586 lines
27 KiB
C
586 lines
27 KiB
C
/****************************************************************************
|
|
* *
|
|
* GNAT COMPILER COMPONENTS *
|
|
* *
|
|
* A D A - T R E E *
|
|
* *
|
|
* C Header File *
|
|
* *
|
|
* Copyright (C) 1992-2020, Free Software Foundation, Inc. *
|
|
* *
|
|
* GNAT is free software; you can redistribute it and/or modify it under *
|
|
* terms of the GNU General Public License as published by the Free Soft- *
|
|
* ware Foundation; either version 3, or (at your option) any later ver- *
|
|
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
|
|
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
|
|
* for more details. You should have received a copy of the GNU General *
|
|
* Public License along with GCC; see the file COPYING3. If not see *
|
|
* <http://www.gnu.org/licenses/>. *
|
|
* *
|
|
* GNAT was originally developed by the GNAT team at New York University. *
|
|
* Extensive contributions were provided by Ada Core Technologies Inc. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
/* The resulting tree type. */
|
|
union GTY((desc ("0"),
|
|
chain_next ("CODE_CONTAINS_STRUCT (TREE_CODE (&%h.generic), TS_COMMON) ? ((union lang_tree_node *) TREE_CHAIN (&%h.generic)) : NULL")))
|
|
lang_tree_node
|
|
{
|
|
union tree_node GTY((tag ("0"),
|
|
desc ("tree_node_structure (&%h)"))) generic;
|
|
};
|
|
|
|
/* Ada uses the lang_decl and lang_type fields to hold a tree. */
|
|
struct GTY(()) lang_type { tree t1; tree t2; };
|
|
struct GTY(()) lang_decl { tree t; };
|
|
|
|
extern struct lang_type *get_lang_specific (tree node);
|
|
|
|
/* Macros to get and set the trees in TYPE_LANG_SPECIFIC. */
|
|
#define GET_TYPE_LANG_SPECIFIC(NODE) \
|
|
(TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t1 : NULL_TREE)
|
|
|
|
#define SET_TYPE_LANG_SPECIFIC(NODE, X) (get_lang_specific (NODE)->t1 = (X))
|
|
|
|
#define GET_TYPE_LANG_SPECIFIC2(NODE) \
|
|
(TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t2 : NULL_TREE)
|
|
|
|
#define SET_TYPE_LANG_SPECIFIC2(NODE, X) (get_lang_specific (NODE)->t2 = (X))
|
|
|
|
/* Macros to get and set the tree in DECL_LANG_SPECIFIC. */
|
|
#define GET_DECL_LANG_SPECIFIC(NODE) \
|
|
(DECL_LANG_SPECIFIC (NODE) ? DECL_LANG_SPECIFIC (NODE)->t : NULL_TREE)
|
|
|
|
#define SET_DECL_LANG_SPECIFIC(NODE, X) \
|
|
do { \
|
|
tree tmp = (X); \
|
|
if (!DECL_LANG_SPECIFIC (NODE)) \
|
|
DECL_LANG_SPECIFIC (NODE) \
|
|
= ggc_alloc<struct lang_decl> (); \
|
|
DECL_LANG_SPECIFIC (NODE)->t = tmp; \
|
|
} while (0)
|
|
|
|
|
|
/* Flags added to type nodes. */
|
|
|
|
/* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is a
|
|
record being used as a fat pointer (only true for RECORD_TYPE). */
|
|
#define TYPE_FAT_POINTER_P(NODE) \
|
|
TYPE_LANG_FLAG_0 (RECORD_OR_UNION_CHECK (NODE))
|
|
|
|
#define TYPE_IS_FAT_POINTER_P(NODE) \
|
|
(TREE_CODE (NODE) == RECORD_TYPE && TYPE_FAT_POINTER_P (NODE))
|
|
|
|
/* For integral types and array types, nonzero if this is an implementation
|
|
type for a bit-packed array type. Such types should not be extended to a
|
|
larger size or validated against a specified size. */
|
|
#define TYPE_BIT_PACKED_ARRAY_TYPE_P(NODE) \
|
|
TYPE_LANG_FLAG_0 (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
|
|
|
|
#define BIT_PACKED_ARRAY_TYPE_P(NODE) \
|
|
((TREE_CODE (NODE) == INTEGER_TYPE || TREE_CODE (NODE) == ARRAY_TYPE) \
|
|
&& TYPE_BIT_PACKED_ARRAY_TYPE_P (NODE))
|
|
|
|
/* For FUNCTION_TYPE and METHOD_TYPE, nonzero if the function returns by
|
|
direct reference, i.e. the callee returns a pointer to a memory location
|
|
it has allocated and the caller only needs to dereference the pointer. */
|
|
#define TYPE_RETURN_BY_DIRECT_REF_P(NODE) \
|
|
TYPE_LANG_FLAG_0 (FUNC_OR_METHOD_CHECK (NODE))
|
|
|
|
/* For INTEGER_TYPE, nonzero if this is a modular type with a modulus that
|
|
is not equal to two to the power of its mode's size. */
|
|
#define TYPE_MODULAR_P(NODE) TYPE_LANG_FLAG_1 (INTEGER_TYPE_CHECK (NODE))
|
|
|
|
/* For ARRAY_TYPE, nonzero if this type corresponds to a dimension of
|
|
an Ada array other than the first. */
|
|
#define TYPE_MULTI_ARRAY_P(NODE) TYPE_LANG_FLAG_1 (ARRAY_TYPE_CHECK (NODE))
|
|
|
|
/* For FUNCTION_TYPE and METHOD_TYPE, nonzero if function returns an
|
|
unconstrained array or record type. */
|
|
#define TYPE_RETURN_UNCONSTRAINED_P(NODE) \
|
|
TYPE_LANG_FLAG_1 (FUNC_OR_METHOD_CHECK (NODE))
|
|
|
|
/* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this denotes
|
|
a justified modular type (will only be true for RECORD_TYPE). */
|
|
#define TYPE_JUSTIFIED_MODULAR_P(NODE) \
|
|
TYPE_LANG_FLAG_1 (RECORD_OR_UNION_CHECK (NODE))
|
|
|
|
/* Nonzero in an arithmetic subtype if this is a subtype not known to the
|
|
front-end. */
|
|
#define TYPE_EXTRA_SUBTYPE_P(NODE) TYPE_LANG_FLAG_2 (INTEGER_TYPE_CHECK (NODE))
|
|
|
|
#define TYPE_IS_EXTRA_SUBTYPE_P(NODE) \
|
|
(TREE_CODE (NODE) == INTEGER_TYPE && TYPE_EXTRA_SUBTYPE_P (NODE))
|
|
|
|
/* Nonzero for an aggregate type if this is a by-reference type. We also
|
|
set this on an ENUMERAL_TYPE that is dummy. */
|
|
#define TYPE_BY_REFERENCE_P(NODE) \
|
|
TYPE_LANG_FLAG_2 (TREE_CHECK5 (NODE, RECORD_TYPE, UNION_TYPE, \
|
|
ARRAY_TYPE, UNCONSTRAINED_ARRAY_TYPE, \
|
|
ENUMERAL_TYPE))
|
|
|
|
#define TYPE_IS_BY_REFERENCE_P(NODE) \
|
|
((TREE_CODE (NODE) == RECORD_TYPE \
|
|
|| TREE_CODE (NODE) == UNION_TYPE \
|
|
|| TREE_CODE (NODE) == ARRAY_TYPE \
|
|
|| TREE_CODE (NODE) == UNCONSTRAINED_ARRAY_TYPE \
|
|
|| TREE_CODE (NODE) == ENUMERAL_TYPE) \
|
|
&& TYPE_BY_REFERENCE_P (NODE))
|
|
|
|
/* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is the
|
|
type for an object whose type includes its template in addition to
|
|
its value (only true for RECORD_TYPE). */
|
|
#define TYPE_CONTAINS_TEMPLATE_P(NODE) \
|
|
TYPE_LANG_FLAG_3 (RECORD_OR_UNION_CHECK (NODE))
|
|
|
|
/* For INTEGER_TYPE, nonzero if it implements a fixed-point type. */
|
|
#define TYPE_FIXED_POINT_P(NODE) \
|
|
TYPE_LANG_FLAG_3 (INTEGER_TYPE_CHECK (NODE))
|
|
|
|
#define TYPE_IS_FIXED_POINT_P(NODE) \
|
|
(TREE_CODE (NODE) == INTEGER_TYPE && TYPE_FIXED_POINT_P (NODE))
|
|
|
|
/* True if NODE is a thin pointer. */
|
|
#define TYPE_IS_THIN_POINTER_P(NODE) \
|
|
(POINTER_TYPE_P (NODE) \
|
|
&& TREE_CODE (TREE_TYPE (NODE)) == RECORD_TYPE \
|
|
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (NODE)))
|
|
|
|
/* True if TYPE is either a fat or thin pointer to an unconstrained
|
|
array. */
|
|
#define TYPE_IS_FAT_OR_THIN_POINTER_P(NODE) \
|
|
(TYPE_IS_FAT_POINTER_P (NODE) || TYPE_IS_THIN_POINTER_P (NODE))
|
|
|
|
/* For INTEGER_TYPEs, nonzero if the type has a biased representation. */
|
|
#define TYPE_BIASED_REPRESENTATION_P(NODE) \
|
|
TYPE_LANG_FLAG_4 (INTEGER_TYPE_CHECK (NODE))
|
|
|
|
/* For ARRAY_TYPEs, nonzero if the array type has Convention_Fortran. */
|
|
#define TYPE_CONVENTION_FORTRAN_P(NODE) \
|
|
TYPE_LANG_FLAG_4 (ARRAY_TYPE_CHECK (NODE))
|
|
|
|
/* For RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE, nonzero if this is a dummy
|
|
type, made to correspond to a private or incomplete type. */
|
|
#define TYPE_DUMMY_P(NODE) \
|
|
TYPE_LANG_FLAG_4 (TREE_CHECK3 (NODE, RECORD_TYPE, UNION_TYPE, ENUMERAL_TYPE))
|
|
|
|
#define TYPE_IS_DUMMY_P(NODE) \
|
|
((TREE_CODE (NODE) == RECORD_TYPE \
|
|
|| TREE_CODE (NODE) == UNION_TYPE \
|
|
|| TREE_CODE (NODE) == ENUMERAL_TYPE) \
|
|
&& TYPE_DUMMY_P (NODE))
|
|
|
|
/* For an INTEGER_TYPE, nonzero if TYPE_ACTUAL_BOUNDS is present. */
|
|
#define TYPE_HAS_ACTUAL_BOUNDS_P(NODE) \
|
|
TYPE_LANG_FLAG_5 (INTEGER_TYPE_CHECK (NODE))
|
|
|
|
/* For a RECORD_TYPE, nonzero if this was made just to supply needed
|
|
padding or alignment. */
|
|
#define TYPE_PADDING_P(NODE) TYPE_LANG_FLAG_5 (RECORD_TYPE_CHECK (NODE))
|
|
|
|
#define TYPE_IS_PADDING_P(NODE) \
|
|
(TREE_CODE (NODE) == RECORD_TYPE && TYPE_PADDING_P (NODE))
|
|
|
|
/* True for a non-dummy type if TYPE can alias any other types. */
|
|
#define TYPE_UNIVERSAL_ALIASING_P(NODE) TYPE_LANG_FLAG_6 (NODE)
|
|
|
|
/* True for a dummy type if TYPE appears in a profile. */
|
|
#define TYPE_DUMMY_IN_PROFILE_P(NODE) TYPE_LANG_FLAG_6 (NODE)
|
|
|
|
/* True if objects of this type are guaranteed to be properly aligned. */
|
|
#define TYPE_ALIGN_OK(NODE) TYPE_LANG_FLAG_7 (NODE)
|
|
|
|
/* True for types that implement a packed array and for original packed array
|
|
types. */
|
|
#define TYPE_IMPL_PACKED_ARRAY_P(NODE) \
|
|
((TREE_CODE (NODE) == ARRAY_TYPE && TYPE_PACKED (NODE)) \
|
|
|| (TREE_CODE (NODE) == INTEGER_TYPE && TYPE_BIT_PACKED_ARRAY_TYPE_P (NODE)))
|
|
|
|
/* True for types that can hold a debug type. */
|
|
#define TYPE_CAN_HAVE_DEBUG_TYPE_P(NODE) (!TYPE_IMPL_PACKED_ARRAY_P (NODE))
|
|
|
|
/* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, this holds the maximum
|
|
alignment value the type ought to have. */
|
|
#define TYPE_MAX_ALIGN(NODE) (TYPE_PRECISION (RECORD_OR_UNION_CHECK (NODE)))
|
|
|
|
/* For an UNCONSTRAINED_ARRAY_TYPE, this is the record containing both the
|
|
template and the object.
|
|
|
|
??? We also put this on an ENUMERAL_TYPE that is dummy. Technically,
|
|
this is a conflict on the minval field, but there doesn't seem to be
|
|
simple fix, so we'll live with this kludge for now. */
|
|
#define TYPE_OBJECT_RECORD_TYPE(NODE) \
|
|
(TYPE_MIN_VALUE_RAW (TREE_CHECK2 ((NODE), UNCONSTRAINED_ARRAY_TYPE, \
|
|
ENUMERAL_TYPE)))
|
|
|
|
/* For numerical types, this is the GCC lower bound of the type. The GCC
|
|
type system is based on the invariant that an object X of a given type
|
|
cannot hold at run time a value smaller than its lower bound; otherwise
|
|
the behavior is undefined. The optimizer takes advantage of this and
|
|
considers that the assertion X >= LB is always true. */
|
|
#define TYPE_GCC_MIN_VALUE(NODE) \
|
|
(TYPE_MIN_VALUE_RAW (NUMERICAL_TYPE_CHECK (NODE)))
|
|
|
|
/* For numerical types, this is the GCC upper bound of the type. The GCC
|
|
type system is based on the invariant that an object X of a given type
|
|
cannot hold at run time a value larger than its upper bound; otherwise
|
|
the behavior is undefined. The optimizer takes advantage of this and
|
|
considers that the assertion X <= UB is always true. */
|
|
#define TYPE_GCC_MAX_VALUE(NODE) \
|
|
(TYPE_MAX_VALUE_RAW (NUMERICAL_TYPE_CHECK (NODE)))
|
|
|
|
/* For a FUNCTION_TYPE and METHOD_TYPE, if the function has parameters passed
|
|
by copy in/copy out, this is the list of nodes used to specify the return
|
|
values of these parameters. For a full description of the copy in/copy out
|
|
parameter passing mechanism refer to the routine gnat_to_gnu_entity. */
|
|
#define TYPE_CI_CO_LIST(NODE) TYPE_LANG_SLOT_1 (FUNC_OR_METHOD_CHECK (NODE))
|
|
|
|
/* For an ARRAY_TYPE with variable size, this is the padding type built for
|
|
the array type when it is itself the component type of another array. */
|
|
#define TYPE_PADDING_FOR_COMPONENT(NODE) \
|
|
TYPE_LANG_SLOT_1 (ARRAY_TYPE_CHECK (NODE))
|
|
|
|
/* For a VECTOR_TYPE, this is the representative array type. */
|
|
#define TYPE_REPRESENTATIVE_ARRAY(NODE) \
|
|
TYPE_LANG_SLOT_1 (VECTOR_TYPE_CHECK (NODE))
|
|
|
|
/* For numerical types, this holds various RM-defined values. */
|
|
#define TYPE_RM_VALUES(NODE) TYPE_LANG_SLOT_1 (NUMERICAL_TYPE_CHECK (NODE))
|
|
|
|
/* Macros to get and set the individual values in TYPE_RM_VALUES. */
|
|
#define TYPE_RM_VALUE(NODE, N) \
|
|
(TYPE_RM_VALUES (NODE) \
|
|
? TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) : NULL_TREE)
|
|
|
|
#define SET_TYPE_RM_VALUE(NODE, N, X) \
|
|
do { \
|
|
tree tmp = (X); \
|
|
if (!TYPE_RM_VALUES (NODE)) \
|
|
TYPE_RM_VALUES (NODE) = make_tree_vec (3); \
|
|
/* ??? The field is not visited by the generic \
|
|
code so we need to mark it manually. */ \
|
|
MARK_VISITED (tmp); \
|
|
TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) = tmp; \
|
|
} while (0)
|
|
|
|
/* For numerical types, this is the RM size of the type, aka its precision.
|
|
There is a discrepancy between what is called precision here (and more
|
|
generally throughout gigi) and what is called precision in the GCC type
|
|
system: in the former case it's TYPE_RM_SIZE whereas it's TYPE_PRECISION
|
|
in the latter case. They are not identical because of the need to support
|
|
invalid values.
|
|
|
|
These values can be outside the range of values allowed by the RM size
|
|
but they must nevertheless be valid in the GCC type system, otherwise
|
|
the optimizer can pretend that they simply don't exist. Therefore they
|
|
must be within the range of values allowed by the precision in the GCC
|
|
sense, hence TYPE_PRECISION be set to the Esize, not the RM size. */
|
|
#define TYPE_RM_SIZE(NODE) TYPE_RM_VALUE ((NODE), 0)
|
|
#define SET_TYPE_RM_SIZE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 0, (X))
|
|
|
|
/* For numerical types, this is the RM lower bound of the type. There is
|
|
again a discrepancy between this lower bound and the GCC lower bound,
|
|
again because of the need to support invalid values.
|
|
|
|
These values can be outside the range of values allowed by the RM lower
|
|
bound but they must nevertheless be valid in the GCC type system, otherwise
|
|
the optimizer can pretend that they simply don't exist. Therefore they
|
|
must be within the range of values allowed by the lower bound in the GCC
|
|
sense, hence the GCC lower bound be set to that of the base type.
|
|
|
|
This lower bound is translated directly without the adjustments that may
|
|
be required for type compatibility, so it will generally be necessary to
|
|
convert it to the base type of the numerical type before using it. */
|
|
#define TYPE_RM_MIN_VALUE(NODE) TYPE_RM_VALUE ((NODE), 1)
|
|
#define SET_TYPE_RM_MIN_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 1, (X))
|
|
|
|
/* For numerical types, this is the RM upper bound of the type. There is
|
|
again a discrepancy between this upper bound and the GCC upper bound,
|
|
again because of the need to support invalid values.
|
|
|
|
These values can be outside the range of values allowed by the RM upper
|
|
bound but they must nevertheless be valid in the GCC type system, otherwise
|
|
the optimizer can pretend that they simply don't exist. Therefore they
|
|
must be within the range of values allowed by the upper bound in the GCC
|
|
sense, hence the GCC upper bound be set to that of the base type.
|
|
|
|
This upper bound is translated directly without the adjustments that may
|
|
be required for type compatibility, so it will generally be necessary to
|
|
convert it to the base type of the numerical type before using it. */
|
|
#define TYPE_RM_MAX_VALUE(NODE) TYPE_RM_VALUE ((NODE), 2)
|
|
#define SET_TYPE_RM_MAX_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 2, (X))
|
|
|
|
/* For numerical types, this is the lower bound of the type, i.e. the RM lower
|
|
bound for language-defined types and the GCC lower bound for others. */
|
|
#undef TYPE_MIN_VALUE
|
|
#define TYPE_MIN_VALUE(NODE) \
|
|
(TYPE_RM_MIN_VALUE (NODE) \
|
|
? TYPE_RM_MIN_VALUE (NODE) : TYPE_GCC_MIN_VALUE (NODE))
|
|
|
|
/* For numerical types, this is the upper bound of the type, i.e. the RM upper
|
|
bound for language-defined types and the GCC upper bound for others. */
|
|
#undef TYPE_MAX_VALUE
|
|
#define TYPE_MAX_VALUE(NODE) \
|
|
(TYPE_RM_MAX_VALUE (NODE) \
|
|
? TYPE_RM_MAX_VALUE (NODE) : TYPE_GCC_MAX_VALUE (NODE))
|
|
|
|
/* For an INTEGER_TYPE with TYPE_MODULAR_P, this is the value of the
|
|
modulus. */
|
|
#define TYPE_MODULUS(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
|
|
#define SET_TYPE_MODULUS(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
|
|
|
|
/* For an INTEGER_TYPE that is the TYPE_DOMAIN of some ARRAY_TYPE, this is
|
|
the type corresponding to the Ada index type. It is necessary to keep
|
|
these 2 views for every array type because the TYPE_DOMAIN is subject
|
|
to strong constraints in GENERIC: it must be a subtype of SIZETYPE and
|
|
may not be superflat, i.e. the upper bound must always be larger or
|
|
equal to the lower bound minus 1 (i.e. the canonical length formula
|
|
must always yield a non-negative number), which means that at least
|
|
one of the bounds may need to be a conditional expression. There are
|
|
no such constraints on the TYPE_INDEX_TYPE because gigi is prepared to
|
|
deal with the superflat case; moreover the TYPE_INDEX_TYPE is used as
|
|
the index type for the debug info and, therefore, needs to be as close
|
|
as possible to the source index type. */
|
|
#define TYPE_INDEX_TYPE(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
|
|
#define SET_TYPE_INDEX_TYPE(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
|
|
|
|
/* For an INTEGER_TYPE with TYPE_HAS_ACTUAL_BOUNDS_P or an ARRAY_TYPE, this is
|
|
the index type that should be used when the actual bounds are required for
|
|
a template. This is used in the case of packed arrays. */
|
|
#define TYPE_ACTUAL_BOUNDS(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
|
|
#define SET_TYPE_ACTUAL_BOUNDS(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE), X)
|
|
|
|
/* For a POINTER_TYPE that points to the template type of an unconstrained
|
|
array type, this is the address to be used in a null fat pointer. */
|
|
#define TYPE_NULL_BOUNDS(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE))
|
|
#define SET_TYPE_NULL_BOUNDS(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE), X)
|
|
|
|
/* For a RECORD_TYPE that is a fat pointer, this is the type for the
|
|
unconstrained array. Likewise for a RECORD_TYPE that is pointed
|
|
to by a thin pointer, if it is made for the unconstrained array
|
|
type itself; the field is NULL_TREE if the RECORD_TYPE is made
|
|
for a constrained subtype of the array type. */
|
|
#define TYPE_UNCONSTRAINED_ARRAY(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE))
|
|
#define SET_TYPE_UNCONSTRAINED_ARRAY(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE), X)
|
|
|
|
/* For other RECORD_TYPEs and all UNION_TYPEs and QUAL_UNION_TYPEs, this is
|
|
the Ada size of the object. This differs from the GCC size in that it
|
|
does not include any rounding up to the alignment of the type. */
|
|
#define TYPE_ADA_SIZE(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE))
|
|
#define SET_TYPE_ADA_SIZE(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE), X)
|
|
|
|
/* For an INTEGER_TYPE with TYPE_IS_FIXED_POINT_P, this is the value of the
|
|
scale factor. Modular types, index types (sizetype subtypes) and
|
|
fixed-point types are totally distinct types, so there is no problem with
|
|
sharing type lang specific's first slot. */
|
|
#define TYPE_SCALE_FACTOR(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
|
|
#define SET_TYPE_SCALE_FACTOR(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
|
|
|
|
/* For types with TYPE_CAN_HAVE_DEBUG_TYPE_P, this is the type to use in
|
|
debugging information. */
|
|
#define TYPE_DEBUG_TYPE(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC2 (NODE)
|
|
#define SET_TYPE_DEBUG_TYPE(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC2 (NODE, X)
|
|
|
|
/* For types with TYPE_IMPL_PACKED_ARRAY_P, this is the original packed
|
|
array type. Note that this predicate is true for original packed array
|
|
types, so these cannot have a debug type. */
|
|
#define TYPE_ORIGINAL_PACKED_ARRAY(NODE) \
|
|
GET_TYPE_LANG_SPECIFIC2 (NODE)
|
|
#define SET_TYPE_ORIGINAL_PACKED_ARRAY(NODE, X) \
|
|
SET_TYPE_LANG_SPECIFIC2 (NODE, X)
|
|
|
|
|
|
/* Flags added to decl nodes. */
|
|
|
|
/* Nonzero in a FUNCTION_DECL that represents a stubbed function
|
|
discriminant. */
|
|
#define DECL_STUBBED_P(NODE) DECL_LANG_FLAG_0 (FUNCTION_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a VAR_DECL if it is guaranteed to be constant after having
|
|
been elaborated and TREE_READONLY is not set on it. */
|
|
#define DECL_READONLY_ONCE_ELAB(NODE) DECL_LANG_FLAG_0 (VAR_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a CONST_DECL if its value is (essentially) the address of a
|
|
constant CONSTRUCTOR. */
|
|
#define DECL_CONST_ADDRESS_P(NODE) DECL_LANG_FLAG_0 (CONST_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a FIELD_DECL if it is declared as aliased. */
|
|
#define DECL_ALIASED_P(NODE) DECL_LANG_FLAG_0 (FIELD_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a TYPE_DECL if this is the declaration of a Taft amendment type
|
|
in the main unit, i.e. the full declaration is available. */
|
|
#define DECL_TAFT_TYPE_P(NODE) DECL_LANG_FLAG_0 (TYPE_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a PARM_DECL passed by reference but for which only a restricted
|
|
form of aliasing is allowed. The first restriction comes explicitly from
|
|
the RM 6.2(12) clause: there is no read-after-write dependency between a
|
|
store based on such a PARM_DECL and a load not based on this PARM_DECL,
|
|
so stores based on such PARM_DECLs can be sunk past all loads based on
|
|
a distinct object. The second restriction can be inferred from the same
|
|
clause: there is no write-after-write dependency between a store based
|
|
on such a PARM_DECL and a store based on a distinct such PARM_DECL, as
|
|
the compiler would be allowed to pass the parameters by copy and the
|
|
order of assignment to actual parameters after a call is arbitrary as
|
|
per the RM 6.4.1(17) clause, so stores based on distinct such PARM_DECLs
|
|
can be swapped. */
|
|
#define DECL_RESTRICTED_ALIASING_P(NODE) \
|
|
DECL_LANG_FLAG_0 (PARM_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a DECL if it is always used by reference, i.e. an INDIRECT_REF
|
|
is needed to access the object. */
|
|
#define DECL_BY_REF_P(NODE) DECL_LANG_FLAG_1 (NODE)
|
|
|
|
/* Nonzero in a DECL if it is made for a pointer that can never be null. */
|
|
#define DECL_CAN_NEVER_BE_NULL_P(NODE) DECL_LANG_FLAG_2 (NODE)
|
|
|
|
/* Nonzero in a VAR_DECL if it is made for a loop parameter. */
|
|
#define DECL_LOOP_PARM_P(NODE) DECL_LANG_FLAG_3 (VAR_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a FIELD_DECL that is a dummy built for some internal reason. */
|
|
#define DECL_INTERNAL_P(NODE) DECL_LANG_FLAG_3 (FIELD_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a PARM_DECL if it is made for an Ada array being passed to a
|
|
foreign convention subprogram. */
|
|
#define DECL_BY_COMPONENT_PTR_P(NODE) DECL_LANG_FLAG_3 (PARM_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a FUNCTION_DECL that corresponds to an elaboration procedure. */
|
|
#define DECL_ELABORATION_PROC_P(NODE) \
|
|
DECL_LANG_FLAG_3 (FUNCTION_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a CONST_DECL, VAR_DECL or PARM_DECL if it is made for a pointer
|
|
that points to something which is readonly. */
|
|
#define DECL_POINTS_TO_READONLY_P(NODE) DECL_LANG_FLAG_4 (NODE)
|
|
|
|
/* Nonzero in a FIELD_DECL if it is invariant once set, for example if it is
|
|
a discriminant of a discriminated type without default expression. */
|
|
#define DECL_INVARIANT_P(NODE) DECL_LANG_FLAG_4 (FIELD_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a FUNCTION_DECL if this is a definition, i.e. if it was created
|
|
by a call to gnat_to_gnu_entity with definition set to True. */
|
|
#define DECL_FUNCTION_IS_DEF(NODE) \
|
|
DECL_LANG_FLAG_4 (FUNCTION_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a VAR_DECL if it is a temporary created to hold the return
|
|
value of a function call or 'reference to a function call. */
|
|
#define DECL_RETURN_VALUE_P(NODE) DECL_LANG_FLAG_5 (VAR_DECL_CHECK (NODE))
|
|
|
|
/* Nonzero in a PARM_DECL if its mechanism was forced to by-reference. */
|
|
#define DECL_FORCED_BY_REF_P(NODE) DECL_LANG_FLAG_5 (PARM_DECL_CHECK (NODE))
|
|
|
|
/* In a FIELD_DECL corresponding to a discriminant, contains the
|
|
discriminant number. */
|
|
#define DECL_DISCRIMINANT_NUMBER(NODE) DECL_INITIAL (FIELD_DECL_CHECK (NODE))
|
|
|
|
/* In a CONST_DECL, points to a VAR_DECL that is allocatable to
|
|
memory. Used when a scalar constant is aliased or has its
|
|
address taken. */
|
|
#define DECL_CONST_CORRESPONDING_VAR(NODE) \
|
|
GET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE))
|
|
#define SET_DECL_CONST_CORRESPONDING_VAR(NODE, X) \
|
|
SET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE), X)
|
|
|
|
/* In a FIELD_DECL, points to the FIELD_DECL that was the ultimate
|
|
source of the decl. */
|
|
#define DECL_ORIGINAL_FIELD(NODE) \
|
|
GET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE))
|
|
#define SET_DECL_ORIGINAL_FIELD(NODE, X) \
|
|
SET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE), X)
|
|
|
|
/* Set DECL_ORIGINAL_FIELD of FIELD1 to (that of) FIELD2. */
|
|
#define SET_DECL_ORIGINAL_FIELD_TO_FIELD(FIELD1, FIELD2) \
|
|
SET_DECL_ORIGINAL_FIELD ((FIELD1), \
|
|
DECL_ORIGINAL_FIELD (FIELD2) \
|
|
? DECL_ORIGINAL_FIELD (FIELD2) : (FIELD2))
|
|
|
|
/* Return true if FIELD1 and FIELD2 represent the same field. */
|
|
#define SAME_FIELD_P(FIELD1, FIELD2) \
|
|
((FIELD1) == (FIELD2) \
|
|
|| DECL_ORIGINAL_FIELD (FIELD1) == (FIELD2) \
|
|
|| (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2) \
|
|
|| (DECL_ORIGINAL_FIELD (FIELD1) \
|
|
&& (DECL_ORIGINAL_FIELD (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2))))
|
|
|
|
/* In a VAR_DECL with the DECL_LOOP_PARM_P flag set, points to the special
|
|
induction variable that is built under certain circumstances, if any. */
|
|
#define DECL_INDUCTION_VAR(NODE) \
|
|
GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
|
|
#define SET_DECL_INDUCTION_VAR(NODE, X) \
|
|
SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
|
|
|
|
/* In a TYPE_DECL, points to the parallel type if any, otherwise 0. */
|
|
#define DECL_PARALLEL_TYPE(NODE) \
|
|
GET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE))
|
|
#define SET_DECL_PARALLEL_TYPE(NODE, X) \
|
|
SET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE), X)
|
|
|
|
|
|
/* Flags added to ref nodes. */
|
|
|
|
/* Nonzero means this node will not trap. */
|
|
#undef TREE_THIS_NOTRAP
|
|
#define TREE_THIS_NOTRAP(NODE) \
|
|
(TREE_CHECK4 (NODE, INDIRECT_REF, ARRAY_REF, UNCONSTRAINED_ARRAY_REF, \
|
|
ARRAY_RANGE_REF)->base.nothrow_flag)
|
|
|
|
|
|
/* Fields and macros for statements. */
|
|
#define IS_ADA_STMT(NODE) \
|
|
(STATEMENT_CLASS_P (NODE) && TREE_CODE (NODE) >= STMT_STMT)
|
|
|
|
#define STMT_STMT_STMT(NODE) TREE_OPERAND_CHECK_CODE (NODE, STMT_STMT, 0)
|
|
|
|
#define LOOP_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 0)
|
|
#define LOOP_STMT_UPDATE(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 1)
|
|
#define LOOP_STMT_BODY(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 2)
|
|
#define LOOP_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 3)
|
|
|
|
/* A loop statement is conceptually made up of 6 sub-statements:
|
|
|
|
loop:
|
|
TOP_CONDITION
|
|
TOP_UPDATE
|
|
BODY
|
|
BOTTOM_CONDITION
|
|
BOTTOM_UPDATE
|
|
GOTO loop
|
|
|
|
However, only 4 of them can exist for a given loop, the pair of conditions
|
|
and the pair of updates being mutually exclusive. The default setting is
|
|
TOP_CONDITION and BOTTOM_UPDATE and the following couple of flags are used
|
|
to toggle the individual settings. */
|
|
#define LOOP_STMT_BOTTOM_COND_P(NODE) TREE_LANG_FLAG_0 (LOOP_STMT_CHECK (NODE))
|
|
#define LOOP_STMT_TOP_UPDATE_P(NODE) TREE_LANG_FLAG_1 (LOOP_STMT_CHECK (NODE))
|
|
|
|
/* Optimization hints on loops. */
|
|
#define LOOP_STMT_IVDEP(NODE) TREE_LANG_FLAG_2 (LOOP_STMT_CHECK (NODE))
|
|
#define LOOP_STMT_NO_UNROLL(NODE) TREE_LANG_FLAG_3 (LOOP_STMT_CHECK (NODE))
|
|
#define LOOP_STMT_UNROLL(NODE) TREE_LANG_FLAG_4 (LOOP_STMT_CHECK (NODE))
|
|
#define LOOP_STMT_NO_VECTOR(NODE) TREE_LANG_FLAG_5 (LOOP_STMT_CHECK (NODE))
|
|
#define LOOP_STMT_VECTOR(NODE) TREE_LANG_FLAG_6 (LOOP_STMT_CHECK (NODE))
|
|
|
|
#define EXIT_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 0)
|
|
#define EXIT_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 1)
|
|
|
|
/* Small kludge to be able to define Ada built-in functions locally.
|
|
We overload them on top of the HSAIL/BRIG builtin functions. */
|
|
#define BUILT_IN_LIKELY BUILT_IN_HSAIL_WORKITEMABSID
|
|
#define BUILT_IN_UNLIKELY BUILT_IN_HSAIL_GRIDSIZE
|