141 lines
4.2 KiB
C
141 lines
4.2 KiB
C
|
/* Copyright (C) 1995-2022 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<https://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "longlong.h"
|
||
|
#include <ieee754.h>
|
||
|
#include <float.h>
|
||
|
#include <math.h>
|
||
|
#include <math_private.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
/* Convert a `long double' in IEEE854 quad-precision format to a
|
||
|
multi-precision integer representing the significand scaled up by its
|
||
|
number of bits (113 for long double) and an integral power of two
|
||
|
(MPN frexpl). */
|
||
|
|
||
|
mp_size_t
|
||
|
__mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
|
||
|
int *expt, int *is_neg,
|
||
|
_Float128 value)
|
||
|
{
|
||
|
union ieee854_long_double u;
|
||
|
u.d = value;
|
||
|
|
||
|
*is_neg = u.ieee.negative;
|
||
|
*expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS;
|
||
|
|
||
|
#if BITS_PER_MP_LIMB == 32
|
||
|
res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction. */
|
||
|
res_ptr[1] = u.ieee.mantissa2;
|
||
|
res_ptr[2] = u.ieee.mantissa1;
|
||
|
res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits. */
|
||
|
#define N 4
|
||
|
#elif BITS_PER_MP_LIMB == 64
|
||
|
/* Hopefully the compiler will combine the two bitfield extracts
|
||
|
and this composition into just the original quadword extract. */
|
||
|
res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
|
||
|
res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
|
||
|
#define N 2
|
||
|
#else
|
||
|
#error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
|
||
|
#endif
|
||
|
/* The format does not fill the last limb. There are some zeros. */
|
||
|
#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
|
||
|
- (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
|
||
|
|
||
|
if (u.ieee.exponent == 0)
|
||
|
{
|
||
|
/* A biased exponent of zero is a special case.
|
||
|
Either it is a zero or it is a denormal number. */
|
||
|
if (res_ptr[0] == 0 && res_ptr[1] == 0
|
||
|
&& res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */
|
||
|
/* It's zero. */
|
||
|
*expt = 0;
|
||
|
else
|
||
|
{
|
||
|
/* It is a denormal number, meaning it has no implicit leading
|
||
|
one bit, and its exponent is in fact the format minimum. */
|
||
|
int cnt;
|
||
|
|
||
|
#if N == 2
|
||
|
if (res_ptr[N - 1] != 0)
|
||
|
{
|
||
|
count_leading_zeros (cnt, res_ptr[N - 1]);
|
||
|
cnt -= NUM_LEADING_ZEROS;
|
||
|
res_ptr[N - 1] = res_ptr[N - 1] << cnt
|
||
|
| (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
|
||
|
res_ptr[0] <<= cnt;
|
||
|
*expt = LDBL_MIN_EXP - 1 - cnt;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count_leading_zeros (cnt, res_ptr[0]);
|
||
|
if (cnt >= NUM_LEADING_ZEROS)
|
||
|
{
|
||
|
res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
|
||
|
res_ptr[0] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
|
||
|
res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
|
||
|
}
|
||
|
*expt = LDBL_MIN_EXP - 1
|
||
|
- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
|
||
|
}
|
||
|
#else
|
||
|
int j, k, l;
|
||
|
|
||
|
for (j = N - 1; j > 0; j--)
|
||
|
if (res_ptr[j] != 0)
|
||
|
break;
|
||
|
|
||
|
count_leading_zeros (cnt, res_ptr[j]);
|
||
|
cnt -= NUM_LEADING_ZEROS;
|
||
|
l = N - 1 - j;
|
||
|
if (cnt < 0)
|
||
|
{
|
||
|
cnt += BITS_PER_MP_LIMB;
|
||
|
l--;
|
||
|
}
|
||
|
if (!cnt)
|
||
|
for (k = N - 1; k >= l; k--)
|
||
|
res_ptr[k] = res_ptr[k-l];
|
||
|
else
|
||
|
{
|
||
|
for (k = N - 1; k > l; k--)
|
||
|
res_ptr[k] = res_ptr[k-l] << cnt
|
||
|
| res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
|
||
|
res_ptr[k--] = res_ptr[0] << cnt;
|
||
|
}
|
||
|
|
||
|
for (; k >= 0; k--)
|
||
|
res_ptr[k] = 0;
|
||
|
*expt = LDBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
/* Add the implicit leading one bit for a normalized number. */
|
||
|
res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1
|
||
|
- ((N - 1) * BITS_PER_MP_LIMB));
|
||
|
|
||
|
return N;
|
||
|
}
|