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
|
|
-- the state to True.
|
|
|
|
if S.Waiting then
|
|
S.Waiting := False;
|
|
S.State := False;
|
|
|
|
Result := cond_signal (S.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
else
|
|
S.State := True;
|
|
end if;
|
|
|
|
Result := mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end Set_True;
|
|
|
|
------------------------
|
|
-- Suspend_Until_True --
|
|
------------------------
|
|
|
|
procedure Suspend_Until_True (S : in out Suspension_Object) is
|
|
Result : Interfaces.C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if S.Waiting then
|
|
|
|
-- Program_Error must be raised upon calling Suspend_Until_True
|
|
-- if another task is already waiting on that suspension object
|
|
-- (RM D.10(10)).
|
|
|
|
Result := mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
|
|
raise Program_Error;
|
|
|
|
else
|
|
-- Suspend the task if the state is False. Otherwise, the task
|
|
-- continues its execution, and the state of the suspension object
|
|
-- is set to False (ARM D.10 par. 9).
|
|
|
|
if S.State then
|
|
S.State := False;
|
|
else
|
|
S.Waiting := True;
|
|
|
|
loop
|
|
-- Loop in case pthread_cond_wait returns earlier than expected
|
|
-- (e.g. in case of EINTR caused by a signal).
|
|
|
|
Result := cond_wait (S.CV'Access, S.L'Access);
|
|
pragma Assert (Result = 0 or else Result = EINTR);
|
|
|
|
exit when not S.Waiting;
|
|
end loop;
|
|
end if;
|
|
|
|
Result := mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end if;
|
|
end Suspend_Until_True;
|
|
|
|
----------------
|
|
-- Check_Exit --
|
|
----------------
|
|
|
|
function Check_Exit (Self_ID : Task_Id) return Boolean is
|
|
begin
|
|
-- Check that caller is just holding Global_Task_Lock and no other locks
|
|
|
|
if Self_ID.Common.LL.Locks = null then
|
|
return False;
|
|
end if;
|
|
|
|
-- 2 = Global_Task_Level
|
|
|
|
if Self_ID.Common.LL.Locks.Level /= 2 then
|
|
return False;
|
|
end if;
|
|
|
|
if Self_ID.Common.LL.Locks.Next /= null then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check that caller is abort-deferred
|
|
|
|
if Self_ID.Deferral_Level = 0 then
|
|
return False;
|
|
end if;
|
|
|
|
return True;
|
|
end Check_Exit;
|
|
|
|
--------------------
|
|
-- Check_No_Locks --
|
|
--------------------
|
|
|
|
function Check_No_Locks (Self_ID : Task_Id) return Boolean is
|
|
begin
|
|
return Self_ID.Common.LL.Locks = null;
|
|
end Check_No_Locks;
|
|
|
|
----------------------
|
|
-- Environment_Task --
|
|
----------------------
|
|
|
|
function Environment_Task return Task_Id is
|
|
begin
|
|
return Environment_Task_Id;
|
|
end Environment_Task;
|
|
|
|
--------------
|
|
-- Lock_RTS --
|
|
--------------
|
|
|
|
procedure Lock_RTS is
|
|
begin
|
|
Write_Lock (Single_RTS_Lock'Access);
|
|
end Lock_RTS;
|
|
|
|
----------------
|
|
-- Unlock_RTS --
|
|
----------------
|
|
|
|
procedure Unlock_RTS is
|
|
begin
|
|
Unlock (Single_RTS_Lock'Access);
|
|
end Unlock_RTS;
|
|
|
|
------------------
|
|
-- Suspend_Task --
|
|
------------------
|
|
|
|
function Suspend_Task
|
|
(T : ST.Task_Id;
|
|
Thread_Self : Thread_Id) return Boolean
|
|
is
|
|
begin
|
|
if T.Common.LL.Thread /= Thread_Self then
|
|
return thr_suspend (T.Common.LL.Thread) = 0;
|
|
else
|
|
return True;
|
|
end if;
|
|
end Suspend_Task;
|
|
|
|
-----------------
|
|
-- Resume_Task --
|
|
-----------------
|
|
|
|
function Resume_Task
|
|
(T : ST.Task_Id;
|
|
Thread_Self : Thread_Id) return Boolean
|
|
is
|
|
begin
|
|
if T.Common.LL.Thread /= Thread_Self then
|
|
return thr_continue (T.Common.LL.Thread) = 0;
|
|
else
|
|
return True;
|
|
end if;
|
|
end Resume_Task;
|
|
|
|
--------------------
|
|
-- Stop_All_Tasks --
|
|
--------------------
|
|
|
|
procedure Stop_All_Tasks is
|
|
begin
|
|
null;
|
|
end Stop_All_Tasks;
|
|
|
|
---------------
|
|
-- Stop_Task --
|
|
---------------
|
|
|
|
function Stop_Task (T : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (T);
|
|
begin
|
|
return False;
|
|
end Stop_Task;
|
|
|
|
-------------------
|
|
-- Continue_Task --
|
|
-------------------
|
|
|
|
function Continue_Task (T : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (T);
|
|
begin
|
|
return False;
|
|
end Continue_Task;
|
|
|
|
-----------------------
|
|
-- Set_Task_Affinity --
|
|
-----------------------
|
|
|
|
procedure Set_Task_Affinity (T : ST.Task_Id) is
|
|
Result : Interfaces.C.int;
|
|
Proc : processorid_t; -- User processor #
|
|
Last_Proc : processorid_t; -- Last processor #
|
|
|
|
use System.Task_Info;
|
|
use type System.Multiprocessors.CPU_Range;
|
|
|
|
begin
|
|
-- Do nothing if the underlying thread has not yet been created. If the
|
|
-- thread has not yet been created then the proper affinity will be set
|
|
-- during its creation.
|
|
|
|
if T.Common.LL.Thread = Null_Thread_Id then
|
|
null;
|
|
|
|
-- pragma CPU
|
|
|
|
elsif T.Common.Base_CPU /=
|
|
System.Multiprocessors.Not_A_Specific_CPU
|
|
then
|
|
-- The CPU numbering in pragma CPU starts at 1 while the subprogram
|
|
-- to set the affinity starts at 0, therefore we must substract 1.
|
|
|
|
Result :=
|
|
processor_bind
|
|
(P_LWPID, id_t (T.Common.LL.LWP),
|
|
processorid_t (T.Common.Base_CPU) - 1, null);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Task_Info
|
|
|
|
elsif T.Common.Task_Info /= null then
|
|
if T.Common.Task_Info.New_LWP
|
|
and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
|
|
then
|
|
Last_Proc := Num_Procs - 1;
|
|
|
|
if T.Common.Task_Info.CPU = ANY_CPU then
|
|
Result := 0;
|
|
|
|
Proc := 0;
|
|
while Proc < Last_Proc loop
|
|
Result := p_online (Proc, PR_STATUS);
|
|
exit when Result = PR_ONLINE;
|
|
Proc := Proc + 1;
|
|
end loop;
|
|
|
|
Result :=
|
|
processor_bind
|
|
(P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
|
|
pragma Assert (Result = 0);
|
|
|
|
else
|
|
-- Use specified processor
|
|
|
|
if T.Common.Task_Info.CPU < 0
|
|
or else T.Common.Task_Info.CPU > Last_Proc
|
|
then
|
|
raise Invalid_CPU_Number;
|
|
end if;
|
|
|
|
Result :=
|
|
processor_bind
|
|
(P_LWPID, id_t (T.Common.LL.LWP),
|
|
T.Common.Task_Info.CPU, null);
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end if;
|
|
|
|
-- Handle dispatching domains
|
|
|
|
elsif T.Common.Domain /= null
|
|
and then (T.Common.Domain /= ST.System_Domain
|
|
or else T.Common.Domain.all /=
|
|
(Multiprocessors.CPU'First ..
|
|
Multiprocessors.Number_Of_CPUs => True))
|
|
then
|
|
declare
|
|
CPU_Set : aliased psetid_t;
|
|
Result : int;
|
|
|
|
begin
|
|
Result := pset_create (CPU_Set'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Set the affinity to all the processors belonging to the
|
|
-- dispatching domain.
|
|
|
|
for Proc in T.Common.Domain'Range loop
|
|
|
|
-- The Ada CPU numbering starts at 1 while the subprogram to
|
|
-- set the affinity starts at 0, therefore we must substract 1.
|
|
|
|
if T.Common.Domain (Proc) then
|
|
Result :=
|
|
pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end loop;
|
|
|
|
Result :=
|
|
pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
|
|
pragma Assert (Result = 0);
|
|
end;
|
|
end if;
|
|
end Set_Task_Affinity;
|
|
|
|
end System.Task_Primitives.Operations;
|