108 lines
3.1 KiB
C
108 lines
3.1 KiB
C
/* Euclidean distance function. Long Double/Binary96 version.
|
|
Copyright (C) 2021-2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/* This implementation is based on 'An Improved Algorithm for hypot(a,b)' by
|
|
Carlos F. Borges [1] using the MyHypot3 with the following changes:
|
|
|
|
- Handle qNaN and sNaN.
|
|
- Tune the 'widely varying operands' to avoid spurious underflow
|
|
due the multiplication and fix the return value for upwards
|
|
rounding mode.
|
|
- Handle required underflow exception for subnormal results.
|
|
|
|
[1] https://arxiv.org/pdf/1904.09481.pdf */
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
#define SCALE 0x8p-8257L
|
|
#define LARGE_VAL 0xb.504f333f9de6484p+8188L
|
|
#define TINY_VAL 0x8p-8194L
|
|
#define EPS 0x8p-68L
|
|
|
|
/* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0
|
|
and squaring ax, ay and (ax - ay) does not overflow or underflow. */
|
|
static inline long double
|
|
kernel (long double ax, long double ay)
|
|
{
|
|
long double t1, t2;
|
|
long double h = sqrtl (ax * ax + ay * ay);
|
|
if (h <= 2.0L * ay)
|
|
{
|
|
long double delta = h - ay;
|
|
t1 = ax * (2.0L * delta - ax);
|
|
t2 = (delta - 2.0L * (ax - ay)) * delta;
|
|
}
|
|
else
|
|
{
|
|
long double delta = h - ax;
|
|
t1 = 2.0L * delta * (ax - 2.0L * ay);
|
|
t2 = (4.0L * delta - ay) * ay + delta * delta;
|
|
}
|
|
|
|
h -= (t1 + t2) / (2.0L * h);
|
|
return h;
|
|
}
|
|
|
|
long double
|
|
__ieee754_hypotl (long double x, long double y)
|
|
{
|
|
if (!isfinite(x) || !isfinite(y))
|
|
{
|
|
if ((isinf (x) || isinf (y))
|
|
&& !issignaling (x) && !issignaling (y))
|
|
return INFINITY;
|
|
return x + y;
|
|
}
|
|
|
|
x = fabsl (x);
|
|
y = fabsl (y);
|
|
|
|
long double ax = x < y ? y : x;
|
|
long double ay = x < y ? x : y;
|
|
|
|
/* If ax is huge, scale both inputs down. */
|
|
if (__glibc_unlikely (ax > LARGE_VAL))
|
|
{
|
|
if (__glibc_unlikely (ay <= ax * EPS))
|
|
return ax + ay;
|
|
|
|
return kernel (ax * SCALE, ay * SCALE) / SCALE;
|
|
}
|
|
|
|
/* If ay is tiny, scale both inputs up. */
|
|
if (__glibc_unlikely (ay < TINY_VAL))
|
|
{
|
|
if (__glibc_unlikely (ax >= ay / EPS))
|
|
return ax + ay;
|
|
|
|
ax = kernel (ax / SCALE, ay / SCALE) * SCALE;
|
|
math_check_force_underflow_nonneg (ax);
|
|
return ax;
|
|
}
|
|
|
|
/* Common case: ax is not huge and ay is not tiny. */
|
|
if (__glibc_unlikely (ay <= ax * EPS))
|
|
return ax + ay;
|
|
|
|
return kernel (ax, ay);
|
|
}
|
|
libm_alias_finite (__ieee754_hypotl, __hypotl)
|