1533 lines
45 KiB
Ada
1533 lines
45 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
|
|
-- --
|
|
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNARL is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
|
-- --
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
|
-- --
|
|
-- You should have received a copy of the GNU General Public License and --
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
|
-- <http://www.gnu.org/licenses/>. --
|
|
-- --
|
|
-- GNARL was developed by the GNARL team at Florida State University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
-- This is a GNU/Linux (GNU/LinuxThreads) version of this package
|
|
|
|
-- This package contains all the GNULL primitives that interface directly with
|
|
-- the underlying OS.
|
|
|
|
with Interfaces.C; use Interfaces; use type Interfaces.C.int;
|
|
|
|
with System.Task_Info;
|
|
with System.Tasking.Debug;
|
|
with System.Interrupt_Management;
|
|
with System.OS_Constants;
|
|
with System.OS_Primitives;
|
|
with System.Multiprocessors;
|
|
|
|
with System.Soft_Links;
|
|
-- We use System.Soft_Links instead of System.Tasking.Initialization
|
|
-- because the later is a higher level package that we shouldn't depend on.
|
|
-- For example when using the restricted run time, it is replaced by
|
|
-- System.Tasking.Restricted.Stages.
|
|
|
|
package body System.Task_Primitives.Operations is
|
|
|
|
package OSC renames System.OS_Constants;
|
|
package SSL renames System.Soft_Links;
|
|
|
|
use System.Tasking.Debug;
|
|
use System.Tasking;
|
|
use System.OS_Interface;
|
|
use System.Parameters;
|
|
use System.OS_Primitives;
|
|
use System.Task_Info;
|
|
|
|
----------------
|
|
-- Local Data --
|
|
----------------
|
|
|
|
-- The followings are logically constants, but need to be initialized
|
|
-- at run time.
|
|
|
|
Single_RTS_Lock : aliased RTS_Lock;
|
|
-- This is a lock to allow only one thread of control in the RTS at
|
|
-- a time; it is used to execute in mutual exclusion from all other tasks.
|
|
-- Used to protect All_Tasks_List
|
|
|
|
Environment_Task_Id : Task_Id;
|
|
-- A variable to hold Task_Id for the environment task
|
|
|
|
Unblocked_Signal_Mask : aliased sigset_t;
|
|
-- The set of signals that should be unblocked in all tasks
|
|
|
|
-- The followings are internal configuration constants needed
|
|
|
|
Next_Serial_Number : Task_Serial_Number := 100;
|
|
-- We start at 100 (reserve some special values for using in error checks)
|
|
|
|
Time_Slice_Val : Integer;
|
|
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
|
|
|
|
Dispatching_Policy : Character;
|
|
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
|
|
|
|
Locking_Policy : Character;
|
|
pragma Import (C, Locking_Policy, "__gl_locking_policy");
|
|
|
|
Foreign_Task_Elaborated : aliased Boolean := True;
|
|
-- Used to identified fake tasks (i.e., non-Ada Threads)
|
|
|
|
Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
|
|
-- Whether to use an alternate signal stack for stack overflows
|
|
|
|
Abort_Handler_Installed : Boolean := False;
|
|
-- True if a handler for the abort signal is installed
|
|
|
|
Null_Thread_Id : constant pthread_t := pthread_t'Last;
|
|
-- Constant to indicate that the thread identifier has not yet been
|
|
-- initialized.
|
|
|
|
--------------------
|
|
-- Local Packages --
|
|
--------------------
|
|
|
|
package Specific is
|
|
|
|
procedure Initialize (Environment_Task : Task_Id);
|
|
pragma Inline (Initialize);
|
|
-- Initialize various data needed by this package
|
|
|
|
function Is_Valid_Task return Boolean;
|
|
pragma Inline (Is_Valid_Task);
|
|
-- Does executing thread have a TCB?
|
|
|
|
procedure Set (Self_Id : Task_Id);
|
|
pragma Inline (Set);
|
|
-- Set the self id for the current task
|
|
|
|
function Self return Task_Id;
|
|
pragma Inline (Self);
|
|
-- Return a pointer to the Ada Task Control Block of the calling task
|
|
|
|
end Specific;
|
|
|
|
package body Specific is separate;
|
|
-- The body of this package is target specific
|
|
|
|
package Monotonic is
|
|
|
|
function Monotonic_Clock return Duration;
|
|
pragma Inline (Monotonic_Clock);
|
|
-- Returns an absolute time, represented as an offset relative to some
|
|
-- unspecified starting point, typically system boot time. This clock is
|
|
-- not affected by discontinuous jumps in the system time.
|
|
|
|
function RT_Resolution return Duration;
|
|
pragma Inline (RT_Resolution);
|
|
-- Returns resolution of the underlying clock used to implement RT_Clock
|
|
|
|
procedure Timed_Sleep
|
|
(Self_ID : ST.Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes;
|
|
Reason : System.Tasking.Task_States;
|
|
Timedout : out Boolean;
|
|
Yielded : out Boolean);
|
|
-- Combination of Sleep (above) and Timed_Delay
|
|
|
|
procedure Timed_Delay
|
|
(Self_ID : ST.Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes);
|
|
-- Implement the semantics of the delay statement.
|
|
-- The caller should be abort-deferred and should not hold any locks.
|
|
|
|
end Monotonic;
|
|
|
|
package body Monotonic is separate;
|
|
|
|
----------------------------------
|
|
-- ATCB allocation/deallocation --
|
|
----------------------------------
|
|
|
|
package body ATCB_Allocation is separate;
|
|
-- The body of this package is shared across several targets
|
|
|
|
---------------------------------
|
|
-- Support for foreign threads --
|
|
---------------------------------
|
|
|
|
function Register_Foreign_Thread
|
|
(Thread : Thread_Id;
|
|
Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
|
|
-- Allocate and initialize a new ATCB for the current Thread. The size of
|
|
-- the secondary stack can be optionally specified.
|
|
|
|
function Register_Foreign_Thread
|
|
(Thread : Thread_Id;
|
|
Sec_Stack_Size : Size_Type := Unspecified_Size)
|
|
return Task_Id is separate;
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Abort_Handler (signo : Signal);
|
|
|
|
function GNAT_pthread_condattr_setup
|
|
(attr : access pthread_condattr_t) return C.int;
|
|
pragma Import
|
|
(C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
|
|
|
|
function GNAT_has_cap_sys_nice return C.int;
|
|
pragma Import
|
|
(C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice");
|
|
-- We do not have pragma Linker_Options ("-lcap"); here, because this
|
|
-- library is not present on many Linux systems. 'libcap' is the Linux
|
|
-- "capabilities" library, called by __gnat_has_cap_sys_nice.
|
|
|
|
function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is
|
|
(C.int (Prio) + 1);
|
|
-- Convert Ada priority to Linux priority. Priorities are 1 .. 99 on
|
|
-- GNU/Linux, so we map 0 .. 98 to 1 .. 99.
|
|
|
|
function Get_Ceiling_Support return Boolean;
|
|
-- Get the value of the Ceiling_Support constant (see below).
|
|
-- Note well: If this function or related code is modified, it should be
|
|
-- tested by hand, because automated testing doesn't exercise it.
|
|
|
|
-------------------------
|
|
-- Get_Ceiling_Support --
|
|
-------------------------
|
|
|
|
function Get_Ceiling_Support return Boolean is
|
|
Ceiling_Support : Boolean := False;
|
|
begin
|
|
if Locking_Policy /= 'C' then
|
|
return False;
|
|
end if;
|
|
|
|
declare
|
|
function geteuid return Integer;
|
|
pragma Import (C, geteuid, "geteuid");
|
|
Superuser : constant Boolean := geteuid = 0;
|
|
Has_Cap : constant C.int := GNAT_has_cap_sys_nice;
|
|
pragma Assert (Has_Cap in 0 | 1);
|
|
begin
|
|
Ceiling_Support := Superuser or else Has_Cap = 1;
|
|
end;
|
|
|
|
return Ceiling_Support;
|
|
end Get_Ceiling_Support;
|
|
|
|
pragma Warnings (Off, "non-preelaborable call not allowed*");
|
|
Ceiling_Support : constant Boolean := Get_Ceiling_Support;
|
|
pragma Warnings (On, "non-preelaborable call not allowed*");
|
|
-- True if the locking policy is Ceiling_Locking, and the current process
|
|
-- has permission to use this policy. The process has permission if it is
|
|
-- running as 'root', or if the capability was set by the setcap command,
|
|
-- as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have
|
|
-- permission, then a request for Ceiling_Locking is ignored.
|
|
|
|
type RTS_Lock_Ptr is not null access all RTS_Lock;
|
|
|
|
function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int;
|
|
-- Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
|
|
-- to Prio. Returns 0 for success, or ENOMEM for out-of-memory.
|
|
|
|
-------------------
|
|
-- Abort_Handler --
|
|
-------------------
|
|
|
|
procedure Abort_Handler (signo : Signal) is
|
|
pragma Unreferenced (signo);
|
|
|
|
Self_Id : constant Task_Id := Self;
|
|
Result : C.int;
|
|
Old_Set : aliased sigset_t;
|
|
|
|
begin
|
|
-- It's not safe to raise an exception when using GCC ZCX mechanism.
|
|
-- Note that we still need to install a signal handler, since in some
|
|
-- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
|
|
-- need to send the Abort signal to a task.
|
|
|
|
if ZCX_By_Default then
|
|
return;
|
|
end if;
|
|
|
|
if Self_Id.Deferral_Level = 0
|
|
and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
|
|
and then not Self_Id.Aborting
|
|
then
|
|
Self_Id.Aborting := True;
|
|
|
|
-- Make sure signals used for RTS internal purpose are unmasked
|
|
|
|
Result :=
|
|
pthread_sigmask
|
|
(SIG_UNBLOCK,
|
|
Unblocked_Signal_Mask'Access,
|
|
Old_Set'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
raise Standard'Abort_Signal;
|
|
end if;
|
|
end Abort_Handler;
|
|
|
|
--------------
|
|
-- Lock_RTS --
|
|
--------------
|
|
|
|
procedure Lock_RTS is
|
|
begin
|
|
Write_Lock (Single_RTS_Lock'Access);
|
|
end Lock_RTS;
|
|
|
|
----------------
|
|
-- Unlock_RTS --
|
|
----------------
|
|
|
|
procedure Unlock_RTS is
|
|
begin
|
|
Unlock (Single_RTS_Lock'Access);
|
|
end Unlock_RTS;
|
|
|
|
-----------------
|
|
-- Stack_Guard --
|
|
-----------------
|
|
|
|
-- The underlying thread system extends the memory (up to 2MB) when needed
|
|
|
|
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
|
|
pragma Unreferenced (T);
|
|
pragma Unreferenced (On);
|
|
begin
|
|
null;
|
|
end Stack_Guard;
|
|
|
|
--------------------
|
|
-- Get_Thread_Id --
|
|
--------------------
|
|
|
|
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
|
|
begin
|
|
return T.Common.LL.Thread;
|
|
end Get_Thread_Id;
|
|
|
|
----------
|
|
-- Self --
|
|
----------
|
|
|
|
function Self return Task_Id renames Specific.Self;
|
|
|
|
----------------
|
|
-- Init_Mutex --
|
|
----------------
|
|
|
|
function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is
|
|
Mutex_Attr : aliased pthread_mutexattr_t;
|
|
Result, Result_2 : C.int;
|
|
|
|
begin
|
|
Result := pthread_mutexattr_init (Mutex_Attr'Access);
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
return Result;
|
|
end if;
|
|
|
|
if Ceiling_Support then
|
|
Result := pthread_mutexattr_setprotocol
|
|
(Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result := pthread_mutexattr_setprioceiling
|
|
(Mutex_Attr'Access, Prio_To_Linux_Prio (Prio));
|
|
pragma Assert (Result = 0);
|
|
|
|
elsif Locking_Policy = 'I' then
|
|
Result := pthread_mutexattr_setprotocol
|
|
(Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
|
|
Result := pthread_mutex_init (L, Mutex_Attr'Access);
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access);
|
|
pragma Assert (Result_2 = 0);
|
|
return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy
|
|
end Init_Mutex;
|
|
|
|
---------------------
|
|
-- Initialize_Lock --
|
|
---------------------
|
|
|
|
-- Note: mutexes and cond_variables needed per-task basis are initialized
|
|
-- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
|
|
-- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
|
|
-- status change of RTS. Therefore raising Storage_Error in the following
|
|
-- routines should be able to be handled safely.
|
|
|
|
procedure Initialize_Lock
|
|
(Prio : Any_Priority;
|
|
L : not null access Lock)
|
|
is
|
|
begin
|
|
if Locking_Policy = 'R' then
|
|
declare
|
|
RWlock_Attr : aliased pthread_rwlockattr_t;
|
|
Result : C.int;
|
|
|
|
begin
|
|
-- Set the rwlock to prefer writer to avoid writers starvation
|
|
|
|
Result := pthread_rwlockattr_init (RWlock_Attr'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result := pthread_rwlockattr_setkind_np
|
|
(RWlock_Attr'Access,
|
|
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);
|
|
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
end;
|
|
|
|
else
|
|
if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
end if;
|
|
end Initialize_Lock;
|
|
|
|
procedure Initialize_Lock
|
|
(L : not null access RTS_Lock; Level : Lock_Level)
|
|
is
|
|
pragma Unreferenced (Level);
|
|
begin
|
|
if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
|
|
raise Storage_Error with "Failed to allocate a lock";
|
|
end if;
|
|
end Initialize_Lock;
|
|
|
|
-------------------
|
|
-- Finalize_Lock --
|
|
-------------------
|
|
|
|
procedure Finalize_Lock (L : not null access Lock) is
|
|
Result : C.int;
|
|
begin
|
|
if Locking_Policy = 'R' then
|
|
Result := pthread_rwlock_destroy (L.RW'Access);
|
|
else
|
|
Result := pthread_mutex_destroy (L.WO'Access);
|
|
end if;
|
|
pragma Assert (Result = 0);
|
|
end Finalize_Lock;
|
|
|
|
procedure Finalize_Lock (L : not null access RTS_Lock) is
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_mutex_destroy (L);
|
|
pragma Assert (Result = 0);
|
|
end Finalize_Lock;
|
|
|
|
----------------
|
|
-- Write_Lock --
|
|
----------------
|
|
|
|
procedure Write_Lock
|
|
(L : not null access Lock;
|
|
Ceiling_Violation : out Boolean)
|
|
is
|
|
Result : C.int;
|
|
begin
|
|
if Locking_Policy = 'R' then
|
|
Result := pthread_rwlock_wrlock (L.RW'Access);
|
|
else
|
|
Result := pthread_mutex_lock (L.WO'Access);
|
|
end if;
|
|
|
|
-- The cause of EINVAL is a priority ceiling violation
|
|
|
|
pragma Assert (Result in 0 | EINVAL);
|
|
Ceiling_Violation := Result = EINVAL;
|
|
end Write_Lock;
|
|
|
|
procedure Write_Lock (L : not null access RTS_Lock) is
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_mutex_lock (L);
|
|
pragma Assert (Result = 0);
|
|
end Write_Lock;
|
|
|
|
procedure Write_Lock (T : Task_Id) is
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_mutex_lock (T.Common.LL.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Write_Lock;
|
|
|
|
---------------
|
|
-- Read_Lock --
|
|
---------------
|
|
|
|
procedure Read_Lock
|
|
(L : not null access Lock;
|
|
Ceiling_Violation : out Boolean)
|
|
is
|
|
Result : C.int;
|
|
begin
|
|
if Locking_Policy = 'R' then
|
|
Result := pthread_rwlock_rdlock (L.RW'Access);
|
|
else
|
|
Result := pthread_mutex_lock (L.WO'Access);
|
|
end if;
|
|
|
|
-- The cause of EINVAL is a priority ceiling violation
|
|
|
|
pragma Assert (Result in 0 | EINVAL);
|
|
Ceiling_Violation := Result = EINVAL;
|
|
end Read_Lock;
|
|
|
|
------------
|
|
-- Unlock --
|
|
------------
|
|
|
|
procedure Unlock (L : not null access Lock) is
|
|
Result : C.int;
|
|
begin
|
|
if Locking_Policy = 'R' then
|
|
Result := pthread_rwlock_unlock (L.RW'Access);
|
|
else
|
|
Result := pthread_mutex_unlock (L.WO'Access);
|
|
end if;
|
|
pragma Assert (Result = 0);
|
|
end Unlock;
|
|
|
|
procedure Unlock (L : not null access RTS_Lock) is
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_mutex_unlock (L);
|
|
pragma Assert (Result = 0);
|
|
end Unlock;
|
|
|
|
procedure Unlock (T : Task_Id) is
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_mutex_unlock (T.Common.LL.L'Access);
|
|
pragma Assert (Result = 0);
|
|
end Unlock;
|
|
|
|
-----------------
|
|
-- Set_Ceiling --
|
|
-----------------
|
|
|
|
-- Dynamic priority ceilings are not supported by the underlying system
|
|
|
|
procedure Set_Ceiling
|
|
(L : not null access Lock;
|
|
Prio : Any_Priority)
|
|
is
|
|
pragma Unreferenced (L, Prio);
|
|
begin
|
|
null;
|
|
end Set_Ceiling;
|
|
|
|
-----------
|
|
-- Sleep --
|
|
-----------
|
|
|
|
procedure Sleep
|
|
(Self_ID : Task_Id;
|
|
Reason : System.Tasking.Task_States)
|
|
is
|
|
pragma Unreferenced (Reason);
|
|
|
|
Result : C.int;
|
|
|
|
begin
|
|
pragma Assert (Self_ID = Self);
|
|
|
|
Result :=
|
|
pthread_cond_wait
|
|
(cond => Self_ID.Common.LL.CV'Access,
|
|
mutex => Self_ID.Common.LL.L'Access);
|
|
|
|
-- EINTR is not considered a failure
|
|
|
|
pragma Assert (Result in 0 | EINTR);
|
|
end Sleep;
|
|
|
|
-----------------
|
|
-- Timed_Sleep --
|
|
-----------------
|
|
|
|
-- This is for use within the run-time system, so abort is
|
|
-- assumed to be already deferred, and the caller should be
|
|
-- holding its own ATCB lock.
|
|
|
|
procedure Timed_Sleep
|
|
(Self_ID : Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes;
|
|
Reason : System.Tasking.Task_States;
|
|
Timedout : out Boolean;
|
|
Yielded : out Boolean) renames Monotonic.Timed_Sleep;
|
|
|
|
-----------------
|
|
-- Timed_Delay --
|
|
-----------------
|
|
|
|
-- This is for use in implementing delay statements, so we assume the
|
|
-- caller is abort-deferred but is holding no locks.
|
|
|
|
procedure Timed_Delay
|
|
(Self_ID : Task_Id;
|
|
Time : Duration;
|
|
Mode : ST.Delay_Modes) renames Monotonic.Timed_Delay;
|
|
|
|
---------------------
|
|
-- Monotonic_Clock --
|
|
---------------------
|
|
|
|
function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock;
|
|
|
|
-------------------
|
|
-- RT_Resolution --
|
|
-------------------
|
|
|
|
function RT_Resolution return Duration renames Monotonic.RT_Resolution;
|
|
|
|
------------
|
|
-- Wakeup --
|
|
------------
|
|
|
|
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
|
|
pragma Unreferenced (Reason);
|
|
Result : C.int;
|
|
begin
|
|
Result := pthread_cond_signal (T.Common.LL.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
end Wakeup;
|
|
|
|
-----------
|
|
-- Yield --
|
|
-----------
|
|
|
|
procedure Yield (Do_Yield : Boolean := True) is
|
|
Result : C.int;
|
|
pragma Unreferenced (Result);
|
|
begin
|
|
if Do_Yield then
|
|
Result := sched_yield;
|
|
end if;
|
|
end Yield;
|
|
|
|
------------------
|
|
-- Set_Priority --
|
|
------------------
|
|
|
|
procedure Set_Priority
|
|
(T : Task_Id;
|
|
Prio : Any_Priority;
|
|
Loss_Of_Inheritance : Boolean := False)
|
|
is
|
|
pragma Unreferenced (Loss_Of_Inheritance);
|
|
|
|
Result : C.int;
|
|
Param : aliased struct_sched_param;
|
|
|
|
function Get_Policy (Prio : Any_Priority) return Character;
|
|
pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
|
|
-- Get priority specific dispatching policy
|
|
|
|
Priority_Specific_Policy : constant Character := Get_Policy (Prio);
|
|
-- Upper case first character of the policy name corresponding to the
|
|
-- task as set by a Priority_Specific_Dispatching pragma.
|
|
|
|
begin
|
|
T.Common.Current_Priority := Prio;
|
|
|
|
Param.sched_priority := Prio_To_Linux_Prio (Prio);
|
|
|
|
if Dispatching_Policy = 'R'
|
|
or else Priority_Specific_Policy = 'R'
|
|
or else Time_Slice_Val > 0
|
|
then
|
|
Result :=
|
|
pthread_setschedparam
|
|
(T.Common.LL.Thread, SCHED_RR, Param'Access);
|
|
|
|
elsif Dispatching_Policy = 'F'
|
|
or else Priority_Specific_Policy = 'F'
|
|
or else Time_Slice_Val = 0
|
|
then
|
|
Result :=
|
|
pthread_setschedparam
|
|
(T.Common.LL.Thread, SCHED_FIFO, Param'Access);
|
|
|
|
else
|
|
Param.sched_priority := 0;
|
|
Result :=
|
|
pthread_setschedparam
|
|
(T.Common.LL.Thread,
|
|
SCHED_OTHER, Param'Access);
|
|
end if;
|
|
|
|
pragma Assert (Result in 0 | EPERM | EINVAL);
|
|
end Set_Priority;
|
|
|
|
------------------
|
|
-- Get_Priority --
|
|
------------------
|
|
|
|
function Get_Priority (T : Task_Id) return Any_Priority is
|
|
begin
|
|
return T.Common.Current_Priority;
|
|
end Get_Priority;
|
|
|
|
----------------
|
|
-- Enter_Task --
|
|
----------------
|
|
|
|
procedure Enter_Task (Self_ID : Task_Id) is
|
|
begin
|
|
if Self_ID.Common.Task_Info /= null
|
|
and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
|
|
then
|
|
raise Invalid_CPU_Number;
|
|
end if;
|
|
|
|
Self_ID.Common.LL.Thread := pthread_self;
|
|
Self_ID.Common.LL.LWP := lwp_self;
|
|
|
|
-- Set thread name to ease debugging. If the name of the task is
|
|
-- "foreign thread" (as set by Register_Foreign_Thread) retrieve
|
|
-- the name of the thread and update the name of the task instead.
|
|
|
|
if Self_ID.Common.Task_Image_Len = 14
|
|
and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread"
|
|
then
|
|
declare
|
|
Thread_Name : String (1 .. 16);
|
|
-- PR_GET_NAME returns a string of up to 16 bytes
|
|
|
|
Len : Natural := 0;
|
|
-- Length of the task name contained in Task_Name
|
|
|
|
Result : C.int;
|
|
-- Result from the prctl call
|
|
begin
|
|
Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address));
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Find the length of the given name
|
|
|
|
for J in Thread_Name'Range loop
|
|
if Thread_Name (J) /= ASCII.NUL then
|
|
Len := Len + 1;
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Cover the odd situation where someone decides to change
|
|
-- Parameters.Max_Task_Image_Length to less than 16 characters.
|
|
|
|
if Len > Parameters.Max_Task_Image_Length then
|
|
Len := Parameters.Max_Task_Image_Length;
|
|
end if;
|
|
|
|
-- Copy the name of the thread to the task's ATCB
|
|
|
|
Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len);
|
|
Self_ID.Common.Task_Image_Len := Len;
|
|
end;
|
|
|
|
elsif Self_ID.Common.Task_Image_Len > 0 then
|
|
declare
|
|
Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
|
|
Result : C.int;
|
|
|
|
begin
|
|
Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
|
|
Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
|
|
Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;
|
|
|
|
Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
|
|
pragma Assert (Result = 0);
|
|
end;
|
|
end if;
|
|
|
|
Specific.Set (Self_ID);
|
|
|
|
if Use_Alternate_Stack
|
|
and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
|
|
then
|
|
declare
|
|
Stack : aliased stack_t;
|
|
Result : C.int;
|
|
begin
|
|
Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack;
|
|
Stack.ss_size := Alternate_Stack_Size;
|
|
Stack.ss_flags := 0;
|
|
Result := sigaltstack (Stack'Access, null);
|
|
pragma Assert (Result = 0);
|
|
end;
|
|
end if;
|
|
end Enter_Task;
|
|
|
|
-------------------
|
|
-- Is_Valid_Task --
|
|
-------------------
|
|
|
|
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
|
|
|
|
-----------------------------
|
|
-- Register_Foreign_Thread --
|
|
-----------------------------
|
|
|
|
function Register_Foreign_Thread return Task_Id is
|
|
begin
|
|
if Is_Valid_Task then
|
|
return Self;
|
|
else
|
|
return Register_Foreign_Thread (pthread_self);
|
|
end if;
|
|
end Register_Foreign_Thread;
|
|
|
|
--------------------
|
|
-- Initialize_TCB --
|
|
--------------------
|
|
|
|
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
|
|
Result : C.int;
|
|
Cond_Attr : aliased pthread_condattr_t;
|
|
|
|
begin
|
|
-- Give the task a unique serial number
|
|
|
|
Self_ID.Serial_Number := Next_Serial_Number;
|
|
Next_Serial_Number := Next_Serial_Number + 1;
|
|
pragma Assert (Next_Serial_Number /= 0);
|
|
|
|
Self_ID.Common.LL.Thread := Null_Thread_Id;
|
|
|
|
if Init_Mutex (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0 then
|
|
Succeeded := False;
|
|
return;
|
|
end if;
|
|
|
|
Result := pthread_condattr_init (Cond_Attr'Access);
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result = 0 then
|
|
Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result :=
|
|
pthread_cond_init
|
|
(Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
end if;
|
|
|
|
if Result = 0 then
|
|
Succeeded := True;
|
|
else
|
|
Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Succeeded := False;
|
|
end if;
|
|
|
|
Result := pthread_condattr_destroy (Cond_Attr'Access);
|
|
pragma Assert (Result = 0);
|
|
end Initialize_TCB;
|
|
|
|
-----------------
|
|
-- Create_Task --
|
|
-----------------
|
|
|
|
procedure Create_Task
|
|
(T : Task_Id;
|
|
Wrapper : System.Address;
|
|
Stack_Size : System.Parameters.Size_Type;
|
|
Priority : Any_Priority;
|
|
Succeeded : out Boolean)
|
|
is
|
|
Thread_Attr : aliased pthread_attr_t;
|
|
Adjusted_Stack_Size : C.size_t;
|
|
Result : C.int;
|
|
|
|
use type Multiprocessors.CPU_Range, Interfaces.C.size_t;
|
|
|
|
begin
|
|
-- Check whether both Dispatching_Domain and CPU are specified for
|
|
-- the task, and the CPU value is not contained within the range of
|
|
-- processors for the domain.
|
|
|
|
if T.Common.Domain /= null
|
|
and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU
|
|
and then
|
|
(T.Common.Base_CPU not in T.Common.Domain'Range
|
|
or else not T.Common.Domain (T.Common.Base_CPU))
|
|
then
|
|
Succeeded := False;
|
|
return;
|
|
end if;
|
|
|
|
Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size);
|
|
|
|
Result := pthread_attr_init (Thread_Attr'Access);
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result /= 0 then
|
|
Succeeded := False;
|
|
return;
|
|
end if;
|
|
|
|
Result :=
|
|
pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result :=
|
|
pthread_attr_setdetachstate
|
|
(Thread_Attr'Access, PTHREAD_CREATE_DETACHED);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Set the required attributes for the creation of the thread
|
|
|
|
-- Note: Previously, we called pthread_setaffinity_np (after thread
|
|
-- creation but before thread activation) to set the affinity but it was
|
|
-- not behaving as expected. Setting the required attributes for the
|
|
-- creation of the thread works correctly and it is more appropriate.
|
|
|
|
-- Do nothing if required support not provided by the operating system
|
|
|
|
if pthread_attr_setaffinity_np'Address = Null_Address then
|
|
null;
|
|
|
|
-- Support is available
|
|
|
|
elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
|
|
declare
|
|
CPUs : constant size_t :=
|
|
C.size_t (Multiprocessors.Number_Of_CPUs);
|
|
CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
|
|
Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
|
|
|
|
begin
|
|
CPU_ZERO (Size, CPU_Set);
|
|
System.OS_Interface.CPU_SET
|
|
(int (T.Common.Base_CPU), Size, CPU_Set);
|
|
Result :=
|
|
pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
|
|
pragma Assert (Result = 0);
|
|
|
|
CPU_FREE (CPU_Set);
|
|
end;
|
|
|
|
-- Handle Task_Info
|
|
|
|
elsif T.Common.Task_Info /= null then
|
|
Result :=
|
|
pthread_attr_setaffinity_np
|
|
(Thread_Attr'Access,
|
|
CPU_SETSIZE / 8,
|
|
T.Common.Task_Info.CPU_Affinity'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Handle dispatching domains
|
|
|
|
-- To avoid changing CPU affinities when not needed, we set the
|
|
-- affinity only when assigning to a domain other than the default
|
|
-- one, or when the default one has been modified.
|
|
|
|
elsif T.Common.Domain /= null and then
|
|
(T.Common.Domain /= ST.System_Domain
|
|
or else T.Common.Domain.all /=
|
|
(Multiprocessors.CPU'First ..
|
|
Multiprocessors.Number_Of_CPUs => True))
|
|
then
|
|
declare
|
|
CPUs : constant size_t :=
|
|
C.size_t (Multiprocessors.Number_Of_CPUs);
|
|
CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
|
|
Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
|
|
|
|
begin
|
|
CPU_ZERO (Size, CPU_Set);
|
|
|
|
-- Set the affinity to all the processors belonging to the
|
|
-- dispatching domain.
|
|
|
|
for Proc in T.Common.Domain'Range loop
|
|
if T.Common.Domain (Proc) then
|
|
System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
|
|
end if;
|
|
end loop;
|
|
|
|
Result :=
|
|
pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
|
|
pragma Assert (Result = 0);
|
|
|
|
CPU_FREE (CPU_Set);
|
|
end;
|
|
end if;
|
|
|
|
-- Since the initial signal mask of a thread is inherited from the
|
|
-- creator, and the Environment task has all its signals masked, we
|
|
-- do not need to manipulate caller's signal mask at this point.
|
|
-- All tasks in RTS will have All_Tasks_Mask initially.
|
|
|
|
-- Note: the use of Unrestricted_Access in the following call is needed
|
|
-- because otherwise we have an error of getting a access-to-volatile
|
|
-- value which points to a non-volatile object. But in this case it is
|
|
-- safe to do this, since we know we have no problems with aliasing and
|
|
-- Unrestricted_Access bypasses this check.
|
|
|
|
Result := pthread_create
|
|
(T.Common.LL.Thread'Unrestricted_Access,
|
|
Thread_Attr'Access,
|
|
Thread_Body_Access (Wrapper),
|
|
To_Address (T));
|
|
|
|
pragma Assert (Result in 0 | EAGAIN | ENOMEM);
|
|
|
|
if Result /= 0 then
|
|
Succeeded := False;
|
|
Result := pthread_attr_destroy (Thread_Attr'Access);
|
|
pragma Assert (Result = 0);
|
|
return;
|
|
end if;
|
|
|
|
Succeeded := True;
|
|
|
|
Result := pthread_attr_destroy (Thread_Attr'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Set_Priority (T, Priority);
|
|
end Create_Task;
|
|
|
|
------------------
|
|
-- Finalize_TCB --
|
|
------------------
|
|
|
|
procedure Finalize_TCB (T : Task_Id) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
Result := pthread_mutex_destroy (T.Common.LL.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
Result := pthread_cond_destroy (T.Common.LL.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if T.Known_Tasks_Index /= -1 then
|
|
Known_Tasks (T.Known_Tasks_Index) := null;
|
|
end if;
|
|
|
|
ATCB_Allocation.Free_ATCB (T);
|
|
end Finalize_TCB;
|
|
|
|
---------------
|
|
-- Exit_Task --
|
|
---------------
|
|
|
|
procedure Exit_Task is
|
|
begin
|
|
Specific.Set (null);
|
|
end Exit_Task;
|
|
|
|
----------------
|
|
-- Abort_Task --
|
|
----------------
|
|
|
|
procedure Abort_Task (T : Task_Id) is
|
|
Result : C.int;
|
|
|
|
ESRCH : constant := 3; -- No such process
|
|
-- It can happen that T has already vanished, in which case pthread_kill
|
|
-- returns ESRCH, so we don't consider that to be an error.
|
|
|
|
begin
|
|
if Abort_Handler_Installed then
|
|
Result :=
|
|
pthread_kill
|
|
(T.Common.LL.Thread,
|
|
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
|
|
pragma Assert (Result in 0 | ESRCH);
|
|
end if;
|
|
end Abort_Task;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize (S : in out Suspension_Object) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
-- Initialize internal state (always to False (RM D.10(6)))
|
|
|
|
S.State := False;
|
|
S.Waiting := False;
|
|
|
|
-- Initialize internal mutex
|
|
|
|
Result := pthread_mutex_init (S.L'Access, null);
|
|
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error;
|
|
end if;
|
|
|
|
-- Initialize internal condition variable
|
|
|
|
Result := pthread_cond_init (S.CV'Access, null);
|
|
|
|
pragma Assert (Result in 0 | ENOMEM);
|
|
|
|
if Result /= 0 then
|
|
Result := pthread_mutex_destroy (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if Result = ENOMEM then
|
|
raise Storage_Error;
|
|
end if;
|
|
end if;
|
|
end Initialize;
|
|
|
|
--------------
|
|
-- Finalize --
|
|
--------------
|
|
|
|
procedure Finalize (S : in out Suspension_Object) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
-- Destroy internal mutex
|
|
|
|
Result := pthread_mutex_destroy (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- Destroy internal condition variable
|
|
|
|
Result := pthread_cond_destroy (S.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
end Finalize;
|
|
|
|
-------------------
|
|
-- Current_State --
|
|
-------------------
|
|
|
|
function Current_State (S : Suspension_Object) return Boolean is
|
|
begin
|
|
-- We do not want to use lock on this read operation. State is marked
|
|
-- as Atomic so that we ensure that the value retrieved is correct.
|
|
|
|
return S.State;
|
|
end Current_State;
|
|
|
|
---------------
|
|
-- Set_False --
|
|
---------------
|
|
|
|
procedure Set_False (S : in out Suspension_Object) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := pthread_mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
S.State := False;
|
|
|
|
Result := pthread_mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end Set_False;
|
|
|
|
--------------
|
|
-- Set_True --
|
|
--------------
|
|
|
|
procedure Set_True (S : in out Suspension_Object) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := pthread_mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
-- If there is already a task waiting on this suspension object then
|
|
-- we resume it, leaving the state of the suspension object to False,
|
|
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
|
|
-- the state to True.
|
|
|
|
if S.Waiting then
|
|
S.Waiting := False;
|
|
S.State := False;
|
|
|
|
Result := pthread_cond_signal (S.CV'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
else
|
|
S.State := True;
|
|
end if;
|
|
|
|
Result := pthread_mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end Set_True;
|
|
|
|
------------------------
|
|
-- Suspend_Until_True --
|
|
------------------------
|
|
|
|
procedure Suspend_Until_True (S : in out Suspension_Object) is
|
|
Result : C.int;
|
|
|
|
begin
|
|
SSL.Abort_Defer.all;
|
|
|
|
Result := pthread_mutex_lock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
if S.Waiting then
|
|
|
|
-- Program_Error must be raised upon calling Suspend_Until_True
|
|
-- if another task is already waiting on that suspension object
|
|
-- (RM D.10(10)).
|
|
|
|
Result := pthread_mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
|
|
raise Program_Error;
|
|
|
|
else
|
|
-- Suspend the task if the state is False. Otherwise, the task
|
|
-- continues its execution, and the state of the suspension object
|
|
-- is set to False (ARM D.10 par. 9).
|
|
|
|
if S.State then
|
|
S.State := False;
|
|
else
|
|
S.Waiting := True;
|
|
|
|
loop
|
|
-- Loop in case pthread_cond_wait returns earlier than expected
|
|
-- (e.g. in case of EINTR caused by a signal). This should not
|
|
-- happen with the current Linux implementation of pthread, but
|
|
-- POSIX does not guarantee it so this may change in future.
|
|
|
|
Result := pthread_cond_wait (S.CV'Access, S.L'Access);
|
|
pragma Assert (Result in 0 | EINTR);
|
|
|
|
exit when not S.Waiting;
|
|
end loop;
|
|
end if;
|
|
|
|
Result := pthread_mutex_unlock (S.L'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
SSL.Abort_Undefer.all;
|
|
end if;
|
|
end Suspend_Until_True;
|
|
|
|
----------------
|
|
-- Check_Exit --
|
|
----------------
|
|
|
|
-- Dummy version
|
|
|
|
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (Self_ID);
|
|
begin
|
|
return True;
|
|
end Check_Exit;
|
|
|
|
--------------------
|
|
-- Check_No_Locks --
|
|
--------------------
|
|
|
|
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (Self_ID);
|
|
begin
|
|
return True;
|
|
end Check_No_Locks;
|
|
|
|
----------------------
|
|
-- Environment_Task --
|
|
----------------------
|
|
|
|
function Environment_Task return Task_Id is
|
|
begin
|
|
return Environment_Task_Id;
|
|
end Environment_Task;
|
|
|
|
------------------
|
|
-- Suspend_Task --
|
|
------------------
|
|
|
|
function Suspend_Task
|
|
(T : ST.Task_Id;
|
|
Thread_Self : Thread_Id) return Boolean
|
|
is
|
|
begin
|
|
if T.Common.LL.Thread /= Thread_Self then
|
|
return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
|
|
else
|
|
return True;
|
|
end if;
|
|
end Suspend_Task;
|
|
|
|
-----------------
|
|
-- Resume_Task --
|
|
-----------------
|
|
|
|
function Resume_Task
|
|
(T : ST.Task_Id;
|
|
Thread_Self : Thread_Id) return Boolean
|
|
is
|
|
begin
|
|
if T.Common.LL.Thread /= Thread_Self then
|
|
return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
|
|
else
|
|
return True;
|
|
end if;
|
|
end Resume_Task;
|
|
|
|
--------------------
|
|
-- Stop_All_Tasks --
|
|
--------------------
|
|
|
|
procedure Stop_All_Tasks is
|
|
begin
|
|
null;
|
|
end Stop_All_Tasks;
|
|
|
|
---------------
|
|
-- Stop_Task --
|
|
---------------
|
|
|
|
function Stop_Task (T : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (T);
|
|
begin
|
|
return False;
|
|
end Stop_Task;
|
|
|
|
-------------------
|
|
-- Continue_Task --
|
|
-------------------
|
|
|
|
function Continue_Task (T : ST.Task_Id) return Boolean is
|
|
pragma Unreferenced (T);
|
|
begin
|
|
return False;
|
|
end Continue_Task;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize (Environment_Task : Task_Id) is
|
|
act : aliased struct_sigaction;
|
|
old_act : aliased struct_sigaction;
|
|
Tmp_Set : aliased sigset_t;
|
|
Result : C.int;
|
|
-- Whether to use an alternate signal stack for stack overflows
|
|
|
|
function State
|
|
(Int : System.Interrupt_Management.Interrupt_ID) return Character;
|
|
pragma Import (C, State, "__gnat_get_interrupt_state");
|
|
-- Get interrupt state. Defined in a-init.c
|
|
-- The input argument is the interrupt number,
|
|
-- and the result is one of the following:
|
|
|
|
Default : constant Character := 's';
|
|
-- 'n' this interrupt not set by any Interrupt_State pragma
|
|
-- 'u' Interrupt_State pragma set state to User
|
|
-- 'r' Interrupt_State pragma set state to Runtime
|
|
-- 's' Interrupt_State pragma set state to System (use "default"
|
|
-- system handler)
|
|
|
|
begin
|
|
Environment_Task_Id := Environment_Task;
|
|
|
|
Interrupt_Management.Initialize;
|
|
|
|
-- Prepare the set of signals that should be unblocked in all tasks
|
|
|
|
Result := sigemptyset (Unblocked_Signal_Mask'Access);
|
|
pragma Assert (Result = 0);
|
|
|
|
for J in Interrupt_Management.Interrupt_ID loop
|
|
if System.Interrupt_Management.Keep_Unmasked (J) then
|
|
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
|
|
pragma Assert (Result = 0);
|
|
end if;
|
|
end loop;
|
|
|
|
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
|
|
|
|
-- Initialize the global RTS lock
|
|
|
|
Specific.Initialize (Environment_Task);
|
|
|
|
if Use_Alternate_Stack then
|
|
Environment_Task.Common.Task_Alternate_Stack :=
|
|
Alternate_Stack'Address;
|
|
end if;
|
|
|
|
-- Make environment task known here because it doesn't go through
|
|
-- Activate_Tasks, which does it for all other tasks.
|
|
|
|
Known_Tasks (Known_Tasks'First) := Environment_Task;
|
|
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
|
|
|
|
Enter_Task (Environment_Task);
|
|
|
|
if State
|
|
(System.Interrupt_Management.Abort_Task_Interrupt) /= Default
|
|
then
|
|
act.sa_flags := 0;
|
|
act.sa_handler := Abort_Handler'Address;
|
|
|
|
Result := sigemptyset (Tmp_Set'Access);
|
|
pragma Assert (Result = 0);
|
|
act.sa_mask := Tmp_Set;
|
|
|
|
Result :=
|
|
sigaction
|
|
(Signal (Interrupt_Management.Abort_Task_Interrupt),
|
|
act'Unchecked_Access,
|
|
old_act'Unchecked_Access);
|
|
pragma Assert (Result = 0);
|
|
Abort_Handler_Installed := True;
|
|
end if;
|
|
|
|
-- pragma CPU and dispatching domains for the environment task
|
|
|
|
Set_Task_Affinity (Environment_Task);
|
|
end Initialize;
|
|
|
|
-----------------------
|
|
-- Set_Task_Affinity --
|
|
-----------------------
|
|
|
|
procedure Set_Task_Affinity (T : ST.Task_Id) is
|
|
use type Multiprocessors.CPU_Range;
|
|
|
|
begin
|
|
-- Do nothing if there is no support for setting affinities or the
|
|
-- underlying thread has not yet been created. If the thread has not
|
|
-- yet been created then the proper affinity will be set during its
|
|
-- creation.
|
|
|
|
if pthread_setaffinity_np'Address /= Null_Address
|
|
and then T.Common.LL.Thread /= Null_Thread_Id
|
|
then
|
|
declare
|
|
CPUs : constant size_t :=
|
|
C.size_t (Multiprocessors.Number_Of_CPUs);
|
|
CPU_Set : cpu_set_t_ptr := null;
|
|
Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
|
|
|
|
Result : C.int;
|
|
|
|
begin
|
|
-- We look at the specific CPU (Base_CPU) first, then at the
|
|
-- Task_Info field, and finally at the assigned dispatching
|
|
-- domain, if any.
|
|
|
|
if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
|
|
|
|
-- Set the affinity to an unique CPU
|
|
|
|
CPU_Set := CPU_ALLOC (CPUs);
|
|
System.OS_Interface.CPU_ZERO (Size, CPU_Set);
|
|
System.OS_Interface.CPU_SET
|
|
(int (T.Common.Base_CPU), Size, CPU_Set);
|
|
|
|
-- Handle Task_Info
|
|
|
|
elsif T.Common.Task_Info /= null then
|
|
CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;
|
|
|
|
-- Handle dispatching domains
|
|
|
|
elsif T.Common.Domain /= null and then
|
|
(T.Common.Domain /= ST.System_Domain
|
|
or else T.Common.Domain.all /=
|
|
(Multiprocessors.CPU'First ..
|
|
Multiprocessors.Number_Of_CPUs => True))
|
|
then
|
|
-- Set the affinity to all the processors belonging to the
|
|
-- dispatching domain. To avoid changing CPU affinities when
|
|
-- not needed, we set the affinity only when assigning to a
|
|
-- domain other than the default one, or when the default one
|
|
-- has been modified.
|
|
|
|
CPU_Set := CPU_ALLOC (CPUs);
|
|
System.OS_Interface.CPU_ZERO (Size, CPU_Set);
|
|
|
|
for Proc in T.Common.Domain'Range loop
|
|
if T.Common.Domain (Proc) then
|
|
System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
-- We set the new affinity if needed. Otherwise, the new task
|
|
-- will inherit its creator's CPU affinity mask (according to
|
|
-- the documentation of pthread_setaffinity_np), which is
|
|
-- consistent with Ada's required semantics.
|
|
|
|
if CPU_Set /= null then
|
|
Result :=
|
|
pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
|
|
pragma Assert (Result = 0);
|
|
|
|
CPU_FREE (CPU_Set);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Set_Task_Affinity;
|
|
|
|
end System.Task_Primitives.Operations;
|