/* Copyright (C) 2019-2021 Free Software Foundation, Inc. This file is part of LIBF7, which is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libf7.h" #ifndef __AVR_TINY__ #define ALIAS(X, Y) \ F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y; #define DALIAS(...) // empty #define LALIAS(...) // empty #ifndef IN_LIBGCC2 #include #include #define in_libgcc false _Static_assert (sizeof (f7_t) == 10 && F7_MANT_BYTES == 7, "libf7 will only work with 7-byte mantissa."); #else #define in_libgcc true #if __SIZEOF_DOUBLE__ == 8 #undef DALIAS #define DALIAS(X,Y) \ F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y; #endif #if __SIZEOF_LONG_DOUBLE__ == 8 #undef LALIAS #define LALIAS(X,Y) \ F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y; #endif #endif // in libgcc static F7_INLINE void f7_assert (bool x) { if (!in_libgcc && !x) __builtin_abort(); } static F7_INLINE int16_t abs_ssat16 (int16_t a) { _Sat _Fract sa = __builtin_avr_rbits (a); return __builtin_avr_bitsr (__builtin_avr_absr (sa)); } static F7_INLINE int16_t add_ssat16 (int16_t a, int16_t b) { _Sat _Fract sa = __builtin_avr_rbits (a); _Sat _Fract sb = __builtin_avr_rbits (b); return __builtin_avr_bitsr (sa + sb); } static F7_INLINE int16_t sub_ssat16 (int16_t a, int16_t b) { _Sat _Fract sa = __builtin_avr_rbits (a); _Sat _Fract sb = __builtin_avr_rbits (b); return __builtin_avr_bitsr (sa - sb); } static F7_INLINE int8_t ssat8_range (int16_t a, int8_t range) { if (a >= range) return range; if (a <= -range) return -range; return a; } #define IN_LIBF7_H #define F7_CONST_DEF(NAME, FLAGS, M6, M5, M4, M3, M2, M1, M0, EXPO) \ F7_UNUSED static const uint8_t F7_(const_##NAME##_msb) = M6; \ F7_UNUSED static const int16_t F7_(const_##NAME##_expo) = EXPO; #include "libf7-const.def" #undef F7_CONST_DEF #undef IN_LIBF7_H /* libgcc naming converntions for conversions: __float : Convert float modes. __floatun: Convert unsigned integral to float. __fix : Convert float to signed integral. __fixuns : Convert float to unsigned integral. */ #ifdef F7MOD_floatundidf_ F7_WEAK f7_double_t __floatundidf (uint64_t x) { f7_t xx; f7_set_u64 (&xx, x); return f7_get_double (&xx); } #endif // F7MOD_floatundidf_ #ifdef F7MOD_floatdidf_ F7_WEAK f7_double_t __floatdidf (int64_t x) { f7_t xx; f7_set_s64 (&xx, x); return f7_get_double (&xx); } #endif // F7MOD_floatdidf_ #ifdef F7MOD_init_ f7_t* f7_init_impl (uint64_t mant, uint8_t flags, f7_t *cc, int16_t expo) { flags &= F7_FLAGS; if (f7_class_number (flags)) { uint8_t msb; while ((__builtin_memcpy (&msb, (uint8_t*) &mant + 7, 1), msb)) { mant >>= 1; expo = add_ssat16 (expo, 1); } *(uint64_t*) cc->mant = mant; cc->expo = add_ssat16 (expo, F7_MANT_BITS-1); cc = f7_normalize_asm (cc); } cc->flags = flags; return cc; } #endif // F7MOD_init_ #ifdef F7MOD_set_s16_ f7_t* f7_set_s16_impl (f7_t *cc, int16_t i16) { uint16_t u16 = (uint16_t) i16; uint8_t flags = 0; if (i16 < 0) { u16 = -u16; flags = F7_FLAG_sign; } f7_set_u16_impl (cc, u16); cc->flags = flags; return cc; } #endif // F7MOD_set_s16_ #ifdef F7MOD_set_u16_ f7_t* f7_set_u16_impl (f7_t *cc, uint16_t u16) { f7_clr (cc); F7_MANT_HI2 (cc) = u16; cc->expo = 15; return f7_normalize_asm (cc); } #endif // F7MOD_set_u16_ #ifdef F7MOD_set_s32_ f7_t* f7_set_s32 (f7_t *cc, int32_t i32) { uint32_t u32 = (uint32_t) i32; uint8_t flags = 0; if (i32 < 0) { u32 = -u32; flags = F7_FLAG_sign; } cc = f7_set_u32 (cc, u32); cc->flags = flags; return cc; } ALIAS (f7_set_s32, f7_floatsidf) #endif // F7MOD_set_s32_ #ifdef F7MOD_set_u32_ f7_t* f7_set_u32 (f7_t *cc, uint32_t u32) { f7_clr (cc); F7_MANT_HI4 (cc) = u32; cc->expo = 31; return f7_normalize_asm (cc); } ALIAS (f7_set_u32, f7_floatunsidf) #endif // F7MOD_set_u32_ // IEEE 754 single // float = s bbbbbbbb mmmmmmmmmmmmmmmmmmmmmmm // 31 // s = sign // b = biased exponent, bias = 127 // m = mantissa // +0 = 0 0 0 // -0 = 1 0 0 // Inf = S B 0 = S * Inf, B = 0xff // NaN = S B M, B = 0xff, M != 0 // Sub-normal = S 0 M = S * 0.M * 2^{1 - bias}, M != 0 // Normal = S B M = S * 1.M * 2^{B - bias}, B = 1 ... 0xfe #define FLT_DIG_EXP 8 #define FLT_DIG_MANT (31 - FLT_DIG_EXP) #define FLT_MAX_EXP ((1 << FLT_DIG_EXP) - 1) #define FLT_EXP_BIAS (FLT_MAX_EXP >> 1) #ifdef F7MOD_set_float_ F7_WEAK void f7_set_float (f7_t *cc, float f) { uint32_t val32; _Static_assert (__SIZEOF_FLOAT__ == 4, ""); _Static_assert (__FLT_MANT_DIG__ == 24, ""); __builtin_memcpy (&val32, &f, __SIZEOF_FLOAT__); uint16_t val16 = val32 >> 16; val16 >>= FLT_DIG_MANT - 16; uint8_t expo_biased = val16 & FLT_MAX_EXP; bool sign = val16 & (1u << FLT_DIG_EXP); f7_clr (cc); uint32_t mant = val32 & ((1ul << FLT_DIG_MANT) -1); if (mant == 0) { if (expo_biased == 0) return; if (expo_biased >= FLT_MAX_EXP) return f7_set_inf (cc, sign); } if (expo_biased == 0) expo_biased = 1; // Sub-normal: biased expo of 1 was encoded as 0. else if (expo_biased < FLT_MAX_EXP) mant |= (1ul << FLT_DIG_MANT); else return f7_set_nan (cc); __builtin_memcpy (& F7_MANT_HI4 (cc), &mant, 4); cc->expo = expo_biased - FLT_EXP_BIAS + 31 - FLT_DIG_MANT; f7_normalize_asm (cc); f7_set_sign (cc, sign); } ALIAS (f7_set_float, f7_extendsfdf2) #endif // F7MOD_set_float_ #ifdef F7MOD_get_float_ static F7_INLINE float make_float (uint32_t x) { float ff; __builtin_memcpy (&ff, &x, 4); return ff; } F7_WEAK float f7_get_float (const f7_t *aa) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class)) return make_float (0xffc00000 /* NaN: Biased expo = 0xff, mant != 0 */); uint32_t mant; __builtin_memcpy (&mant, &F7_MANT_CONST_HI4 (aa), 4); uint8_t expo8 = 0; uint8_t mant_offset = FLT_DIG_EXP; int16_t c_expo = add_ssat16 (aa->expo, FLT_EXP_BIAS); if (f7_class_zero (a_class) || c_expo <= -FLT_DIG_MANT) { // Zero or tiny. return 0.0f; } else if (c_expo >= FLT_MAX_EXP || f7_class_inf (a_class)) { // Inf or overflow. expo8 = FLT_MAX_EXP; mant = 0; } else if (c_expo > 0) { // Normal. expo8 = c_expo; } else { // Sub-normal: -DIG_MANT < c_expo <= 0. // Encoding of 0 represents a biased exponent of 1. // mant_offset in 9...31. expo8 = 0; mant_offset += 1 - c_expo; } uint16_t expo16 = expo8 << (FLT_DIG_MANT - 16); if (f7_class_sign (a_class)) expo16 |= 1u << (FLT_DIG_EXP + FLT_DIG_MANT - 16); mant >>= mant_offset; __asm ("cbr %T0%t2, 1 << (7 & %2)" "\n\t" "or %C0, %A1" "\n\t" "or %D0, %B1" : "+d" (mant) : "r" (expo16), "n" (FLT_DIG_MANT)); return make_float (mant); } F7_PURE ALIAS (f7_get_float, f7_truncdfsf2) #endif // F7MOD_get_float_ #define DBL_DIG_EXP 11 #define DBL_DIG_MANT (63 - DBL_DIG_EXP) #define DBL_MAX_EXP ((1 << DBL_DIG_EXP) - 1) #define DBL_EXP_BIAS (DBL_MAX_EXP >> 1) #ifdef F7MOD_set_double_ void f7_set_double_impl (f7_double_t val64, f7_t *cc) { f7_clr (cc); register uint64_t mant __asm ("r18") = val64 & ((1ull << DBL_DIG_MANT) -1); uint16_t val16 = 3[(uint16_t*) & val64]; val16 >>= DBL_DIG_MANT - 48; uint16_t expo_biased = val16 & DBL_MAX_EXP; bool sign = val16 & (1u << DBL_DIG_EXP); if (mant == 0) { if (expo_biased == 0) return; if (expo_biased >= DBL_MAX_EXP) return f7_set_inf (cc, sign); } __asm ("" : "+r" (mant)); if (expo_biased == 0) expo_biased = 1; // Sub-normal: biased expo of 1 was encoded as 0. else if (expo_biased < DBL_MAX_EXP) mant |= (1ull << DBL_DIG_MANT); else return f7_set_nan (cc); *(uint64_t*) & cc->mant = mant; cc->expo = expo_biased - DBL_EXP_BIAS + 63 - DBL_DIG_MANT - 8; f7_normalize_asm (cc); f7_set_sign (cc, sign); } #endif // F7MOD_set_double_ #ifdef F7MOD_set_pdouble_ void f7_set_pdouble (f7_t *cc, const f7_double_t *val64) { f7_set_double (cc, *val64); } #endif // F7MOD_set_pdouble_ #ifdef F7MOD_get_double_ static F7_INLINE uint64_t clr_r18 (void) { extern void __clr_8 (void); register uint64_t r18 __asm ("r18"); __asm ("%~call %x[f]" : "=r" (r18) : [f] "i" (__clr_8)); return r18; } static F7_INLINE f7_double_t make_double (uint64_t x) { register f7_double_t r18 __asm ("r18") = x; __asm ("" : "+r" (r18)); return r18; } F7_WEAK f7_double_t f7_get_double (const f7_t *aa) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class)) { uint64_t nan = clr_r18() | (0x7fffull << 48); return make_double (nan); } uint64_t mant; __builtin_memcpy (&mant, & aa->mant, 8); mant &= 0x00ffffffffffffff; // FIXME: For subnormals, rounding is premature and should be // done *after* the mantissa has been shifted into place // (or the round value be shifted left accordingly). // Round. mant += 1u << (F7_MANT_BITS - (1 + DBL_DIG_MANT) - 1); uint8_t dex; register uint64_t r18 __asm ("r18") = mant; // dex = Overflow ? 1 : 0. __asm ("bst %T[mant]%T[bitno]" "\n\t" "clr %0" "\n\t" "bld %0,0" : "=r" (dex), [mant] "+r" (r18) : [bitno] "n" (64 - 8)); mant = r18 >> dex; uint16_t expo16 = 0; uint16_t mant_offset = DBL_DIG_EXP - 8; int16_t c_expo = add_ssat16 (aa->expo, DBL_EXP_BIAS + dex); if (f7_class_zero (a_class) || c_expo <= -DBL_DIG_MANT) { // Zero or tiny. return make_double (clr_r18()); } else if (c_expo >= DBL_MAX_EXP || f7_class_inf (a_class)) { // Inf or overflow. expo16 = DBL_MAX_EXP; mant = clr_r18(); } else if (c_expo > 0) { // Normal. expo16 = c_expo; } else { // Sub-normal: -DIG_MANT < c_expo <= 0. // Encoding expo of 0 represents a biased exponent of 1. // mant_offset in 5...55 = 63-8. mant_offset += 1 - c_expo; } expo16 <<= (DBL_DIG_MANT - 48); if (f7_class_sign (a_class)) expo16 |= 1u << (DBL_DIG_EXP + DBL_DIG_MANT - 48); // mant >>= mant_offset; mant = f7_lshrdi3 (mant, mant_offset); r18 = mant; __asm ("cbr %T0%t2, 1 << (7 & %2)" "\n\t" "or %r0+6, %A1" "\n\t" "or %r0+7, %B1" : "+r" (r18) : "r" (expo16), "n" (DBL_DIG_MANT)); return make_double (r18); } #endif // F7MOD_get_double_ #ifdef F7MOD_fabs_ F7_WEAK void f7_fabs (f7_t *cc, const f7_t *aa) { f7_abs (cc, aa); } #endif // F7MOD_fabs_ #ifdef F7MOD_neg_ F7_WEAK f7_t* f7_neg (f7_t *cc, const f7_t *aa) { f7_copy (cc, aa); uint8_t c_class = f7_classify (cc); if (! f7_class_zero (c_class)) cc->sign = ! f7_class_sign (c_class); return cc; } #endif // F7MOD_neg_ #ifdef F7MOD_frexp_ F7_WEAK void f7_frexp (f7_t *cc, const f7_t *aa, int *expo) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class)) return f7_set_nan (cc); if (f7_class_inf (a_class) || aa->expo == INT16_MAX) return f7_set_inf (cc, f7_class_sign (a_class)); if (! f7_msbit (aa)) { *expo = 0; return f7_clr (cc); } *expo = 1 + aa->expo; cc->flags = a_class & F7_FLAG_sign; cc->expo = -1; f7_copy_mant (cc, aa); } #endif // F7MOD_frexp_ #ifdef F7MOD_get_s16_ F7_WEAK int16_t f7_get_s16 (const f7_t *aa) { extern int16_t to_s16 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm); return to_s16 (aa, 0xf); } #endif // F7MOD_get_s16_ #ifdef F7MOD_get_s32_ F7_WEAK int32_t f7_get_s32 (const f7_t *aa) { extern int32_t to_s32 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm); return to_s32 (aa, 0x1f); } F7_PURE ALIAS (f7_get_s32, f7_fixdfsi) #endif // F7MOD_get_s32_ #ifdef F7MOD_get_s64_ F7_WEAK int64_t f7_get_s64 (const f7_t *aa) { extern int64_t to_s64 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm); return to_s64 (aa, 0x3f); } F7_PURE ALIAS (f7_get_s64, f7_fixdfdi) #endif // F7MOD_get_s64_ #ifdef F7MOD_get_u16_ F7_WEAK uint16_t f7_get_u16 (const f7_t *aa) { extern uint16_t to_u16 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm); return to_u16 (aa, 0xf); } #endif // F7MOD_get_u16_ #ifdef F7MOD_get_u32_ F7_WEAK uint32_t f7_get_u32 (const f7_t *aa) { extern uint32_t to_u32 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm); return to_u32 (aa, 0x1f); } F7_PURE ALIAS (f7_get_u32, f7_fixunsdfsi) #endif // F7MOD_get_u32_ #ifdef F7MOD_get_u64_ F7_WEAK uint64_t f7_get_u64 (const f7_t *aa) { extern int64_t to_u64 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm); return to_u64 (aa, 0x3f); } F7_PURE ALIAS (f7_get_u64, f7_fixunsdfdi) #endif // F7MOD_get_u64_ #ifdef F7MOD_cmp_unordered_ F7_NOINLINE static int8_t cmp_u8 (uint8_t a_class, uint8_t b_class, bool sign_a); F7_WEAK int8_t f7_cmp_unordered (const f7_t *aa, const f7_t *bb, bool with_sign) { uint8_t a_class = f7_classify (aa); uint8_t b_class = f7_classify (bb); uint8_t a_sign = f7_class_sign (a_class) & with_sign; uint8_t b_sign = f7_class_sign (b_class) & with_sign; uint8_t ab_class = a_class | b_class; ab_class &= with_sign - 2; if (f7_class_nan (ab_class)) return INT8_MIN; if (a_sign != b_sign) return b_sign - a_sign; if (f7_class_inf (ab_class)) return cmp_u8 (a_class, b_class, a_sign); if (f7_class_zero (ab_class)) return cmp_u8 (b_class, a_class, a_sign); if (aa->expo < bb->expo) return a_sign ? 1 : -1; if (aa->expo > bb->expo) return a_sign ? -1 : 1; return cmp_u8 (1 + f7_cmp_mant (aa, bb), 1, a_sign); } int8_t cmp_u8 (uint8_t a_class, uint8_t b_class, bool sign_a) { int8_t c; __asm ("sub %[a], %[b]" "\n\t" "breq 1f" "\n\t" "sbc %[c], %[c]" "\n\t" "sbci %[c], -1" "\n\t" "sbrc %[s], 0" "\n\t" "neg %[c]" "\n\t" "1:" : [c] "=d" (c) : [a] "0" (a_class), [b] "r" (b_class), [s] "r" (sign_a)); return c; } #endif // F7MOD_cmp_unordered_ #ifdef F7MOD_cmp_abs_ F7_WEAK int8_t f7_cmp_abs (const f7_t *aa, const f7_t *bb) { return f7_cmp_unordered (aa, bb, false /* no signs */); } #endif // F7MOD_cmp_abs_ #ifdef F7MOD_cmp_ F7_WEAK int8_t f7_cmp (const f7_t *aa, const f7_t *bb) { return f7_cmp_unordered (aa, bb, true /* with signs */); } #endif // F7MOD_cmp_ #ifdef F7MOD_abscmp_msb_ge_ // Compare absolute value of Number aa against a f7_t represented // by msb and expo. F7_WEAK bool f7_abscmp_msb_ge (const f7_t *aa, uint8_t msb, int16_t expo) { uint8_t a_msb = aa->mant[F7_MANT_BYTES - 1]; if (0 == (0x80 & a_msb)) // 0 or subnormal. return false; return aa->expo == expo ? a_msb >= msb : aa->expo > expo; } #endif // F7MOD_abscmp_msb_ge_ #ifdef F7MOD_lt_ F7_WEAK bool f7_lt_impl (const f7_t *aa, const f7_t *bb) { return f7_lt (aa, bb); } #endif // F7MOD_lt_ #ifdef F7MOD_le_ F7_WEAK bool f7_le_impl (const f7_t *aa, const f7_t *bb) { return f7_le (aa, bb); } #endif // F7MOD_le_ #ifdef F7MOD_gt_ F7_WEAK bool f7_gt_impl (const f7_t *aa, const f7_t *bb) { return f7_gt (aa, bb); } #endif // F7MOD_gt_ #ifdef F7MOD_ge_ F7_WEAK bool f7_ge_impl (const f7_t *aa, const f7_t *bb) { return f7_ge (aa, bb); } #endif // F7MOD_ge_ #ifdef F7MOD_ne_ F7_WEAK bool f7_ne_impl (const f7_t *aa, const f7_t *bb) { return f7_ne (aa, bb); } #endif // F7MOD_ne_ #ifdef F7MOD_eq_ F7_WEAK bool f7_eq_impl (const f7_t *aa, const f7_t *bb) { return f7_eq (aa, bb); } #endif // F7MOD_eq_ #ifdef F7MOD_unord_ F7_WEAK bool f7_unord_impl (const f7_t *aa, const f7_t *bb) { return f7_unordered (aa, bb); } #endif // F7MOD_unord_ #ifdef F7MOD_minmax_ F7_WEAK f7_t* f7_minmax (f7_t *cc, const f7_t *aa, const f7_t *bb, bool do_min) { int8_t cmp = f7_cmp_unordered (aa, bb, true /* with signs */); if (cmp == INT8_MIN) return (f7_set_nan (cc), cc); if (do_min) cmp = -cmp; return f7_copy (cc, cmp >= 0 ? aa : bb); } #endif // F7MOD_minmax_ #ifdef F7MOD_fmax_ F7_WEAK f7_t* f7_fmax (f7_t *cc, const f7_t *aa, const f7_t *bb) { return f7_minmax (cc, aa, bb, false); } ALIAS (f7_fmax, f7_max) #endif // F7MOD_fmax_ #ifdef F7MOD_fmin_ F7_WEAK f7_t* f7_fmin (f7_t *cc, const f7_t *aa, const f7_t *bb) { return f7_minmax (cc, aa, bb, true); } ALIAS (f7_fmin, f7_min) #endif // F7MOD_fmin_ #ifdef F7MOD_mulx_ F7_WEAK uint8_t f7_mulx (f7_t *cc, const f7_t *aa, const f7_t *bb, bool no_rounding) { uint8_t a_class = f7_classify (aa); uint8_t b_class = f7_classify (bb); // From this point on, no more access aa->flags or bb->flags // to avoid early-clobber when writing cc->flags. uint8_t ab_class = a_class | b_class; // If either value is NaN, return NaN. if (f7_class_nan (ab_class) // Any combination of Inf and 0. || (f7_class_zero (ab_class) && f7_class_inf (ab_class))) { cc->flags = F7_FLAG_nan; return 0; } // If either value is 0.0, return 0.0. if (f7_class_zero (ab_class)) { f7_clr (cc); return 0; } // We have 2 non-zero numbers-or-INF. uint8_t c_sign = (a_class ^ b_class) & F7_FLAG_sign; uint8_t c_inf = ab_class & F7_FLAG_inf; cc->flags = c_sign | c_inf; if (c_inf) return 0; int16_t expo = add_ssat16 (aa->expo, bb->expo); // Store expo and handle expo = INT16_MIN and INT16_MAX. if (f7_store_expo (cc, expo)) return 0; return f7_mul_mant_asm (cc, aa, bb, no_rounding); } #endif // F7MOD_mulx_ #ifdef F7MOD_square_ F7_WEAK void f7_square (f7_t *cc, const f7_t *aa) { f7_mul (cc, aa, aa); } #endif // F7MOD_square_ #ifdef F7MOD_mul_ F7_WEAK void f7_mul (f7_t *cc, const f7_t *aa, const f7_t *bb) { f7_mulx (cc, aa, bb, false); } #endif // F7MOD_mul_ #ifdef F7MOD_Iadd_ F7_WEAK void f7_Iadd (f7_t *cc, const f7_t *aa) { f7_add (cc, cc, aa); } #endif #ifdef F7MOD_Isub_ F7_WEAK void f7_Isub (f7_t *cc, const f7_t *aa) { f7_sub (cc, cc, aa); } #endif #ifdef F7MOD_Imul_ F7_WEAK void f7_Imul (f7_t *cc, const f7_t *aa) { f7_mul (cc, cc, aa); } #endif #ifdef F7MOD_Idiv_ F7_WEAK void f7_Idiv (f7_t *cc, const f7_t *aa) { f7_div (cc, cc, aa); } #endif #ifdef F7MOD_IRsub_ F7_WEAK void f7_IRsub (f7_t *cc, const f7_t *aa) { f7_sub (cc, aa, cc); } #endif #ifdef F7MOD_Ineg_ F7_WEAK void f7_Ineg (f7_t *cc) { f7_neg (cc, cc); } #endif #ifdef F7MOD_Isqrt_ F7_WEAK void f7_Isqrt (f7_t *cc) { f7_sqrt (cc, cc); } #endif #ifdef F7MOD_Isquare_ F7_WEAK void f7_Isquare (f7_t *cc) { f7_square (cc, cc); } #endif #ifdef F7MOD_Ildexp_ F7_WEAK f7_t* f7_Ildexp (f7_t *cc, int ex) { return f7_ldexp (cc, cc, ex); } #endif #ifdef F7MOD_add_ F7_WEAK void f7_add (f7_t *cc, const f7_t *aa, const f7_t *bb) { f7_addsub (cc, aa, bb, false); } #endif // F7MOD_add_ #ifdef F7MOD_sub_ F7_WEAK void f7_sub (f7_t *cc, const f7_t *aa, const f7_t *bb) { f7_addsub (cc, aa, bb, true); } #endif // F7MOD_sub_ #ifdef F7MOD_addsub_ static void return_with_sign (f7_t *cc, const f7_t *aa, int8_t c_sign) { __asm (";;; return with sign"); f7_copy (cc, aa); if (c_sign != -1) f7_set_sign (cc, c_sign); } F7_WEAK void f7_addsub (f7_t *cc, const f7_t *aa, const f7_t *bb, bool neg_b) { uint8_t a_class = f7_classify (aa); uint8_t b_class = f7_classify (bb); // From this point on, no more access aa->flags or bb->flags // to avoid early-clobber when writing cc->flags. // Hande NaNs. if (f7_class_nan (a_class | b_class)) return f7_set_nan (cc); bool a_sign = f7_class_sign (a_class); bool b_sign = f7_class_sign (b_class) ^ neg_b; // Add the mantissae? bool do_add = a_sign == b_sign; // Handle +Infs and -Infs. bool a_inf = f7_class_inf (a_class); bool b_inf = f7_class_inf (b_class); if (a_inf && b_inf) { if (do_add) return f7_set_inf (cc, a_sign); else return f7_set_nan (cc); } else if (a_inf) return f7_set_inf (cc, a_sign); else if (b_inf) return f7_set_inf (cc, b_sign); int16_t shift16 = sub_ssat16 (aa->expo, bb->expo); // aa + 0 = aa. // Also check MSBit to get rid of Subnormals and 0. if (shift16 > F7_MANT_BITS || f7_is0 (bb)) return return_with_sign (cc, aa, -1); // 0 + bb = bb. // 0 - bb = -bb. // Also check MSBit to get rid of Subnormals and 0. if (shift16 < -F7_MANT_BITS || f7_is0 (aa)) return return_with_sign (cc, bb, b_sign); // Now aa and bb are non-zero, non-NaN, non-Inf. // shift > 0 ==> |a| > |b| // shift < 0 ==> |a| < |b| int8_t shift = (int8_t) shift16; bool c_sign = a_sign; if (shift < 0 || (shift == 0 && f7_cmp_mant (aa, bb) < 0)) { const f7_t *p = aa; aa = bb; bb = p; c_sign = b_sign; shift = -shift; } uint8_t shift2 = (uint8_t) (shift << 1); cc->expo = aa->expo; // From this point on, no more access aa->expo or bb->expo // to avoid early-clobber when writing cc->expo. cc->flags = c_sign; _Static_assert (F7_FLAGNO_sign == 0, ""); // This function uses neither .expo nor .flags from either aa or bb, // hence there is early-clobber for cc->expo and cc->flags. f7_addsub_mant_scaled_asm (cc, aa, bb, shift2 | do_add); } #endif // F7MOD_addsub_ #ifdef F7MOD_madd_msub_ F7_WEAK void f7_madd_msub (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd, bool neg_d) { f7_t xx7, *xx = &xx7; uint8_t x_lsb = f7_mulx (xx, aa, bb, true /* no rounding */); uint8_t x_sign = f7_signbit (xx); int16_t x_expo = xx->expo; f7_addsub (xx, xx, dd, neg_d); // Now add LSB. If cancellation occured in the add / sub, then we have the // chance of extra 8 bits of precision. Turn LSByte into f7_t. f7_clr (cc); cc->expo = sub_ssat16 (x_expo, F7_MANT_BITS); cc->mant[F7_MANT_BYTES - 1] = x_lsb; cc = f7_normalize_asm (cc); cc->flags = x_sign; f7_Iadd (cc, xx); } #endif // F7MOD_madd_msub_ #ifdef F7MOD_madd_ F7_WEAK void f7_madd (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd) { f7_madd_msub (cc, aa, bb, dd, false); } #endif // F7MOD_madd_ #ifdef F7MOD_msub_ F7_WEAK void f7_msub (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd) { f7_madd_msub (cc, aa, bb, dd, true); } #endif // F7MOD_msub_ #ifdef F7MOD_ldexp_ F7_WEAK f7_t* f7_ldexp (f7_t *cc, const f7_t *aa, int delta) { uint8_t a_class = f7_classify (aa); cc->flags = a_class; // Inf and NaN. if (! f7_class_number (a_class)) return cc; if (f7_msbit (aa) == 0) return (f7_clr (cc), cc); int16_t expo = add_ssat16 (delta, aa->expo); // Store expo and handle expo = INT16_MIN and INT16_MAX. if (! f7_store_expo (cc, expo)) f7_copy_mant (cc, aa); return cc; } #endif // F7MOD_ldexp_ #if USE_LPM #elif USE_LD #else #error need include "asm-defs.h" #endif // USE_LPM /* Handling constants: F7_PCONST (PVAR, X) Set f7_t [const] *PVAR to an LD address for one of the f7_const_X[_P] constants. PVAR might be set to point to a local auto that serves as temporary storage for f7_const_X_P. PVAR is only valid in the current block. const f7_t* F7_PCONST_U16 (PVAR, X) // USE_LD f7_t* F7_PCONST_U16 (PVAR, uint16_t X) // USE_LPM Set f7_t [const] *PVAR to an LD address for one of the f7_const_X[_P] constants. PVAR might be set to point to a local auto that serves as temporary storage for X. PVAR is only valid in the current block. F7_PCONST_VAR (PVAR, VAR) VAR is a pointer variable holding the address of some f7_const_X[_P] constant. Set [const] f7_t *PVAR to a respective LD address. PVAR might be set to point to a local auto that serves as temporary storage for f7_const_X_P. PVAR is only valid in the current block. F7_CONST_ADDR ( CST, f7_t* PTMP) Return an LD address to for some f7_const_X[_P] constant. *PTMP might be needed to hold a copy of f7_const_X_P in RAM. f7_t* F7_U16_ADDR (uint16_t X, f7_t* PTMP) // USE_LPM const f7_t* F7_U16_ADDR ( X, ) // USE_LD Return an LD address to compile-time constant uint16_t X which is also known as f7_const_X[_P]. *PTMP might be set to (f7_t) X. f7_t* f7_const (f7_t *PVAR, X) Copy f7_const_X[_P] to *PVAR. f7_t* f7_copy_flash (f7_t *DST, const f7_t *SRC) Copy to *DST with LD (from .rodata in flash) if the address space is linear, or with LPM (from .progmem.data) if the address space is not linear. f7_t* f7_copy (f7_t *DST, const f7_t* SRC) Copy to RAM using LD. f7_t* f7_copy_P (f7_t *DST, const f7_t *SRC) Copy to RAM using LPM. */ #if USE_LPM #define F7_RAW_CONST_ADDR(CST) \ & F7_(const_##CST##_P) #define F7_PCONST(PVAR, CST) \ f7_t _var_for_##CST; \ f7_copy_P (& _var_for_##CST, & F7_(const_##CST##_P)); \ PVAR = & _var_for_##CST #define F7_PCONST_U16(PVAR, CST) \ f7_t _var_for_##CST; \ PVAR = f7_set_u16 (& _var_for_##CST, CST) #define F7_PCONST_VAR(PVAR, VAR) \ f7_t _var_for_##VAR; \ f7_copy_P (& _var_for_##VAR, VAR); \ PVAR = & _var_for_##VAR #define MAYBE_const // empty #define F7_CONST_ADDR(CST, PTMP) \ f7_copy_P ((PTMP), & F7_(const_##CST##_P)) #define F7_U16_ADDR(CST, PTMP) \ f7_set_u16 ((PTMP), CST) #elif USE_LD #define F7_RAW_CONST_ADDR(CST) \ & F7_(const_##CST) #define F7_PCONST(PVAR, CST) \ PVAR = & F7_(const_##CST) #define F7_PCONST_U16(PVAR, CST) \ PVAR = & F7_(const_##CST) #define F7_PCONST_VAR(PVAR, VAR) \ PVAR = (VAR) #define F7_CONST_ADDR(CST, PTMP) \ (& F7_(const_##CST)) #define F7_U16_ADDR(CST, PTMP) \ (& F7_(const_##CST)) #define MAYBE_const const #endif #define DD(str, X) \ do { \ LOG_PSTR (PSTR (str)); \ f7_dump (X); \ } while (0) #undef DD #define DD(...) (void) 0 #ifdef F7MOD_sqrt_ static void sqrt_worker (f7_t *cc, const f7_t *rr) { f7_t tmp7, *tmp = &tmp7; f7_t aa7, *aa = &aa7; // aa in [1/2, 2) => aa->expo in { -1, 0 }. int16_t a_expo = -(rr->expo & 1); int16_t c_expo = (rr->expo - a_expo) >> 1; // FIXME: r_expo = INT_MAX??? __asm ("" : "+r" (aa)); f7_copy (aa, rr); aa->expo = a_expo; // No use of rr or *cc past this point: We may use cc as temporary. // Approximate square-root of A by X <-- (X + A / X) / 2. f7_sqrt_approx_asm (cc, aa); // Iterate X <-- (X + A / X) / 2. // 3 Iterations with 16, 32, 58 bits of precision for the quotient. for (uint8_t prec = 16; (prec & 0x80) == 0; prec <<= 1) { f7_divx (tmp, aa, cc, (prec & 64) ? 2 + F7_MANT_BITS : prec); f7_Iadd (cc, tmp); // This will never underflow because |c_expo| is small. cc->expo--; } // Similar: |c_expo| is small, hence no ldexp needed. cc->expo += c_expo; } F7_WEAK void f7_sqrt (f7_t *cc, const f7_t *aa) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class) || f7_class_sign (a_class)) return f7_set_nan (cc); if (f7_class_inf (a_class)) return f7_set_inf (cc, 0); if (f7_class_zero (a_class)) return f7_clr (cc); sqrt_worker (cc, aa); } #endif // F7MOD_sqrt_ #ifdef F7MOD_hypot_ F7_WEAK void f7_hypot (f7_t *cc, const f7_t *aa, const f7_t *bb) { f7_t xx7, *xx = &xx7; f7_square (xx, aa); f7_square (cc, bb); f7_Iadd (cc, xx); f7_Isqrt (cc); } #endif // F7MOD_hypot_ #ifdef F7MOD_const_m1_ #include "libf7-constdef.h" #endif // -1 #ifdef F7MOD_const_1_2_ #include "libf7-constdef.h" #endif // 1/2 #ifdef F7MOD_const_1_3_ #include "libf7-constdef.h" #endif // 1/3 #ifdef F7MOD_const_ln2_ #include "libf7-constdef.h" #endif // ln2 #ifdef F7MOD_const_1_ln2_ #include "libf7-constdef.h" #endif // 1_ln2 #ifdef F7MOD_const_ln10_ #include "libf7-constdef.h" #endif // ln10 #ifdef F7MOD_const_1_ln10_ #include "libf7-constdef.h" #endif // 1_ln10 #ifdef F7MOD_const_1_ #include "libf7-constdef.h" #endif // 1 #ifdef F7MOD_const_sqrt2_ #include "libf7-constdef.h" #endif // sqrt2 #ifdef F7MOD_const_2_ #include "libf7-constdef.h" #endif // 2 #ifdef F7MOD_const_pi_ #include "libf7-constdef.h" #endif // pi #ifdef F7MOD_divx_ // C /= A extern void f7_div_asm (f7_t*, const f7_t*, uint8_t); F7_WEAK void f7_divx (f7_t *cc, const f7_t *aa, const f7_t *bb, uint8_t quot_bits) { uint8_t a_class = f7_classify (aa); uint8_t b_class = f7_classify (bb); // From this point on, no more access aa->flags or bb->flags // to avoid early-clobber when writing cc->flags. // If either value is NaN, return NaN. if (f7_class_nan (a_class | b_class) // If both values are Inf or both are 0, return NaN. || f7_class_zero (a_class & b_class) || f7_class_inf (a_class & b_class) // Inf / 0 = NaN. || (f7_class_inf (a_class) && f7_class_zero (b_class))) { return f7_set_nan (cc); } // 0 / B = 0 for non-zero, non-NaN B. // A / Inf = 0 for non-zero numbers A. if (f7_class_zero (a_class) || f7_class_inf (b_class)) return f7_clr (cc); uint8_t c_sign = (a_class ^ b_class) & F7_FLAG_sign; if (f7_class_inf (a_class) || f7_class_zero (b_class)) return f7_set_inf (cc, c_sign); cc->flags = c_sign; _Static_assert (F7_FLAGNO_sign == 0, ""); int16_t expo = sub_ssat16 (aa->expo, bb->expo); // Store expo and handle expo = INT16_MIN and INT16_MAX. if (f7_store_expo (cc, expo)) return; f7_t ss7, *ss = &ss7; ss->flags = cc->flags; ss->expo = cc->expo; f7_copy_mant (ss, aa); f7_div_asm (ss, bb, quot_bits); f7_copy (cc, ss); } #endif // F7MOD_divx_ #ifdef F7MOD_div_ F7_WEAK void f7_div (f7_t *cc, const f7_t *aa, const f7_t *bb) { /* When f7_divx calls f7_div_asm, dividend and divisor are valid mantissae, i.e. their MSBit is set. Therefore, the quotient will be in [0x0.ff..., 0x0.40...] and to adjust it, at most 1 left-shift is needed. Compute F7_MANT_BITS + 2 bits of the quotient: One bit is used for rounding, and one bit might be consumed by the mentioned left-shift. */ f7_divx (cc, aa, bb, 2 + F7_MANT_BITS); } #endif // F7MOD_div_ #ifdef F7MOD_div1_ F7_WEAK void f7_div1 (f7_t *cc, const f7_t *aa) { F7_PCONST_U16 (const f7_t *one, 1); f7_div (cc, one, aa); } #endif // F7MOD_div_ #ifdef F7MOD_fmod_ F7_WEAK void f7_fmod (f7_t *cc, const f7_t *aa, const f7_t *bb) { uint8_t a_class = f7_classify (aa); uint8_t b_class = f7_classify (bb); if (! f7_class_number (a_class) || f7_class_nan (b_class) || f7_class_zero (b_class)) { return f7_set_nan (cc); } // A == 0 and B != 0 => 0. if (f7_class_zero (a_class)) return f7_clr (cc); f7_t zz7, *zz = & zz7; f7_div (zz, aa, bb); // Z in Z, |Z| <= |A/B|. f7_trunc (zz, zz); // C = A - Z * B. f7_msub (cc, zz, bb, aa); cc->flags ^= F7_FLAG_sign; } #endif // F7MOD_fmod_ #ifdef F7MOD_truncx_ F7_WEAK f7_t* f7_truncx (f7_t *cc, const f7_t *aa, bool do_floor) { uint8_t a_class = f7_classify (aa); if (! f7_class_nonzero (a_class)) return f7_copy (cc, aa); bool sign = f7_class_sign (a_class); int16_t a_expo = aa->expo; if (a_expo < 0) { // |A| < 1. if (sign & do_floor) return f7_set_s16 (cc, -1); f7_clr (cc); return cc; } else if (a_expo >= F7_MANT_BITS - 1) // A == floor (A). return f7_copy (cc, aa); f7_t tmp7, *tmp = &tmp7; // Needed if aa === cc. f7_copy (tmp, aa); cc->flags = sign; cc->expo = a_expo; f7_clr_mant_lsbs (cc, aa, F7_MANT_BITS - 1 - a_expo); if (do_floor && cc->sign && f7_cmp_mant (cc, tmp) != 0) { F7_PCONST_U16 (const f7_t *one, 1); f7_Isub (cc, one); } return cc; } #endif // F7MOD_truncx_ #ifdef F7MOD_floor_ F7_WEAK f7_t* f7_floor (f7_t *cc, const f7_t *aa) { return f7_truncx (cc, aa, true); } #endif // F7MOD_floor_ #ifdef F7MOD_trunc_ F7_WEAK f7_t* f7_trunc (f7_t *cc, const f7_t *aa) { return f7_truncx (cc, aa, false); } #endif // F7MOD_trunc_ #ifdef F7MOD_ceil_ F7_WEAK void f7_ceil (f7_t *cc, const f7_t *aa) { cc = f7_copy (cc, aa); cc->flags ^= F7_FLAG_sign; cc = f7_floor (cc, cc); f7_Ineg (cc); } #endif // F7MOD_ceil_ #ifdef F7MOD_round_ F7_WEAK void f7_round (f7_t *cc, const f7_t *aa) { f7_t tmp; (void) tmp; const f7_t *half = F7_CONST_ADDR (1_2, &tmp); f7_addsub (cc, aa, half, f7_signbit (aa)); f7_trunc (cc, cc); } #endif // F7MOD_round_ #ifdef F7MOD_horner_ // Assertion when using this function is that either cc != xx, // or if cc == xx, then tmp1 must be non-NULL and tmp1 != xx. // In General, the calling functions have a spare f7_t object available // and can pass it down to save some stack. // Moreover, the power series must have degree 1 at least. F7_WEAK void f7_horner (f7_t *cc, const f7_t *xx, uint8_t n_coeff, const f7_t *coeff, f7_t *tmp1) { f7_assert (n_coeff > 1); if (cc != xx) tmp1 = cc; else f7_assert (tmp1 != NULL && tmp1 != xx); f7_t *yy = tmp1; f7_t tmp27, *tmp2 = &tmp27; n_coeff--; const f7_t *pcoeff = coeff + n_coeff; f7_copy_flash (yy, pcoeff); while (1) { --pcoeff; #if 1 f7_Imul (yy, xx); const f7_t *cst = USE_LD ? pcoeff : f7_copy_P (tmp2, pcoeff); if (coeff == pcoeff) return f7_add (cc, yy, cst); f7_Iadd (yy, cst); #else const f7_t *cst = USE_LD ? pcoeff : f7_copy_P (tmp2, pcoeff); f7_madd (yy, yy, xx, cst); if (coeff == pcoeff) { f7_copy (cc, yy); return; } #endif } __builtin_unreachable(); } #endif // F7MOD_horner_ #ifdef F7MOD_log_ F7_WEAK void f7_log (f7_t *cc, const f7_t *aa) { f7_logx (cc, aa, NULL); } #endif // F7MOD_log_ #ifdef F7MOD_log2_ F7_WEAK void f7_log2 (f7_t *cc, const f7_t *aa) { f7_logx (cc, aa, F7_RAW_CONST_ADDR (1_ln2)); } #endif // F7MOD_log2_ #ifdef F7MOD_log10_ F7_WEAK void f7_log10 (f7_t *cc, const f7_t *aa) { f7_logx (cc, aa, F7_RAW_CONST_ADDR (1_ln10)); } #endif // F7MOD_log10_ #ifdef F7MOD_logx_ #define ARRAY_NAME coeff_artanh #include "libf7-array.def" #undef ARRAY_NAME // Compute P * ln(A) if P != NULL and ln(A), otherwise. // P is a LD-address if USE_LD and a LPM-address if USE_LPM. // Assumption is that P > 0. F7_WEAK void f7_logx (f7_t *cc, const f7_t *aa, const f7_t *p) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class) || f7_class_sign (a_class)) return f7_set_nan (cc); if (f7_class_inf (a_class)) return f7_set_inf (cc, 0); if (f7_class_zero (a_class)) return f7_set_inf (cc, 1); f7_t *yy = cc; f7_t xx7, *xx = &xx7; f7_t tmp7, *tmp = &tmp7; // Y in [1, 2] = A * 2 ^ (-a_expo). int16_t a_expo = aa->expo; f7_copy (yy, aa); yy->expo = 0; // Y in [1 / sqrt2, sqrt2]. if (f7_abscmp_msb_ge (yy, F7_(const_sqrt2_msb), F7_(const_sqrt2_expo))) { yy->expo = -1; a_expo = add_ssat16 (a_expo, 1); } const f7_t *one = F7_U16_ADDR (1, & tmp7); // X := (Y - 1) / (Y + 1), |X| <= (sqrt2 - 1) / (sqrt2 + 1) ~ 0.172. f7_sub (xx, yy, one); f7_Iadd (yy, one); f7_Idiv (xx, yy); // Y := X^2, |Y| < 0.03. f7_square (yy, xx); // Y := artanh (X^2) / X f7_horner (yy, yy, n_coeff_artanh, coeff_artanh, tmp); // C = X * Y = ln A - a_expo * ln2. f7_mul (cc, xx, yy); // X := a_expo * ln2. f7_set_s16 (xx, a_expo); f7_Imul (xx, F7_CONST_ADDR (ln2, & tmp7)); // C = ln A. f7_Iadd (cc, xx); if (p && USE_LPM) f7_Imul (cc, f7_copy_P (tmp, p)); if (p && USE_LD) f7_Imul (cc, p); } #endif // F7MOD_logx_ #ifdef F7MOD_exp_ #define ARRAY_NAME coeff_exp #include "libf7-array.def" #undef ARRAY_NAME #define STATIC static #include "libf7-constdef.h" // ln2_low #undef STATIC F7_WEAK void f7_exp (f7_t *cc, const f7_t *aa) { uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class)) return f7_set_nan (cc); /* The maximal exponent of 2 for a double is 1023, hence we may limit to |A| < 1023 * ln2 ~ 709. We limit to 1024 ~ 1.99 * 2^9 */ if (f7_class_inf (a_class) || (f7_class_nonzero (a_class) && aa->expo >= 9)) { if (f7_class_sign (a_class)) return f7_clr (cc); else return f7_set_inf (cc, 0); } f7_t const *cst; f7_t qq7, *qq = &qq7; F7_PCONST (cst, ln2); // We limited |A| to 1024 and are now dividing by ln2, hence Q will // be at most 1024 / ln2 ~ 1477 and fit into 11 bits. We will // round Q anyway, hence only request 11 bits from the division and // one additional bit that might be needed to normalize the quotient. f7_divx (qq, aa, cst, 1 + 11); // Use the smallest (by absolute value) remainder system. f7_round (qq, qq); int16_t q = f7_get_s16 (qq); // Reducing A mod ln2 gives |C| <= ln2 / 2, C = -A mod ln2. f7_msub (cc, qq, cst, aa); // Corrigendum: We added Q * ln2; now add Q times the low part of ln2 // for better precision. Due to |C| < |A| this is not a no-op in general. const f7_t *yy = F7_CONST_ADDR (ln2_low, &_var_for_ln2); f7_madd (cc, qq, yy, cc); // Because we computed C = -A mod ... cc->flags ^= F7_FLAG_sign; // Reduce further to |C| < ln2 / 8 which is the range of our MiniMax poly. const uint8_t MAX_LN2_RED = 3; int8_t scal2 = 0; while (f7_abscmp_msb_ge (cc, F7_(const_ln2_msb), F7_(const_ln2_expo) - MAX_LN2_RED)) { scal2++; cc->expo--; } f7_horner (cc, cc, n_coeff_exp, coeff_exp, qq); while (--scal2 >= 0) f7_Isquare (cc); f7_Ildexp (cc, q); } #endif // F7MOD_exp_ #ifdef F7MOD_pow10_ F7_WEAK void f7_pow10 (f7_t *cc, const f7_t *aa) { const f7_t *p_ln10; F7_PCONST (p_ln10, ln10); f7_mul (cc, aa, p_ln10); f7_exp (cc, cc); } ALIAS (f7_pow10, f7_exp10) #endif // F7MOD_pow10_ #ifdef F7MOD_cbrt_ F7_WEAK void f7_cbrt (f7_t *cc, const f7_t *aa) { f7_copy (cc, aa); const f7_t *p_1_3; uint8_t c_flags = cc->flags; cc->flags &= ~F7_FLAG_sign; f7_log (cc, cc); F7_PCONST (p_1_3, 1_3); f7_Imul (cc, p_1_3); f7_exp (cc, cc); if (c_flags & F7_FLAG_sign) cc->flags |= F7_FLAG_sign; } #endif // F7MOD_cbrt_ #ifdef F7MOD_pow_ F7_WEAK void f7_pow (f7_t *cc, const f7_t *aa, const f7_t *bb) { #if 0 f7_t slots[cc == bb]; f7_t *yy = cc == bb ? slots : cc; #else f7_t yy7, *yy = &yy7; #endif f7_log (yy, aa); f7_Imul (yy, bb); f7_exp (cc, yy); } #endif // F7MOD_pow_ #ifdef F7MOD_powi_ F7_WEAK void f7_powi (f7_t *cc, const f7_t *aa, int ii) { uint16_t u16 = ii; f7_t xx27, *xx2 = &xx27; if (ii < 0) u16 = -u16; f7_copy (xx2, aa); f7_set_u16 (cc, 1); while (1) { if (u16 & 1) f7_Imul (cc, xx2); if (! f7_is_nonzero (cc)) break; u16 >>= 1; if (u16 == 0) break; f7_Isquare (xx2); } if (ii < 0) f7_div1 (xx2, aa); } #endif // F7MOD_powi_ #ifdef F7MOD_sincos_ #define ARRAY_NAME coeff_sin #define FOR_SIN #include "libf7-array.def" #undef FOR_SIN #undef ARRAY_NAME #define ARRAY_NAME coeff_cos #define FOR_COS #include "libf7-array.def" #undef FOR_COS #undef ARRAY_NAME #define STATIC static #include "libf7-constdef.h" // pi_low #undef STATIC typedef union { struct { bool neg_sin : 1; // Must be bit F7_FLAGNO_sign. bool neg_cos : 1; bool do_sin: 1; bool do_cos: 1; bool swap_sincos : 1; uint8_t res : 3; }; uint8_t bits; } sincos_t; F7_WEAK void f7_sincos (f7_t *ss, f7_t *cc, const f7_t *aa) { uint8_t a_class = f7_classify (aa); sincos_t sc = { .bits = a_class & F7_FLAG_sign }; if (ss != NULL) sc.do_sin = 1; if (cc != NULL) sc.do_cos = 1; if (f7_class_nan (a_class) || f7_class_inf (a_class)) { if (sc.do_sin) f7_set_nan (ss); if (sc.do_cos) f7_set_nan (cc); return; } f7_t pi7, *pi = &pi7; f7_t xx7, *xx = &xx7; f7_t yy7, *yy = &yy7; f7_t *hh = sc.do_sin ? ss : cc; // X = |A| f7_copy (xx, aa); xx->flags = 0; // Y is how often we subtract PI from X. f7_clr (yy); f7_const (pi, pi); if (f7_abscmp_msb_ge (xx, F7_(const_pi_msb), F7_(const_pi_expo) + 1)) { pi->expo = 1 + F7_(const_pi_expo); // 2*pi // Y = X / 2pi. f7_div (yy, xx, pi); // The integral part of |A| / pi mod 2 is bit 55 - x_expo. if (yy->expo >= F7_MANT_BITS && !f7_is_zero (yy)) { // Too big for sensible calculation: Should this be NaN instead? if (sc.do_sin) f7_clr (ss); if (sc.do_cos) f7_clr (cc); return; } // X -= 2pi * [ X / 2pi ] f7_floor (yy, yy); f7_msub (xx, yy, pi, xx); xx->flags ^= F7_FLAG_sign; // We divided by 2pi, but Y should count times we subtracted pi. yy->expo++; } pi->expo = F7_(const_pi_expo); // pi f7_sub (hh, xx, pi); if (!f7_signbit (hh)) { // H = X - pi >= 0 => X >= pi // sin(x) = -sin(x - pi) // cos(x) = -cos(x - pi) f7_copy (xx, hh); // Y: We subtracted pi one more time. f7_Iadd (yy, f7_set_u16 (hh, 1)); sc.neg_sin ^= 1; sc.neg_cos ^= 1; } pi->expo = F7_(const_pi_expo) - 1; // pi/2 if (f7_gt (xx, pi)) { // x > pi/2 // sin(x) = sin(pi - x) // cos(x) = -cos(pi - x) pi->expo = F7_(const_pi_expo); // pi f7_IRsub (xx, pi); // Y: We subtracted pi one more time (and then negated). f7_Iadd (yy, f7_set_u16 (hh, 1)); yy->flags ^= F7_FLAG_sign; sc.neg_cos ^= 1; } pi->expo = F7_(const_pi_expo) - 2; // pi/4 if (f7_gt (xx, pi)) { // x > pi/4 // sin(x) = cos(pi/2 - x) // cos(x) = sin(pi/2 - x) pi->expo = F7_(const_pi_expo) - 1; // pi/2 f7_IRsub (xx, pi); // Y: We subtracted pi/2 one more time (and then negated). f7_Iadd (yy, f7_set_1pow2 (hh, -1, 0)); yy->flags ^= F7_FLAG_sign; sc.swap_sincos = 1; } if (!f7_is0 (yy)) { // Y counts how often we subtracted pi from X in order to // get 0 <= X < pi/4 as small as possible (Y is 0 mod 0.5). // Now also subtract the low part of pi: // f7_const_pi_low = pi - f7_const_pi in order to get more precise // results in the cases where the final result is close to 0. const f7_t *pi_low = F7_CONST_ADDR (pi_low, pi); //f7_const (pi, pi_low); f7_Imul (yy, pi_low); f7_Isub (xx, yy); } // X in [0, pi/4]. // X^2 in [0, pi^2/16] ~ [0, 0.6169] f7_square (yy, xx); f7_t *x_sin = xx; f7_t *x_cos = yy; if ((sc.do_sin && !sc.swap_sincos) || (sc.do_cos && sc.swap_sincos)) { f7_horner (hh, yy, n_coeff_sin, coeff_sin, NULL); f7_mul (x_sin, hh, xx); } if ((sc.do_cos && !sc.swap_sincos) || (sc.do_sin && sc.swap_sincos)) { f7_horner (x_cos, yy, n_coeff_cos, coeff_cos, hh); } if (sc.swap_sincos) { x_sin = yy; x_cos = xx; } if (sc.do_sin) { x_sin->flags ^= sc.bits; x_sin->flags &= F7_FLAG_sign; f7_copy (ss, x_sin); } if (sc.do_cos) { x_cos->flags = sc.neg_cos; f7_copy (cc, x_cos); } } #endif // F7MOD_sincos_ #ifdef F7MOD_sin_ F7_WEAK void f7_sin (f7_t *ss, const f7_t *aa) { f7_sincos (ss, NULL, aa); } #endif // F7MOD_sin_ #ifdef F7MOD_cos_ F7_WEAK void f7_cos (f7_t *cc, const f7_t *aa) { f7_sincos (NULL, cc, aa); } #endif // F7MOD_cos_ #ifdef F7MOD_tan_ F7_WEAK void f7_tan (f7_t *tt, const f7_t *aa) { f7_t xcos; f7_sincos (tt, & xcos, aa); f7_Idiv (tt, & xcos); } #endif // F7MOD_tan_ #ifdef F7MOD_cotan_ F7_WEAK void f7_cotan (f7_t *ct, const f7_t *aa) { f7_t xcos; f7_sincos (ct, & xcos, aa); f7_div (ct, & xcos, ct); } #endif // F7MOD_cotan_ #ifdef F7MOD_sinhcosh_ F7_WEAK void f7_sinhcosh (f7_t *cc, const f7_t *aa, bool do_sinh) { f7_t xx7, *xx = &xx7; // C = exp(A) f7_exp (cc, aa); // X = exp(-A) f7_div (xx, f7_set_u16 (xx, 1), cc); // sinh(A) = (exp(A) - exp(-A)) / 2 // cosh(A) = (exp(A) + exp(-A)) / 2 f7_addsub (cc, cc, xx, do_sinh); cc->expo--; } #endif // F7MOD_sinhcosh_ #ifdef F7MOD_sinh_ F7_WEAK void f7_sinh (f7_t *cc, const f7_t *aa) { f7_sinhcosh (cc, aa, true); } #endif // F7MOD_sinh_ #ifdef F7MOD_cosh_ F7_WEAK void f7_cosh (f7_t *cc, const f7_t *aa) { f7_sinhcosh (cc, aa, false); } #endif // F7MOD_cosh_ #ifdef F7MOD_tanh_ F7_WEAK void f7_tanh (f7_t *cc, const f7_t *aa) { // tanh(A) = (exp(2A) - 1) / (exp(2A) + 1) f7_t xx7, *xx = &xx7; F7_PCONST_U16 (const f7_t *one, 1); // C = 2A f7_copy (cc, aa); cc->expo++; // C = exp(2A) f7_exp (cc, cc); // X = exp(2A) + 1 f7_add (xx, cc, one); // C = exp(2A) - 1 f7_Isub (cc, one); // C = tanh(A) f7_Idiv (cc, xx); } #endif // F7MOD_tanh_ #ifdef F7MOD_atan_ #define MINIMAX_6_6_IN_0_1 #define ARRAY_NAME coeff_atan_zahler #define FOR_NUMERATOR #include "libf7-array.def" #undef FOR_NUMERATOR #undef ARRAY_NAME #define ARRAY_NAME coeff_atan_nenner #define FOR_DENOMINATOR #include "libf7-array.def" #undef FOR_DENOMINATOR #undef ARRAY_NAME #include "libf7-constdef.h" F7_WEAK void f7_atan (f7_t *cc, const f7_t *aa) { uint8_t a_class = f7_classify (aa); uint8_t flags = a_class & F7_FLAG_sign; if (f7_class_nan (a_class)) return f7_set_nan (cc); f7_t yy7, *yy = &yy7; f7_t zz7, *zz = &zz7; if (f7_class_inf (a_class)) { f7_set_u16 (cc, 0); goto do_Inf; } // C = |A| f7_copy (cc, aa); cc->flags = 0; if (!f7_class_zero (a_class) && cc->expo >= 0) { // C >= 1: use atan (x) + atan (1/x) = pi / 2 to reduce to [0, 1]. flags |= 1 << 1; f7_div (cc, f7_set_u16 (yy, 1), cc); } #if !defined (MINIMAX_6_6_IN_0_1) const uint8_t const_a_msb = 0x89; const int16_t const_a_expo = -2; if (f7_abscmp_msb_ge (cc, const_a_msb, const_a_expo)) { // We have C in [0, 1] and we want to use argument reduction by means // of addition theorem atan(x) - atan(y) = atan((x - y) / (1 + xy)). // We want to split [0, 1] into [0, a] u [a, 1] in such a way that // the upper interval will be mapped to [-a, a]. The system is easy // to solve and yiels // y = 1 / sqrt (3) ~ 0.57735 atan(y) = pi / 6 // a = (1 - y) / (1 + y) ~ 0.26795 ~ 0x0.8930A2F * 2^-1. flags |= 1 << 2; // C <- (C - Y) / (1 + C * Y) in [-a, a] const f7_t *cst = F7_CONST_ADDR (1_sqrt3, zz); f7_mul (yy, cc, cst); f7_Isub (cc, cst); f7_Iadd (yy, F7_U16_ADDR (1, zz)); f7_Idiv (cc, yy); } #endif // C <- C * p(C^2) / q(C^2) f7_square (yy, cc); f7_horner (zz, yy, n_coeff_atan_zahler, coeff_atan_zahler, NULL); f7_Imul (zz, cc); f7_horner (cc, yy, n_coeff_atan_nenner, coeff_atan_nenner, NULL); f7_div (cc, zz, cc); #if !defined (MINIMAX_6_6_IN_0_1) if (flags & (1 << 2)) f7_Iadd (cc, F7_CONST_ADDR (pi_6, yy)); #endif if (flags & (1 << 1)) { do_Inf:; // Y = pi / 2 f7_const (yy, pi); yy->expo = F7_(const_pi_expo) - 1; f7_IRsub (cc, yy); } cc->flags = a_class & F7_FLAG_sign; } #undef MINIMAX_6_6_IN_0_1 #endif // F7MOD_atan_ #ifdef F7MOD_asinacos_ #define ARRAY_NAME coeff_func_a_zahler #define FOR_NUMERATOR #include "libf7-array.def" #undef FOR_NUMERATOR #undef ARRAY_NAME #define ARRAY_NAME coeff_func_a_nenner #define FOR_DENOMINATOR #include "libf7-array.def" #undef FOR_DENOMINATOR #undef ARRAY_NAME typedef union { struct { bool sign : 1; // Must be bit F7_FLAGNO_sign. bool do_acos : 1; // From caller. bool have_acos : 1; // What we compute from rational approx p/q. uint8_t res : 5; }; uint8_t bits; } asinacos_t; F7_WEAK void f7_asinacos (f7_t *cc, const f7_t *aa, uint8_t what) { f7_t xx7, *xx = &xx7; f7_t xx27, *xx2 = &xx27; asinacos_t flags = { .bits = what | f7_signbit (aa) }; f7_abs (xx, aa); int8_t cmp = f7_cmp (xx, f7_set_u16 (cc, 1)); if (cmp == INT8_MIN || cmp > 0) { return f7_set_nan (cc); } if (xx->expo <= -2 || f7_is_zero (xx)) { // |A| < 1/2: asin(x) = x * a(2*x^2) f7_square (xx2, xx); xx2->expo ++; } else { // |A| > 1/2: acos (1-x) = sqrt(2*x) * a(x) // C is 1 from above. f7_IRsub (xx, cc); f7_copy (xx2, xx); flags.have_acos = 1; } // MiniMax [5/4] numerator. f7_horner (cc, xx2, n_coeff_func_a_zahler, coeff_func_a_zahler, NULL); if (flags.have_acos) { xx->expo ++; f7_Isqrt (xx); } f7_Imul (cc, xx); // MiniMax [5/4] denominator. f7_horner (xx, xx2, n_coeff_func_a_nenner, coeff_func_a_nenner, NULL); f7_Idiv (cc, xx); /* With the current value of C, we have: | | do_asin | do_acos | C | A <= 0 | A >= 0 | A <= 0 | A >= 0 ----------+------------+-----------+----------+----------+---------- have_asin | asin (|A|) | -C | C | pi/2 + C | pi/2 - C have_acos | acos (|A|) | -pi/2 + C | pi/2 - C | pi - C | C Result = n_pi2 * pi/2 + C * (c_sign ? -1 : 1) Result (A, do_asin) = asin (A) Result (A, do_acos) = acos (A) with c_sign = do_acos ^ have_acos ^ a_sign n_pi2 = do_acos + have_acos * (a_sign ^ do_acos) ? (-1 : 1) n_pi2 in { -1, 0, 1, 2 } */ // All what matters for c_sign is bit 0. uint8_t c_sign = flags.bits; int8_t n_pi2 = flags.do_acos; c_sign ^= flags.do_acos; if (flags.have_acos) { n_pi2++; __asm ("" : "+r" (n_pi2)); if (c_sign & 1) // c_sign & 1 = a_sign ^ do_acos n_pi2 -= 2; c_sign++; } cc->flags = c_sign & F7_FLAG_sign; if (n_pi2) { f7_const (xx, pi); if (n_pi2 < 0) xx->sign = 1; if (n_pi2 != 2) xx->expo = F7_(const_pi_expo) - 1; f7_Iadd (cc, xx); } } #endif // F7MOD_asinacos_ #ifdef F7MOD_asin_ F7_WEAK void f7_asin (f7_t *cc, const f7_t *aa) { f7_asinacos (cc, aa, 0); } #endif // F7MOD_asin_ #ifdef F7MOD_acos_ F7_WEAK void f7_acos (f7_t *cc, const f7_t *aa) { f7_asinacos (cc, aa, 1 << 1); } #endif // F7MOD_acos_ #ifndef IN_LIBGCC2 #ifdef F7MOD_put_C_ #include #include static F7_INLINE uint8_t f7_hex_digit (uint8_t nibble) { nibble = (uint8_t) (nibble + '0'); if (nibble > '9') nibble = (uint8_t) (nibble + ('a' - '0' - 10)); return nibble; } static void f7_put_hex2 (uint8_t x, FILE *stream) { putc ('0', stream); if (x) { putc ('x', stream); putc (f7_hex_digit (x >> 4), stream); putc (f7_hex_digit (x & 0xf), stream); } } #define XPUT(str) \ fputs_P (PSTR (str), stream) // Write to STREAM a line that is appropriate for usage in libf7-const.def. F7_WEAK void f7_put_CDEF (const char *name, const f7_t *aa, FILE *stream) { char buf[7]; XPUT ("F7_CONST_DEF ("); fputs (name, stream); XPUT (",\t"); uint8_t a_class = f7_classify (aa); if (! f7_class_nonzero (a_class)) { f7_put_hex2 (a_class & F7_FLAGS, stream); XPUT (",\t0,0,0,0,0,0,0,\t0)"); return; } putc ('0' + (a_class & F7_FLAGS), stream); XPUT (",\t"); for (uint8_t i = 0; i < F7_MANT_BYTES; i++) { f7_put_hex2 (aa->mant[F7_MANT_BYTES-1 - i], stream); putc (',', stream); } putc ('\t', stream); itoa (aa->expo, buf, 10); fputs (buf, stream); XPUT (")"); } void f7_put_C (const f7_t *aa, FILE *stream) { char buf[7]; uint8_t a_class = f7_classify (aa); if (f7_class_nan (a_class)) { XPUT ("{ .is_nan = 1 }"); return; } bool sign = a_class & F7_FLAG_sign; if (f7_class_inf (a_class)) { XPUT ("{ .is_nan = 1, .sign = "); putc ('0' + sign, stream); XPUT (" }"); return; } XPUT ("{ .sign = "); putc ('0' + sign, stream); XPUT (", .mant = { "); for (uint8_t i = 0; i < F7_MANT_BYTES; i++) { f7_put_hex2 (aa->mant[F7_MANT_BYTES-1 - i], stream); if (i != F7_MANT_BYTES - 1) putc (',', stream); } XPUT (" }, .expo = "); itoa (aa->expo, buf, 10); fputs (buf, stream); XPUT (" }"); } #endif //F7MOD_put_C_ #ifdef F7MOD_dump_ #include #ifndef AVRTEST_H #include static void LOG_PSTR (const char *str) { fputs_P (str, stdout); } static void LOG_PFMT_U16 (const char *fmt, uint16_t x) { printf_P (fmt, x); } static void LOG_PFMT_FLOAT (const char *fmt, float x) { printf_P (fmt, x); } #define LOG_X8(X) LOG_PFMT_U16 (PSTR (" 0x%02x "), (uint8_t)(X)) #define LOG_PFMT_S16(FMT, X) LOG_PFMT_U16 (FMT, (unsigned)(X)) #define LOG_PFMT_ADDR(FMT, X) LOG_PFMT_U16 (FMT, (unsigned)(X)) #endif // AVRTEST_H static void dump_byte (uint8_t b) { LOG_PSTR (PSTR (" ")); for (uint8_t i = 0; i < 8; i++) { LOG_PSTR ((b & 0x80) ? PSTR ("1") : PSTR ("0")); b = (uint8_t) (b << 1); } } void f7_dump_mant (const f7_t *aa) { LOG_PSTR (PSTR ("\tmant =")); for (int i = F7_MANT_BYTES - 1; i >= 0; i--) LOG_X8 (aa->mant[i]); LOG_PSTR (PSTR ("\n\t =")); for (int i = F7_MANT_BYTES - 1; i >= 0; i--) dump_byte (aa->mant[i]); LOG_PSTR (PSTR ("\n")); } void f7_dump (const f7_t *aa) { LOG_PFMT_ADDR (PSTR ("\n0x%04x\tflags = "), aa); dump_byte (aa->flags); uint8_t a_class = f7_classify (aa); LOG_PSTR (PSTR (" = ")); LOG_PSTR (f7_class_sign (a_class) ? PSTR ("-") : PSTR ("+")); if (f7_class_inf (a_class)) LOG_PSTR (PSTR ("Inf ")); if (f7_class_nan (a_class)) LOG_PSTR (PSTR ("NaN ")); if (f7_class_zero (a_class)) LOG_PSTR (PSTR ("0 ")); if (f7_class_number (a_class)) LOG_PSTR (PSTR ("Number ")); LOG_PFMT_FLOAT (PSTR (" = %.10g\n"), f7_get_float (aa)); LOG_PFMT_S16 (PSTR ("\texpo = %d\n"), aa->expo); f7_dump_mant (aa); } #endif // F7MOD_dump_ #endif // ! libgcc #endif // !AVR_TINY